WO2010055768A1 - Method for producing germanium tetrafluoride - Google Patents

Method for producing germanium tetrafluoride Download PDF

Info

Publication number
WO2010055768A1
WO2010055768A1 PCT/JP2009/068372 JP2009068372W WO2010055768A1 WO 2010055768 A1 WO2010055768 A1 WO 2010055768A1 JP 2009068372 W JP2009068372 W JP 2009068372W WO 2010055768 A1 WO2010055768 A1 WO 2010055768A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
germanium
germanium tetrafluoride
tetrafluoride
Prior art date
Application number
PCT/JP2009/068372
Other languages
French (fr)
Japanese (ja)
Inventor
智典 梅崎
勇 毛利
啓太 中原
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN2009801385013A priority Critical patent/CN102164857A/en
Publication of WO2010055768A1 publication Critical patent/WO2010055768A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/04Halides of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/06Halides

Definitions

  • the present invention relates to a method for producing germanium tetrafluoride.
  • germanium tetrafluoride As a method for producing germanium tetrafluoride, (a) a halogen exchange method in which germanium tetrachloride is reacted with antimony fluoride (for example, Non-Patent Document 1), and (b) a method of thermally decomposing hexafluorogermanate ( For example, Non-Patent Document 2), (c) a method by reaction of germanium oxide and bromine trifluoride (for example, Non-Patent Document 3), (d) a direct fluorination method using metal germanium and fluorine gas, etc. are well known. ing.
  • a halogen exchange method in which germanium tetrachloride is reacted with antimony fluoride for example, Non-Patent Document 1
  • a method of thermally decomposing hexafluorogermanate For example, Non-Patent Document 2
  • a method by reaction of germanium oxide and bromine trifluoride for example,
  • germanium tetrafluoride obtained by the above methods (a), (b) and (c), various gases such as fluorinated germanium, HF, CO 2 , CF 4 , N 2 and O 2 are used. Is contained as an impurity.
  • An object of the present invention is to provide a method of producing germanium tetrafluoride by performing a direct reaction between metal germanium and fluorine gas safely and efficiently.
  • the present inventors have found that the above object can be achieved by synthesizing and cooling and collecting germanium tetrafluoride in a closed system, and have reached the present invention.
  • the present invention includes a step of supplying a fluorine gas to a reactor filled with metal germanium and a diluent gas, and a gas discharged from the reactor through a cooling collector so that the reaction product is a four-fluid product.
  • a method for producing germanium tetrafluoride comprising a step of collecting germanium iodide and a step of returning and circulating the gas passing through the cold collector again to the reactor.
  • the temperature of the metal germanium in the reactor is preferably in the range of 100 ° C to 400 ° C. Further, the fluorine concentration in the gas released from the reactor is preferably less than 10.0 vol%.
  • germanium tetrafluoride is synthesized and cooled and collected in a closed system. Specifically, fluorine gas is supplied to a reactor filled with metal germanium and a diluent gas, and the fluorine gas and metal germanium are directly reacted. The gas released from the reactor is passed through a cold collector to collect germanium tetrafluoride which is a reaction product. The gas that passes through the cold collector is circulated back to the reactor again by a circulator such as a pump.
  • a circulator such as a pump.
  • the shape of metal germanium charged in the reactor is not particularly limited, and a lump or rod can be used. Since its purity directly affects the purity of germanium tetrafluoride as a reaction product, it is desired to have a purity of 99.99% or more.
  • the diluent gas charged in the reactor is not particularly limited as long as it has low reactivity with fluorine gas, and for example, nitrogen gas, helium gas, neon gas, argon gas, or the like can be used.
  • the filling amount of the diluent gas in the reactor is not particularly limited as long as the diluent gas exists in the reactor.
  • the purity of the fluorine gas used as a raw material gas for fluorinating metal germanium directly affects the purity of germanium tetrafluoride, a purity of 99% or more is desired.
  • the material used for the reactor must exhibit corrosion resistance to fluorine gas at least at the reaction temperature between metal germanium and fluorine gas, such as nickel or monel.
  • the reaction temperature is preferably such that the temperature of the metal germanium in the reactor is in the range of 100 ° C. to 400 ° C., more preferably 200 ° C. to 300 ° C. If it exceeds 400 ° C., the reaction between the material of the reactor and the fluorine gas may be accelerated, which is not preferable.
  • the fluorine concentration in the gas released from the reactor can be adjusted as appropriate by adjusting the amount of dilution gas charged into the reactor, the circulation flow rate of the circulator, or the supply flow rate of the fluorine gas.
  • the fluorine concentration in the gas released from the reactor is preferably less than 10.0 vol%. If it is 10.0 vol% or more, there is a possibility that the reaction between metal germanium and fluorine gas may run away in the reactor, and the material of the reactor may be damaged.
  • the temperature of the cooling collector when collecting germanium tetrafluoride produced in the reactor can be arbitrarily selected as long as it is below the dew point of germanium tetrafluoride, but the nitrogen gas which is a fluorine gas and a dilution gas It is desirable that the temperature be ⁇ 180 ° C. or higher which is higher than the boiling point of helium gas, neon gas, or argon gas. If the temperature is lower than -180 ° C, the utilization efficiency of fluorine gas may be lowered.
  • germanium tetrafluoride was produced using the system shown in FIG.
  • the generation system was configured as a closed system by arranging the F 2 mass flow controller 1, the pump 2, the reactor 4, and the cooling collector 5 in this order.
  • the flow rate of the fluorine gas was controlled by the F 2 mass flow controller 1, introduced into the system between the pump 2 and the cooling collector 5, and supplied to the reactor 4.
  • Metal germanium 3 was filled in the central portion of the reactor 4.
  • the heater 6 was installed in the reactor 4 and the reactor 4 was heated to predetermined temperature.
  • the gas in the reactor 4 was introduced into the cold collector 5 to collect the reaction product (germanium tetrafluoride) by cooling.
  • the gas passed without being collected by the cold collector 5 was returned to the reactor 4 by the pump 2 and circulated.
  • a vacuum line for evacuating the inside of the system and a gas supply line for supplying dilution gas (helium gas) into the system and filling the reactor 4 are cooled with the reactor 4 respectively.
  • the collector 5 was connected via a leak valve.
  • Example 1 1000 g of a metal germanium 3 powder having a purity of 99.99% was filled in the center of a tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 200 ° C., and helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to ⁇ 60 ° C. Next, the circulation flow rate of the pump 2 was set to 6 L / min, and fluorine was supplied at a flow rate of 400 cc / min by the F 2 mass flow controller 1 to react for 10 hours.
  • the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi). It was confirmed. Further, the fluorine gas concentration in the reactor 4 outlet gas was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was determined as FT-IR (IG-IG manufactured by Otsuka Electronics Co., Ltd.). 1000), it was 14 vol%, and the other component was helium gas.
  • the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 98% based on germanium.
  • Example 2 500 g of a metal germanium 3 powder having a purity of 99.99% was charged in the center of a tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 150 ° C., and helium gas was introduced into the system to 120 kPa. The cold collector 5 was cooled to ⁇ 60 ° C. Next, the circulation flow rate of the pump 2 was set to 10 L / min, and fluorine was supplied at a flow rate of 300 cc / min by the F 2 mass flow controller 1 to react for 10 hours.
  • the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
  • Example 3 2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the center of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to ⁇ 60 ° C. Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 700 cc / min by the F 2 mass flow controller 1 to react for 10 hours.
  • the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
  • Example 4 2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the center of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to ⁇ 60 ° C. Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 50 cc / min by the F 2 mass flow controller 1 to react for 10 hours.
  • the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
  • Germanium tetrafluoride was produced using the system shown in FIG.
  • the generation system was configured as an open system by the mass flow controller 11 for F 2 , the reactor 14, and the cooling collector 15.
  • the flow rate of the fluorine gas was controlled by the F 2 mass flow controller 11 and supplied to the reactor 14.
  • Metal germanium 13 was filled into the reactor 14.
  • a heater 16 for heating the reactor 14 to a predetermined temperature was installed in the reactor 14.
  • the gas discharged from the reactor 14 was introduced into the cold collector 15 and the reaction product (germanium tetrafluoride) was cooled and collected.
  • the gas that passed without being collected by the cooling collector 15 was sent as exhaust gas to an abatement apparatus outside the system.
  • a vacuum line for evacuating the inside of the system, and a diluent gas (helium gas) is supplied into the system to fill the reactor 14.
  • a diluent gas helium gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)

Abstract

A method for producing germanium tetrafluoride, which comprises a step of supplying a fluorine gas into a reactor which is filled with germanium metal and a diluent gas; a step of collecting germanium tetrafluoride, which is a reaction product, by passing the gas discharged from the reactor through a cooling collection unit, and a step of circulating the gas passed through the cooling collection unit back to the reactor.  By circulating the gas in the closed system as described above, germanium tetrafluoride can be produced safely and efficiently.

Description

四フッ化ゲルマニウムの製造方法Method for producing germanium tetrafluoride
 本発明は、四フッ化ゲルマニウムの製造方法に関する。 The present invention relates to a method for producing germanium tetrafluoride.
 四フッ化ゲルマニウムの製造方法としては、(a)四塩化ゲルマニウムにフッ化アンチモンを反応させるハロゲン交換法(例えば、非特許文献1)、(b)六フッ化ゲルマニウム酸塩を熱分解する方法(例えば、非特許文献2)、(c)酸化ゲルマニウムと三フッ化臭素との反応による方法(例えば、非特許文献3)、(d)金属ゲルマニウムとフッ素ガスによる直接フッ素化法等がよく知られている。 As a method for producing germanium tetrafluoride, (a) a halogen exchange method in which germanium tetrachloride is reacted with antimony fluoride (for example, Non-Patent Document 1), and (b) a method of thermally decomposing hexafluorogermanate ( For example, Non-Patent Document 2), (c) a method by reaction of germanium oxide and bromine trifluoride (for example, Non-Patent Document 3), (d) a direct fluorination method using metal germanium and fluorine gas, etc. are well known. ing.
 しかしながら、上記(a)、(b)及び(c)の方法で得られる四フッ化ゲルマニウム中には、フッ化塩化ゲルマニウム、HF,CO2,CF4,N2,O2など多種類のガスを不純物として含有する。 However, in the germanium tetrafluoride obtained by the above methods (a), (b) and (c), various gases such as fluorinated germanium, HF, CO 2 , CF 4 , N 2 and O 2 are used. Is contained as an impurity.
 一方、上記(d)の方法では、高純度の金属ゲルマニウムやフッ素ガスが入手可能なことから、高純度の四フッ化ゲルマニウムを得ることができる。しかしながら、下記反応式(1)に示すように、金属ゲルマニウムとフッ素ガスとの反応による発熱量が大きいため、フッ素ガスを希釈導入しなければ反応が暴走する。
Ge+2F2→GeF4 (ΔH273=-284.4kcal) (1)
また、生成した四フッ化ゲルマニウムを冷却捕集する際に、四フッ化ゲルマニウムの蒸気圧が-80℃においても2.6kPa以上であるため、捕集効率を向上させるためには極低温の冷媒を使用する必要がある。よって、上記(d)の方法のように、金属ゲルマニウムのフッ素化反応を開放系で行った場合、反応の制御や製造効率の向上が難しい。
On the other hand, in the method (d), since high-purity metal germanium and fluorine gas are available, high-purity germanium tetrafluoride can be obtained. However, as shown in the following reaction formula (1), since the calorific value due to the reaction between metal germanium and fluorine gas is large, the reaction runs away unless fluorine gas is diluted.
Ge + 2F 2 → GeF 4 (ΔH 273 = −284.4 kcal) (1)
In addition, when the produced germanium tetrafluoride is cooled and collected, the vapor pressure of germanium tetrafluoride is 2.6 kPa or more even at −80 ° C. Therefore, in order to improve the collection efficiency, a cryogenic refrigerant is used. Need to use. Therefore, when the metal germanium fluorination reaction is performed in an open system as in the method (d), it is difficult to control the reaction and improve the production efficiency.
 本発明の目的は、安全に且つ高効率に、金属ゲルマニウムとフッ素ガスの直接反応を行い、四フッ化ゲルマニウムを製造する方法を提供することにある。 An object of the present invention is to provide a method of producing germanium tetrafluoride by performing a direct reaction between metal germanium and fluorine gas safely and efficiently.
 本発明者等は、鋭意検討の結果、閉鎖系内で四フッ化ゲルマニウムの合成及び冷却捕集を行うことにより、上記目的が達成できることを見出し、本発明に至った。 As a result of intensive studies, the present inventors have found that the above object can be achieved by synthesizing and cooling and collecting germanium tetrafluoride in a closed system, and have reached the present invention.
 すなわち、本発明は、金属ゲルマニウムと希釈ガスが充填されている反応器にフッ素ガスを供給する工程と、反応器より放出される気体を冷却捕集器に通過させて反応生成物である四フッ化ゲルマニウムを捕集する工程と、冷却捕集器を通過するガスを再び反応器へ戻し循環させる工程と、を含む四フッ化ゲルマニウムの製造方法が提供される。 That is, the present invention includes a step of supplying a fluorine gas to a reactor filled with metal germanium and a diluent gas, and a gas discharged from the reactor through a cooling collector so that the reaction product is a four-fluid product. There is provided a method for producing germanium tetrafluoride comprising a step of collecting germanium iodide and a step of returning and circulating the gas passing through the cold collector again to the reactor.
 反応器内の金属ゲルマニウムの温度は100℃~400℃の範囲にあることが好ましい。また、反応器より放出される気体中のフッ素濃度は10.0vol%未満であることが好ましい。 The temperature of the metal germanium in the reactor is preferably in the range of 100 ° C to 400 ° C. Further, the fluorine concentration in the gas released from the reactor is preferably less than 10.0 vol%.
本発明の実施形態に係る四フッ化ゲルマニウム製造システムの概略図である。It is the schematic of the germanium tetrafluoride manufacturing system which concerns on embodiment of this invention. 従来の四フッ化ゲルマニウム製造システムの概略図である。It is the schematic of the conventional germanium tetrafluoride manufacturing system.
 以下、本発明について詳細に述べる。 Hereinafter, the present invention will be described in detail.
 本発明では、閉鎖系内で四フッ化ゲルマニウムの合成及び冷却捕集を行う。具体的には、金属ゲルマニウムと希釈ガスが充填されている反応器にフッ素ガスを供給して、フッ素ガスと金属ゲルマニウムの直接反応を行う。反応器より放出される気体を冷却捕集器に通過させて、反応生成物である四フッ化ゲルマニウムを捕集する。冷却捕集器を通過するガスは、ポンプ等の循環器により再び反応器へ戻し循環させる。 In the present invention, germanium tetrafluoride is synthesized and cooled and collected in a closed system. Specifically, fluorine gas is supplied to a reactor filled with metal germanium and a diluent gas, and the fluorine gas and metal germanium are directly reacted. The gas released from the reactor is passed through a cold collector to collect germanium tetrafluoride which is a reaction product. The gas that passes through the cold collector is circulated back to the reactor again by a circulator such as a pump.
 反応器に充填される金属ゲルマニウムは、その形状を特に限定するものではなく、塊状又はロッド状のものが使用できる。その純度は反応生成物である四フッ化ゲルマニウムの純度に直接影響を及ぼすことから99.99%以上のものが望まれる。 The shape of metal germanium charged in the reactor is not particularly limited, and a lump or rod can be used. Since its purity directly affects the purity of germanium tetrafluoride as a reaction product, it is desired to have a purity of 99.99% or more.
 反応器に充填される希釈ガスは、フッ素ガスとの反応性の低いものであれば特に限定されず、例えば、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等を用いることができる。 The diluent gas charged in the reactor is not particularly limited as long as it has low reactivity with fluorine gas, and for example, nitrogen gas, helium gas, neon gas, argon gas, or the like can be used.
 反応器内の希釈ガスの充填量は、反応器内に希釈ガスが存在していればよく、特に限定するものではない。 The filling amount of the diluent gas in the reactor is not particularly limited as long as the diluent gas exists in the reactor.
 また、金属ゲルマニウムをフッ素化する原料ガスとして用いられるフッ素ガスの純度も四フッ化ゲルマニウムの純度に直接影響を及ぼすことから99%以上のものが望まれる。 Also, since the purity of the fluorine gas used as a raw material gas for fluorinating metal germanium directly affects the purity of germanium tetrafluoride, a purity of 99% or more is desired.
 反応器に用いる材質は、ニッケルあるいはモネルのような、少なくとも、金属ゲルマニウムとフッ素ガスとの反応温度において、フッ素ガスに対する耐食性を示すものでなければならない。 The material used for the reactor must exhibit corrosion resistance to fluorine gas at least at the reaction temperature between metal germanium and fluorine gas, such as nickel or monel.
 反応温度は、反応器内の金属ゲルマニウムの温度が100℃~400℃の範囲であることが好ましく、更に好ましくは200℃~300℃が好適である。400℃を超えると反応器の材質とフッ素ガスとの反応が促進される可能性があるため好ましくない。 The reaction temperature is preferably such that the temperature of the metal germanium in the reactor is in the range of 100 ° C. to 400 ° C., more preferably 200 ° C. to 300 ° C. If it exceeds 400 ° C., the reaction between the material of the reactor and the fluorine gas may be accelerated, which is not preferable.
 反応器より放出される気体中のフッ素濃度は、反応器への希釈ガスの充填量、循環器の循環流量、またはフッ素ガスの供給流量を調節することで、適宜、調整できる。反応器より放出される気体中のフッ素濃度は10.0vol%未満であることが好ましい。10.0vol%以上では反応器内で金属ゲルマニウムとフッ素ガスとの反応が暴走している可能性があり、反応器の材質を損傷する恐れがあるため好ましくない。 The fluorine concentration in the gas released from the reactor can be adjusted as appropriate by adjusting the amount of dilution gas charged into the reactor, the circulation flow rate of the circulator, or the supply flow rate of the fluorine gas. The fluorine concentration in the gas released from the reactor is preferably less than 10.0 vol%. If it is 10.0 vol% or more, there is a possibility that the reaction between metal germanium and fluorine gas may run away in the reactor, and the material of the reactor may be damaged.
 反応器で生成した四フッ化ゲルマニウムを捕集する際の冷却捕集器の温度は、四フッ化ゲルマニウムの露点以下であれば任意に選択可能であるが、フッ素ガス及び希釈ガスである窒素ガス、ヘリウムガス、ネオンガス、アルゴンガスの沸点以上となる-180℃以上であることが望ましい。-180℃未満ではフッ素ガスの利用効率が下がる可能性がある。 The temperature of the cooling collector when collecting germanium tetrafluoride produced in the reactor can be arbitrarily selected as long as it is below the dew point of germanium tetrafluoride, but the nitrogen gas which is a fluorine gas and a dilution gas It is desirable that the temperature be −180 ° C. or higher which is higher than the boiling point of helium gas, neon gas, or argon gas. If the temperature is lower than -180 ° C, the utilization efficiency of fluorine gas may be lowered.
 上述の通り、閉鎖系でガスを循環させることにより任意の希釈濃度での金属ゲルマニウムのフッ素化反応が可能となり、反応を容易に制御することができ、高収率で四フッ化ゲルマニウムを得ることができる。 As described above, by circulating gas in a closed system, fluorination reaction of metal germanium at any dilution concentration is possible, the reaction can be easily controlled, and germanium tetrafluoride can be obtained in high yield. Can do.
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 各実施例では、図1に示すシステムを用いて四フッ化ゲルマニウムを生成した。生成システムは、F2用マスフローコントローラ1と、ポンプ2と、反応器4と、冷却捕集器5をこの順序で配置して閉鎖系として構成した。フッ素ガスは、F2用マスフローコントローラ1により流量を制御し、ポンプ2と冷却捕集器5の間で系内に導入して、反応器4に供給した。金属ゲルマニウム3は、反応器4内の中央部に充填した。また、ヒーター6を反応器4内にヒーター6を設置し、反応器4を所定の温度に加熱した。反応器4内ガスは、冷却捕集器5に導入され、反応生成物(四フッ化ゲルマニウム)を冷却捕集した。冷却捕集器5で捕集されず通過したガスは、ポンプ2により反応器4内に戻して循環した。さらに、生成システムには、系内を真空置換するための真空ライン、及び希釈ガス(ヘリウムガス)を系内に供給して反応器4に充填するためのガス供給ラインをそれぞれ反応器4と冷却捕集器5の間においてれ開閉弁を介して接続した。 In each example, germanium tetrafluoride was produced using the system shown in FIG. The generation system was configured as a closed system by arranging the F 2 mass flow controller 1, the pump 2, the reactor 4, and the cooling collector 5 in this order. The flow rate of the fluorine gas was controlled by the F 2 mass flow controller 1, introduced into the system between the pump 2 and the cooling collector 5, and supplied to the reactor 4. Metal germanium 3 was filled in the central portion of the reactor 4. Moreover, the heater 6 was installed in the reactor 4 and the reactor 4 was heated to predetermined temperature. The gas in the reactor 4 was introduced into the cold collector 5 to collect the reaction product (germanium tetrafluoride) by cooling. The gas passed without being collected by the cold collector 5 was returned to the reactor 4 by the pump 2 and circulated. Further, in the production system, a vacuum line for evacuating the inside of the system and a gas supply line for supplying dilution gas (helium gas) into the system and filling the reactor 4 are cooled with the reactor 4 respectively. The collector 5 was connected via a leak valve.
 [実施例1]
 純度99.99%の金属ゲルマニウム3の粉末1000gを、ニッケル製で内径80mm、長さ1000mmの管状反応器4内の中央部に充填した。系内を真空置換した後、反応器4の外壁温度を200℃に設定し、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-60℃に冷却した。次に、ポンプ2の循環流量を6L/minに設定し、F2用マスフローコントローラ1により400cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT-IR(大塚電子社製 IG-1000)、紫外分光光度計(日立製 U-2810)で分析したところ、四フッ化ゲルマニウムの生成を確認した。また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ2vol%、四フッ化ゲルマニウムの濃度は、FT-IR(大塚電子社製 IG-1000)で分析したところ14vol%であり、他の成分はヘリウムガスであった。反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で98%であった。
[Example 1]
1000 g of a metal germanium 3 powder having a purity of 99.99% was filled in the center of a tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 200 ° C., and helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −60 ° C. Next, the circulation flow rate of the pump 2 was set to 6 L / min, and fluorine was supplied at a flow rate of 400 cc / min by the F 2 mass flow controller 1 to react for 10 hours. Thereafter, the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi). It was confirmed. Further, the fluorine gas concentration in the reactor 4 outlet gas was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was determined as FT-IR (IG-IG manufactured by Otsuka Electronics Co., Ltd.). 1000), it was 14 vol%, and the other component was helium gas. After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 98% based on germanium.
 [実施例2]
 純度99.99%の金属ゲルマニウム3の粉末500gを、ニッケル製で内径80mm、長さ1000mmの管状反応器4内の中央部に充填した。系内を真空置換した後、反応器4の外壁温度を150℃に設定し、系内にヘリウムガスを導入し120kPaとした。冷却捕集器5は-60℃に冷却した。次に、ポンプ2の循環流量を10L/minに設定し、F2用マスフローコントローラ1により300cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT-IR(大塚電子社製 IG-1000)、紫外分光光度計(日立製 U-2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ1.5vol%、四フッ化ゲルマニウムの濃度は、FT-IR(大塚電子社製 IG-1000)で分析したところ11vol%であり、他の成分はヘリウムガスである。反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[Example 2]
500 g of a metal germanium 3 powder having a purity of 99.99% was charged in the center of a tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 150 ° C., and helium gas was introduced into the system to 120 kPa. The cold collector 5 was cooled to −60 ° C. Next, the circulation flow rate of the pump 2 was set to 10 L / min, and fluorine was supplied at a flow rate of 300 cc / min by the F 2 mass flow controller 1 to react for 10 hours. After that, when the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was found. confirmed. In addition, the fluorine gas concentration in the reactor 4 outlet gas was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). IG-1000) is 11 vol%, and the other component is helium gas. After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
 [実施例3]
 純度99.99%の金属ゲルマニウム3の粉末2000gを、ニッケル製で内径130mm、長さ700mmの反応器4内の中央部に充填した。系内を真空置換した後、反応器4の外壁温度を250℃に設定し、系内にヘリウムガスを導入し101kPaとした。冷却捕集器5は-60℃に冷却した。次に、ポンプ2の循環流量を15L/minに設定し、F2用マスフローコントローラ1により700cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT-IR(大塚電子社製 IG-1000)、紫外分光光度計(日立製 U-2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ1.8vol%、四フッ化ゲルマニウムの濃度は、FT-IR(大塚電子社製 IG-1000)で分析したところ13vol%であり、他の成分はヘリウムガスである。反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[Example 3]
2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the center of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to −60 ° C. Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 700 cc / min by the F 2 mass flow controller 1 to react for 10 hours. After that, when the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was found. confirmed. Further, the fluorine gas concentration in the reactor 4 outlet gas was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). IG-1000) is 13 vol%, and the other component is helium gas. After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
 [実施例4]
 純度99.99%の金属ゲルマニウム3の粉末2000gを、ニッケル製で内径130mm、長さ700mmの反応器4内の中央部に充填した。系内を真空置換した後、反応器4の外壁温度を250℃に設定し、系内にヘリウムガスを導入し101kPaとした。冷却捕集器5は-60℃に冷却した。次に、ポンプ2の循環流量を15L/minに設定し、F2用マスフローコントローラ1により50cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT-IR(大塚電子社製 IG-1000)、紫外分光光度計(日立製 U-2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ0.6vol%、四フッ化ゲルマニウムの濃度は、FT-IR(大塚電子社製 IG-1000)で分析したところ13vol%であり、他の成分はヘリウムガスである。反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[Example 4]
2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the center of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm. After the system was evacuated, the outer wall temperature of the reactor 4 was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to −60 ° C. Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 50 cc / min by the F 2 mass flow controller 1 to react for 10 hours. After that, when the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was found. confirmed. Further, the fluorine gas concentration in the reactor 4 outlet gas was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). IG-1000) is 13 vol%, and the other component is helium gas. After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
 [比較例1]
 図2に示すシステムを用いて四フッ化ゲルマニウムを生成した。生成システムは、F2用マスフローコントローラ11と、反応器14と、冷却捕集器15により開放系で構成した。フッ素ガスは、F2用マスフローコントローラ11により流量を制御して、反応器14に供給した。金属ゲルマニウム13は、反応器14の内部に充填した。また、反応器14を所定の温度に加熱するためのヒーター16を反応器14内に設置した。反応器14より排出されるガスは、冷却捕集器15に導入され、反応生成物(四フッ化ゲルマニウム)が冷却捕集された。冷却捕集器15で捕集されず通過するガスは、排出ガスとして系外の除害装置に送られた。生成システムの反応器14と冷却捕集器15の間には、系内を真空置換するための真空ライン、及び希釈ガス(ヘリウムガス)を系内に供給して反応器14に充填するためのガス供給ラインをそれぞれ開閉弁を介して接続した。
[Comparative Example 1]
Germanium tetrafluoride was produced using the system shown in FIG. The generation system was configured as an open system by the mass flow controller 11 for F 2 , the reactor 14, and the cooling collector 15. The flow rate of the fluorine gas was controlled by the F 2 mass flow controller 11 and supplied to the reactor 14. Metal germanium 13 was filled into the reactor 14. In addition, a heater 16 for heating the reactor 14 to a predetermined temperature was installed in the reactor 14. The gas discharged from the reactor 14 was introduced into the cold collector 15 and the reaction product (germanium tetrafluoride) was cooled and collected. The gas that passed without being collected by the cooling collector 15 was sent as exhaust gas to an abatement apparatus outside the system. Between the reactor 14 and the cold collector 15 of the production system, a vacuum line for evacuating the inside of the system, and a diluent gas (helium gas) is supplied into the system to fill the reactor 14. Each gas supply line was connected via an on-off valve.
 純度99.99%の金属ゲルマニウム13の粉末1000gを、ニッケル製で内径200mm、長さ700mmの反応器14内に充填した。系内を真空置換した後、反応器の外壁温度を200℃に設定し、系内にヘリウムガスを導入し80kPaとした。冷却捕集器15は-60℃に冷却した。次に、フッ素ガスをF2用マスフローコントローラ11により400cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT-IR(大塚電子社製 IG-1000)、紫外分光光度計(日立製 U-2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。反応終了後、冷却捕集器15内を真空置換することによりフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で87%であった。また、反応器14の内面に損傷が生じているのが確認された。損傷の原因は100%濃度のフッ素ガスを導入したため、局所的に大きな発熱が生じたためであると推測される。 1000 g of metal germanium 13 powder having a purity of 99.99% was charged into a reactor 14 made of nickel and having an inner diameter of 200 mm and a length of 700 mm. After evacuating the system, the outer wall temperature of the reactor was set to 200 ° C., and helium gas was introduced into the system to 80 kPa. The cold collector 15 was cooled to −60 ° C. Next, the fluorine gas was supplied at a flow rate of 400 cc / min by the F 2 mass flow controller 11 and reacted for 10 hours. After that, when the product gas collected in the cooled collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was found. confirmed. After completion of the reaction, the inside of the cooling collector 15 is vacuum-substituted to remove fluorine gas, and the yield of germanium tetrafluoride is determined from the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. And 87% based on germanium. Moreover, it was confirmed that the inner surface of the reactor 14 was damaged. The cause of the damage is presumed to be that a large amount of heat was generated locally because 100% concentration of fluorine gas was introduced.
 本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。 Although the present invention has been described based on specific embodiments, the present invention is not limited to the above embodiments, and includes various modifications and changes without departing from the spirit of the present invention.

Claims (3)

  1. 金属ゲルマニウムと希釈ガスが充填されている反応器にフッ素ガスを供給する工程と、反応器より放出される気体を冷却捕集器に通過させて反応生成物である四フッ化ゲルマニウムを捕集する工程と、冷却捕集器を通過するガスを再び反応器へ戻し循環させる工程と、を含む四フッ化ゲルマニウムの製造方法。 Supplying fluorine gas to a reactor filled with metal germanium and a diluent gas, and passing the gas released from the reactor through a cooling collector to collect germanium tetrafluoride as a reaction product A method for producing germanium tetrafluoride, comprising: a step; and a step of circulating the gas passing through the cold collector back to the reactor again.
  2. 反応器内の金属ゲルマニウムの温度が100℃~400℃の範囲にあることを特徴とする、請求項1に記載の四フッ化ゲルマニウムの製造方法。 The method for producing germanium tetrafluoride according to claim 1, wherein the temperature of the metal germanium in the reactor is in the range of 100 ° C to 400 ° C.
  3. 反応器より放出される気体中のフッ素濃度が10.0vol%未満であることを特徴とする、請求項1に記載の四フッ化ゲルマニウムの製造方法。 The method for producing germanium tetrafluoride according to claim 1, wherein the fluorine concentration in the gas released from the reactor is less than 10.0 vol%.
PCT/JP2009/068372 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride WO2010055768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801385013A CN102164857A (en) 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289337 2008-11-12
JP2008289337A JP2010116282A (en) 2008-11-12 2008-11-12 Method for producing germanium tetrafluoride

Publications (1)

Publication Number Publication Date
WO2010055768A1 true WO2010055768A1 (en) 2010-05-20

Family

ID=42169904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068372 WO2010055768A1 (en) 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride

Country Status (4)

Country Link
JP (1) JP2010116282A (en)
KR (1) KR20110051289A (en)
CN (1) CN102164857A (en)
WO (1) WO2010055768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231609A (en) * 2022-08-24 2022-10-25 和远潜江电子特种气体有限公司 Synthesis and purification method and system of high-purity germanium tetrafluoride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546659B (en) * 2020-12-08 2022-02-15 云南临沧鑫圆锗业股份有限公司 Purification device and method for germanium tetrafluoride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234301A (en) * 1988-03-16 1989-09-19 Mitsui Toatsu Chem Inc Production of gaseous metal fluoride
JPH02172806A (en) * 1988-12-23 1990-07-04 Mitsubishi Electric Corp Device for producing hydrogen peroxide solution
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333084B1 (en) * 1988-03-16 1994-07-27 MITSUI TOATSU CHEMICALS, Inc. Method for preparing gaseous fluorides
JP3258413B2 (en) * 1993-02-12 2002-02-18 三井化学株式会社 Method for producing germanium tetrafluoride
JP2000072438A (en) * 1998-08-25 2000-03-07 Mitsui Chemicals Inc Purifying method of germanium tetrafluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234301A (en) * 1988-03-16 1989-09-19 Mitsui Toatsu Chem Inc Production of gaseous metal fluoride
JPH02172806A (en) * 1988-12-23 1990-07-04 Mitsubishi Electric Corp Device for producing hydrogen peroxide solution
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231609A (en) * 2022-08-24 2022-10-25 和远潜江电子特种气体有限公司 Synthesis and purification method and system of high-purity germanium tetrafluoride
CN115231609B (en) * 2022-08-24 2024-05-10 和远潜江电子特种气体有限公司 Synthetic purification method and system for high-purity germanium tetrafluoride

Also Published As

Publication number Publication date
JP2010116282A (en) 2010-05-27
KR20110051289A (en) 2011-05-17
CN102164857A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP6792151B2 (en) Manufacturing method of chlorine trifluoride
TWI525043B (en) Recovery method and recovery unit of iodinated iodide compound derived from iodine iodide
JP2009023896A (en) Production method of iodine heptafluoride
WO2010055768A1 (en) Method for producing germanium tetrafluoride
JP3727797B2 (en) Method for producing nitrogen trifluoride
TW201806848A (en) Chlorine fluoride supplying method
CN104477849B (en) A kind of preparation method of chlorine trifluoride
TWI510435B (en) Production of hydrogen chloride
EP2628709A1 (en) Method for producing phosphorus pentafluoride
TW201348136A (en) Method and apparatus for producing fluorine gas
CN111994875A (en) Systems and methods for producing fluorinated products
WO2010055769A1 (en) Inter-halogen compound synthesis method
TWI781444B (en) The production method of bromine pentafluoride
JP4230169B2 (en) Fluorine generation method
JP6252214B2 (en) Method for producing iodine heptafluoride
JP4104320B2 (en) Method for producing carbonyl difluoride
JP2010116280A (en) Method for synthesizing interhalogen compound
CN103443065B (en) The method of purification of difluoroacetic acid chloride
JP2010116281A (en) Method for producing interhalogen compound
JP6730605B2 (en) Method for producing iodine pentafluoride oxide
WO2017013916A1 (en) Method for producing iodine pentafluoride
JP4059680B2 (en) Method for producing carbonyl difluoride
JP2017197390A (en) Production method of bromine pentafluoride
JP2004331465A (en) Method of manufacturing xenon difluoride
CN110282630A (en) A method of ocratation is produced by raw material of fluosilicate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138501.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826018

Country of ref document: EP

Kind code of ref document: A1