WO2010055769A1 - Inter-halogen compound synthesis method - Google Patents

Inter-halogen compound synthesis method Download PDF

Info

Publication number
WO2010055769A1
WO2010055769A1 PCT/JP2009/068373 JP2009068373W WO2010055769A1 WO 2010055769 A1 WO2010055769 A1 WO 2010055769A1 JP 2009068373 W JP2009068373 W JP 2009068373W WO 2010055769 A1 WO2010055769 A1 WO 2010055769A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
reaction
clf
halogen
Prior art date
Application number
PCT/JP2009/068373
Other languages
French (fr)
Japanese (ja)
Inventor
勇 毛利
健二 田仲
智典 梅崎
達夫 宮崎
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008289335A external-priority patent/JP2010116281A/en
Priority claimed from JP2008289334A external-priority patent/JP2010116280A/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010055769A1 publication Critical patent/WO2010055769A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds

Definitions

  • the present invention relates to a method for synthesizing and producing an interhalogen compound.
  • the interhalogen compound is useful as a cleaning gas for internal cleaning of a semiconductor manufacturing apparatus such as CVD.
  • interhalogen compounds containing fluorine are useful as, for example, fluorinating agents.
  • ClF 3 is synthesized by reaction of chlorine and fluorine as shown in the following reaction formula (1) (Non-patent Documents 1 and 2).
  • BrF 3 is synthesized by the reaction of bromine and fluorine as shown in the following reaction formula (2) (Non-patent Documents 1 and 3).
  • Br 2 + 3F 2 ⁇ 2BrF 3 (2) In any of the above reaction formulas (1) and (2), F 2 is used as a fluorinating agent.
  • F 2 as a raw material is synthesized by hydrofluoric acid electrolysis, but in recent years, the price has been rising due to soaring power and soaring fluorite as the upstream raw material of hydrofluoric acid. Therefore, it is necessary to increase the utilization efficiency of F 2 .
  • interhalogen compounds are synthesized by direct reaction between different types of halogen gas and halogen gas, or interhalogen gas and halogen gas.
  • the halogen gas may be other than fluorine gas.
  • an interhalogen compound produced in a reactor passes through a cold collector and is selectively collected (for example, Non-Patent Documents 2 and 4).
  • the conventional method for producing an interhalogen compound has the following problems.
  • the first object is to provide a synthesis method.
  • a second object of the present invention is to provide a method for producing an interhalogen with high yield and low cost.
  • the present inventors have conducted synthesis and cooling collection of interhalogen compounds in a closed system that circulates the gas discharged from the reactor for synthesizing the interhalogen compounds and passed through the cold collector.
  • an interhalogen compound can be synthesized and produced at a high yield and at a low cost, and the second feature (the fifth method below) of the present invention was reached.
  • the produced interhalogen compound is cooled and collected, and the gas components not collected by the cold collection are heated.
  • an interhalogen compound synthesis method (first method) characterized in that an interhalogen compound is produced.
  • the step of reacting fluorine with the halogen and further collecting the interhalogen compound in the reaction product by cooling is repeated two or more times. ).
  • the second method is such that the halogen is chlorine, the interhalogen compound is ClF 3 , the reaction temperature is in the range of 250 ° C. to 400 ° C., and the temperature of collection is ⁇
  • An interhalogen compound synthesis method (third method) characterized by being in the range of 100 ° C. to 12 ° C. may be used.
  • the second method is such that the halogen is bromine, the interhalogen compound is BrF 3 , the reaction temperature is in the range of 0 ° C. to 400 ° C., and the temperature of collection is ⁇
  • An interhalogen compound synthesis method (fourth method) characterized by being in the range of 33 ° C. to 126 ° C. may be used.
  • the gases to be reacted to the reactor for carrying out the reaction are individually supplied or mixed in advance, and discharged from the reactor.
  • a part of the interhalogen compound is collected by the cold collector by passing the gas through a cold collector, and the gas passing through the cold collector, which is a mixed gas of unreacted product and product, is collected.
  • the method may be a method for producing an interhalogen compound (fifth method), which is returned to the reactor again.
  • FIG. 1 is a schematic view of a reactor used in an example according to the first feature of the present invention.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a reactor used in a comparative example in contrast to an example according to the first feature of the present invention.
  • Schematic of the reactor used in the examples according to the second aspect of the invention Schematic of the reactor used in the comparative example contrasting with the example according to the second aspect of the present invention.
  • the product gas passing through the cooling collector and the unreacted gas are circulated and reused in the reactor, so that an interhalogen compound can be obtained at a high yield and at a low cost.
  • the source gas can be introduced at an arbitrary dilution concentration by adjusting the circulation flow rate, the reaction can be controlled.
  • the temperature at which fluorine and chlorine are reacted is preferably in the range of 250 ° C. to 400 ° C., more preferably in the range of 250 ° C. to 350 ° C. If the temperature exceeds 400 ° C., the reaction between the metal member of the reactor and fluorine may be promoted, which may cause corrosion of the reactor and decrease the utilization efficiency of fluorine. If it is less than 250 ° C., the synthesis reaction may be difficult to proceed.
  • the temperature at which fluorine and bromine are reacted is preferably in the range of 0 ° C. to 400 ° C., more preferably in the range of 80 ° C. to 150 ° C. If the temperature exceeds 400 ° C., the reaction between the metal member of the reactor and fluorine may be promoted, which may cause corrosion of the reactor and decrease the utilization efficiency of fluorine. If it is less than 0 ° C., the synthesis reaction may be difficult to proceed.
  • the temperature for cooling and collecting the synthesized interhalogen compound is preferably in the range of ⁇ 156 ° C. to 12 ° C., more preferably in the range of ⁇ 30 ° C. to ⁇ 100 ° C. If it is less than ⁇ 156 ° C., ClF 3 may be collected simultaneously with ClF 3 , and separation of ClF and ClF 3 becomes difficult. On the other hand, if the temperature exceeds 12 ° C., the vapor pressure of ClF 3 becomes high and it becomes difficult to collect, which is not preferable.
  • the gas containing Cl 2 , F 2 , or ClF that passes without being collected under the above conditions is again heated and reacted in the reaction temperature range similar to the above, and then again the above It is preferable to cool and collect the interhalogen compound in the same collection temperature range.
  • the temperature when BrF 3 is collected by cooling is preferably in the range of ⁇ 33 ° C. to 126 ° C., more preferably in the range of 0 ° C. to 70 ° C. If it is less than ⁇ 33 ° C., BrF 3 may be trapped simultaneously with BrF 3 , and separation of BrF and BrF 3 becomes difficult. On the other hand, if it exceeds 126 ° C., the vapor pressure of BrF 3 becomes high and it becomes difficult to collect it.
  • the gas containing Br 2 , F 2 , or BrF that passes without being collected under the above conditions is again heated and reacted in the reaction temperature range similar to the above, and then again the above It is preferable to cool and collect the interhalogen compound in the same collection temperature range.
  • the pressure during the reaction for synthesizing the interhalogen compound is a gauge pressure, preferably -0.09 MPa to 1 MPa, more preferably -0.05 MPa to 0.20 MPa. Since the equilibrium reaction up to the synthesis of the interhalogen compound depends on the partial pressure of each reactant, the reaction formula of the equilibrium reaction (the above formulas (3) and (4)) is less than ⁇ 0.09 MPa. In this case, the possibility that the balance is shifted to the left side is increased, which is not preferable. On the other hand, if it exceeds 1 MPa, corrosion of the reactor members may be accelerated, and the synthesized interhalogen may be liquefied in the reactor, which is not preferable.
  • FIG. 1 A schematic diagram of an apparatus used in this embodiment is shown in FIG.
  • a cylindrical nickel reactor having a volume of 4 L and having a structure that can be heated by an external heater was used.
  • the collector 2 and the collector 11 a stainless steel trap having a volume of 4 L was used, and a pipe capable of being liquefied and collected was used with a pipe on the inlet gas side as a dip structure.
  • the refrigerant filled in the refrigerant filling dewars 3 and 12 was ethanol, and was cooled to ⁇ 50 ° C. by adding dry ice.
  • Cl 2 gas, F 2 gas, and N 2 gas were supplied to the reactor 1 by the mass flow controllers 4, 5, and 6, respectively, and allowed to flow.
  • the gas released from the reactor 1 is introduced into the collector 2 and ClF 3 is collected.
  • the gas passing through the collector 2 is introduced into the reactor 10 and heated, and then introduced into the collector 11 to collect ClF 3 .
  • the outlet gas of the collector 11 was measured for flow rate using a float type flow meter 7.
  • the pressure in the system is controlled by a control valve 9 linked to the pressure gauge 8 so as to be kept at -0.01 MPa as a gauge pressure.
  • the composition analysis of the outlet gas of the collector 11 was performed by sampling the outlet gas of the control valve 9.
  • the analysis was performed using FT-IR (infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation) for ClF 3 and ClF, and UV (ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.) for F 2.
  • FT-IR infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation
  • UV ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.
  • GC gas chromatography, GC-2014, manufactured by Shimadzu Corporation
  • the flow rate of each gas component was calculated from the gas composition and the outlet gas flow rate, and the yield of ClF 3 was calculated from the result.
  • the flow rate of the gas supplied to the reactor 1 was 0.15 SLM for Cl 2 gas, 0.45 SLM for F 2 gas, and 0.20 SLM for N 2 gas.
  • the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a preset temperature of the first reactor 1 of 320 ° C. and a preset temperature of the second reactor 10 of 290 ° C.
  • the yield of ClF 3 was F It was 92% based on 2 criteria.
  • the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at 400 ° C. for the first-stage reactor 1 and 290 ° C. for the second-stage reactor 10. As a result, the yield of ClF 3 was F It was 93% based on 2 criteria.
  • the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a set temperature of the first reactor 1 of 400 ° C. and a set temperature of the second reactor 10 of 250 ° C.
  • the yield of ClF 3 was F It was 95% based on 2 criteria.
  • the volume of the first-stage reactor 1 is 50 L
  • the volume of the second-stage reactor 10 is 20 L
  • the volume of the stainless steel trap of the collector 2 is 30 L
  • the volume of the stainless steel trap of the collector 11 is 5 L.
  • the flow rate of the gas supplied to the reactor 1 is changed to 0.67 SLM for Cl 2 gas, 2.00 SLM for F 2 gas, and 0.89 SLM for N 2 gas.
  • the reaction was carried out under the same conditions as in Example 5 except that the reaction was carried out at 350 ° C. for the first-stage reactor 1 and 290 ° C. for the second-stage reactor 10.
  • the yield of ClF 3 was F It was 92% based on 2 criteria.
  • Cl 2 gas Br 2 was changed to a gas supply pipe of Br 2 gas heated to 80 ° C., cooling the refrigerant filling the refrigerant filling dewar 3 and 12 to 0 °C by the addition of ice and water Then, the flow rate of the gas supplied to the reactor 1 is changed to 0.15 SLM for Br 2 gas, 0.45 SLM for F 2 gas, and 0.15 SLM for N 2 gas.
  • the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a temperature of 80 ° C. and the second-stage reactor 10 at a set temperature of 80 ° C.
  • the yield of BrF 3 was 91% based on F 2 . .
  • the reaction was carried out under the same conditions as in Example 7 except that the reaction was conducted at a preset temperature of the first reactor 1 of 80 ° C. and a preset temperature of the second reactor 10 of 100 ° C.
  • the yield of BrF 3 was F It was 88% based on 2 criteria.
  • the reaction was carried out under the same conditions as in Example 7 except that the reaction was carried out at 100 ° C. for the first-stage reactor 1 and 80 ° C. for the second-stage reactor 10. As a result, the yield of BrF 3 was F 90% based on 2 criteria.
  • the reactor 21 is a cylindrical nickel reactor having a structure that can be heated by an external heater, and has a volume of 50 L.
  • Cl 2 gas, F 2 gas, and N 2 gas were supplied to the reactor 21 by the mass flow controllers 24, 25, and 26, respectively, and circulated.
  • the collector 22 used was a stainless steel trap with a volume of 30 L, and the inlet gas side piping had a dip structure and could be liquefied and collected.
  • the refrigerant filled in the cooling filling dewar 23 was ethanol, and was cooled to ⁇ 50 ° C. by adding dry ice.
  • the gas released from the reactor 21 is introduced into the collector 22 where ClF 3 is collected.
  • the outlet gas of the collector 22 was measured using a float type flow meter 27.
  • the pressure in the system is controlled to be kept at -0.01 MPa as a gauge pressure by a control valve 29 linked to a pressure gauge 28.
  • all the piping used stainless steel piping were supplied to the reactor 21 by the mass flow controllers 24,
  • the composition analysis of the outlet gas of the collector 22 was performed by sampling the outlet gas of the control valve 29.
  • the analysis was performed using FT-IR (infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation) for ClF 3 and ClF, and UV (ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.) for F 2.
  • FT-IR infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation
  • UV ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.
  • N 2 GC (gas chromatography, GC-2014, manufactured by Shimadzu Corporation) was used.
  • the flow rate of each gas component was calculated from the gas composition and the outlet gas flow rate, and the yield of ClF 3 was calculated from the result.
  • the flow rate of the gas to be fed to the reactor 21, and the Cl 2 gas 0.67SLM, the F 2 gas 2.00SLM, the N 2 gas was 0.89SLM is circulated simultaneously.
  • the reactor was set to a reaction temperature of 260 ° C. in a nickel reactor, the yield of ClF 3 was 72% on the basis of F 2 , indicating that the yield was low due to the low reaction rate.
  • the halogen gas used is fluorine gas, chlorine gas, bromine gas, iodine gas
  • the interhalogen gas used is ClF 3 gas, BrF 5 gas, IF 7 gas, etc. Is mentioned.
  • the material used for the reactor is preferably one that exhibits corrosion resistance to halogen gas at the reaction temperature, such as nickel or monel.
  • the temperature of the cold collector for collecting the interhalogen compound produced in the reactor can be arbitrarily selected as long as it is not higher than the dew point of the interhalogen compound, but is preferably in the vicinity of the melting point. Specifically, it is preferably ⁇ 60 to ⁇ 70 ° C. when producing ClF 3 , 10 to 20 ° C. when producing BrF 3, and 10 to 20 ° C. when producing IF 5 .
  • the gas that has passed through the cooling collector is returned to the reactor by a circulator such as a pump and circulated.
  • a circulator such as a pump and circulated.
  • the concentration of the raw material gas in the reactor can be controlled by adjusting the circulation flow rate.
  • the supply method of the halogen gas or interhalogen gas as the raw material gas is not particularly limited as long as it can be supplied to the reactor.
  • the reaction temperature is preferably 20 ° C. to 400 ° C. in the reaction part. Specifically, when producing ClF 3 or IF 7 , 250 to 350 ° C., when producing ClF, 100 to 200 ° C., and when producing BrF 3 , BrF 5 , or IF 5 , 20 to 200 ° C. is preferred. If the temperature exceeds 400 ° C., the reaction between the material of the reactor and the halogen gas or interhalogen gas of the raw material may be accelerated, which is not preferable.
  • FIG. 3 shows a schematic diagram of a reaction apparatus used in the following examples according to the second feature of the present invention.
  • the gas in the reactor 4 is introduced into the cold collector 5 and the reaction product is cooled and collected.
  • the gas that passes without being collected by the cold collector 5 is returned to the reactor 4 by the pump 3 and circulated.
  • a source gas whose flow rate is individually controlled by the mass flow controllers 1 and 2 is introduced between the pump 3 and the cooling collector 5 and supplied into the circulating gas.
  • the heater 4 installed in the reactor 4 can heat the reactor 4 to a predetermined temperature.
  • a vacuum line and a supply line for replacement gas are connected between the reactor 4 and the cooling collector 5 via on-off valves.
  • Example 1 The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm was set to 300 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa.
  • the cold collector 5 was cooled to ⁇ 50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 6 L / min, the fluorine gas is supplied at 600 cc / min using the mass flow controller 1, and the chlorine gas is supplied at a flow rate of 200 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the formation of ClF 3 .
  • the fluorine gas concentration in the gas in the reactor 4 was 10 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810).
  • the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF 3 was determined from the amount of fluorine gas introduced and the mass of the collected ClF 3 , which was 94% based on fluorine.
  • Example 2 The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to ⁇ 150 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 100 cc / min using the mass flow controller 1, and chlorine gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF.
  • the fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of fluorine gas introduced and the mass of the collected ClF, and it was 98% on the basis of fluorine.
  • Example 3 The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 150 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to 10 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, the fluorine gas is supplied at 50 cc / min using the mass flow controller 1, and the iodine is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. It was.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of IF 5 .
  • the fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the cold trap 5 was vacuum substitution was determined the yield of IF 5 by weight of IF 5 trapped and introduced fluorine gas quantity, was 96% with fluorine criteria.
  • Example 4 The outer wall temperature of the tubular reactor 4 made of nickel having an inner diameter of 40 mm and a length of 500 mm was set to 330 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa.
  • the cold collector 5 was cooled to -20 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 2 L / min, the fluorine gas is supplied at 350 cc / min using the mass flow controller 1, and the iodine is supplied at a flow rate of 50 cc / min using the mass flow controller 2 to react for 1 hour. It was.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of IF 7 .
  • the concentration of fluorine gas in the reactor 4 in the gas was 1.0 vol% as analyzed by an ultraviolet spectrophotometer (Hitachi U-2810).
  • the cold trap 5 was vacuum substitution was determined the yield of IF 7 by the mass of the IF 7 trapped and introduced fluorine gas quantity, was 93% with fluorine criteria.
  • Example 5 The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 150 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to 15 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 30 cc / min using the mass flow controller 1, and bromine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrF 3 .
  • the fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810).
  • the inside of the cold collector 5 was vacuum-substituted, and the yield of BrF 3 was determined from the amount of fluorine gas introduced and the mass of the collected BrF 3 , which was 94% on the basis of fluorine.
  • Example 6 The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to ⁇ 50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 50 cc / min using the mass flow controller 1, and bromine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrF 5 .
  • the fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the cold trap 5 was vacuum substitution was determined the yield of BrF 5 by weight of the introduced fluorine gas amount and the collected BrF 5, was 94% with fluorine criteria.
  • Example 7 The inside of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was vacuum-replaced.
  • the outer wall temperature was set to 170 ° C.
  • the cooling collector 5 was cooled to ⁇ 110 ° C.
  • fluorine gas and chlorine gas were respectively introduced into the reactor 4 at 10 cc / min, and the gas supply was stopped when the pressure in the system reached 80 kPa.
  • the circulation flow rate of the pump 3 is set to 1 L / min
  • fluorine gas is supplied at 100 cc / min using the mass flow controller 1
  • chlorine gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF.
  • the fluorine gas concentration in the gas in the reactor 4 was 3 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810).
  • the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of fluorine gas introduced and the mass of the collected ClF. The result was 97% based on fluorine.
  • Example 8 The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm was set to 300 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to ⁇ 140 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 6 L / min, chlorine gas is supplied at 100 cc / min using the mass flow controller 1, and ClF 3 gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. Went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF.
  • the chlorine gas concentration in the gas in the reactor 4 was 0 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810).
  • the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of chlorine gas introduced and the mass of the collected ClF, and it was 96% based on chlorine.
  • Example 9 The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to ⁇ 50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, bromine gas is supplied at 10 cc / min using the mass flow controller 1, and chlorine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrCl.
  • the chlorine gas concentration in the gas in the reactor 4 was 1 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810).
  • the inside of the cooling collector 5 was vacuum-substituted, and the yield of BrCl was determined from the amount of introduced chlorine gas and the mass of the collected BrCl. As a result, it was 90% based on chlorine.
  • Example 10 The inside of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was vacuum-replaced.
  • the outer wall temperature was set to 300 ° C.
  • the cooling collector 5 was cooled to ⁇ 110 ° C. Thereafter, chlorine gas and ClF 3 gas were respectively introduced into the reactor 4 at a rate of 10 cc / min, and the gas supply was stopped when the pressure in the system reached 80 kPa.
  • the circulation flow rate of the pump 3 is set to 6 L / min, chlorine gas is supplied at 100 cc / min using the mass flow controller 1, and ClF 3 gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. Went.
  • the collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF.
  • the chlorine gas concentration in the gas in the reactor 4 was 0 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of introduced chlorine gas and the mass of the collected ClF, and it was 95% based on chlorine.
  • a vacuum line and a supply line for replacement gas are connected between the reactor 14 and the cooling collector 15 via on-off valves.
  • the outer wall temperature of a cylindrical reactor 14 made of nickel and having an inner stirring blade having an inner diameter of 150 mm and a length of 500 mm was set to 300 ° C., and after the system was evacuated, the cold collector 15 was cooled to ⁇ 50 ° C. . Thereafter, chlorine gas was supplied at 50 cc / min using the mass flow controller 11 and fluorine gas was supplied at a flow rate of 150 cc / min using the mass flow controller 12 to react for 1 hour. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the formation of ClF 3 .
  • FT-IR IG-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the fluorine gas concentration in the gas in the reactor 14 was 10 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 15 was vacuum-substituted, and the yield of ClF 3 was determined from the amount of fluorine gas introduced and the mass of the collected ClF 3 , and was 80% based on fluorine.
  • a vacuum line and a supply line for replacement gas are connected between the reactor 14 and the cooling collector 15 via on-off valves.
  • the outer wall temperature of a cylindrical reactor 14 made of nickel and having an inner stirring blade having an inner diameter of 150 mm and a length of 500 mm was set to 300 ° C., and after the system was evacuated, the cooling collector 15 was cooled to ⁇ 130 ° C. . Thereafter, chlorine gas was supplied at 50 cc / min using the mass flow controller 11, and ClF 3 gas was supplied at a flow rate of 50 cc / min using the mass flow controller 12 to react for 1 hour. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF.
  • FT-IR IG-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the chlorine gas concentration in the gas in the reactor 14 was 0 vol% when analyzed by an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 15 was vacuum-substituted, and the yield of ClF was determined from the amount of introduced chlorine gas and the mass of the collected ClF, and it was 50% based on chlorine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is an inter-halogen compound synthesis method characterized in that inter-halogen compounds are formed by reacting a halogen with an inter-halogen or a halogen of a different kind than said halogen, cooling and collecting the inter-halogen compound produced, and additionally heating the gas components that were not collected by said cooling and collection.

Description

インターハロゲン化合物の合成方法Method for synthesizing interhalogen compounds
 本発明は、インターハロゲン化合物を合成、製造する方法に関するものである。インターハロゲン化合物は、例えば、CVD等の半導体製造装置の内部洗浄用クリーニングガスとして有用である。さらに、フッ素を含むインターハロゲン化合物は、例えば、フッ素化剤としても有用である。 The present invention relates to a method for synthesizing and producing an interhalogen compound. The interhalogen compound is useful as a cleaning gas for internal cleaning of a semiconductor manufacturing apparatus such as CVD. Furthermore, interhalogen compounds containing fluorine are useful as, for example, fluorinating agents.
発明の背景Background of the Invention
 ClF3の合成では下記反応式(1)に示されるように塩素とフッ素との反応により合成されることが広く知られている(非特許文献1、非特許文献2)。またBrF3についても同様に、下記反応式(2)に示されるように臭素とフッ素との反応により合成されることが知られている(非特許文献1、非特許文献3)。
Cl2 + 3F2 ⇒ 2ClF3 (1)
Br2 + 3F2 ⇒ 2BrF3 (2)
 上記反応式(1)と(2)のいずれの場合も、F2がフッ素化剤として使用される。原料となるF2はフッ酸電解により合成されるが、近年、電力の高騰およびフッ酸の川上原料となる蛍石の高騰などにより価格が高騰している。そのため、F2の利用効率を上げる必要が生じている。
It is widely known that ClF 3 is synthesized by reaction of chlorine and fluorine as shown in the following reaction formula (1) (Non-patent Documents 1 and 2). Similarly, it is known that BrF 3 is synthesized by the reaction of bromine and fluorine as shown in the following reaction formula (2) (Non-patent Documents 1 and 3).
Cl 2 + 3F 2 ⇒ 2ClF 3 (1)
Br 2 + 3F 2 ⇒ 2BrF 3 (2)
In any of the above reaction formulas (1) and (2), F 2 is used as a fluorinating agent. F 2 as a raw material is synthesized by hydrofluoric acid electrolysis, but in recent years, the price has been rising due to soaring power and soaring fluorite as the upstream raw material of hydrofluoric acid. Therefore, it is necessary to increase the utilization efficiency of F 2 .
 また、F2を使用する反応では、反応器にニッケルやモネル等の高級金属材料を使用しなければならないため、反応器をできる限り小さいものにする必要も同時に存在する。 Further, in the reaction using F 2 , it is necessary to use a high-grade metal material such as nickel or monel for the reactor, so that it is necessary to make the reactor as small as possible.
 しかしながら、従来の方法では、反応温度が高いとF2の利用効率が低く、反応温度が低いと反応速度が小さくなり、反応器の容積を大型化する必要性、あるいは、時間当たりの生産能力が低下する問題が生じる。 However, in the conventional method, when the reaction temperature is high, the use efficiency of F 2 is low, and when the reaction temperature is low, the reaction rate is low, and it is necessary to increase the volume of the reactor or the production capacity per hour. The problem of deteriorating arises.
 フッ素ガスと、塩素、臭素、またはヨウ素のいずれか一種類のハロゲンガスとを反応させた場合、ClF3(融点-76℃/沸点12℃)、BrF3(融点9℃/沸点126℃)、BrF5(融点―60℃/沸点41℃)、IF5(融点10℃/沸点101℃)、IF7(昇華点4.8℃)等のインターハロゲン化合物が生成する。また、塩素ガスとClF3ガス、ヨウ素ガスとIF7ガス、臭素ガスとBrF5ガスを反応させた場合、ClFガス、IF5ガス、BrF3ガスのインターハロゲン化合物が生成する。 When fluorine gas is reacted with any one halogen gas of chlorine, bromine, or iodine, ClF 3 (melting point −76 ° C./boiling point 12 ° C.), BrF 3 (melting point 9 ° C./boiling point 126 ° C.), Interhalogen compounds such as BrF 5 (melting point−60 ° C./boiling point 41 ° C.), IF 5 (melting point 10 ° C./boiling point 101 ° C.), IF 7 (sublimation point 4.8 ° C.) are formed. When chlorine gas and ClF 3 gas, iodine gas and IF 7 gas, bromine gas and BrF 5 gas are reacted, an interhalogen compound of ClF gas, IF 5 gas, and BrF 3 gas is generated.
 一般的には、インターハロゲン化合物は種類の異なるハロゲンガスとハロゲンガス、あるいはインターハロゲンガスとハロゲンガスとの直接反応により合成される。この場合、ハロゲンガスはフッ素ガス以外でもよい。 Generally, interhalogen compounds are synthesized by direct reaction between different types of halogen gas and halogen gas, or interhalogen gas and halogen gas. In this case, the halogen gas may be other than fluorine gas.
 従来のインターハロゲン化合物の製造方法では、反応器で生成したインターハロゲン化合物は冷却捕集器を通過し、選択的に捕集されている(例えば、非特許文献2、4)。しかしながら、従来法によるインターハロゲン化合物の製造方法には次のような問題がある。 In the conventional method for producing an interhalogen compound, an interhalogen compound produced in a reactor passes through a cold collector and is selectively collected (for example, Non-Patent Documents 2 and 4). However, the conventional method for producing an interhalogen compound has the following problems.
 (a)冷却捕集器の通過段階で捕集できなかったインターハロゲン化合物および未反応のハロゲンガスは系外へ排出され、収率の低下を引き起こす。(b)下記反応式(1)、(2)に示すように、インターハロゲン化合物の合成反応では反応による発熱量が大きく、高濃度で原料ガスを導入した場合、局所的な異常加熱が生じるため希釈した状態で原料ガスを混合する必要がある。
Cl2+3F2 → 2ClF3 (ΔH300℃=-75.5kcal) (1)
2+7F2 → 2IF7 (ΔH300℃=-471.9kcal) (2)
(A) Interhalogen compounds and unreacted halogen gas that could not be collected in the passing stage of the cooling collector are discharged out of the system, causing a decrease in yield. (B) As shown in the following reaction formulas (1) and (2), in the synthesis reaction of the interhalogen compound, the calorific value due to the reaction is large, and when the raw material gas is introduced at a high concentration, local abnormal heating occurs. It is necessary to mix the raw material gas in a diluted state.
Cl 2 + 3F 2 → 2ClF 3 (ΔH 300 ° C. = − 75.5 kcal) (1)
I 2 + 7F 2 → 2IF 7 (ΔH 300 ° C. = − 471.9 kcal) (2)
 上記のとおり、フッ素を使用する従来法では、フッ素の利用効率が低く、また、利用効率を上げるためには反応器が大型化する必要がある。そこで、本発明は、原料であるフッ素を効率的に利用でき、また、使用する反応器の小型化あるいは生産性の向上が可能となる、インターハロゲン化合物(XF3、ただし、X=ClまたはBrを示す。)の合成方法を提供することを第1の目的としている。 As described above, in the conventional method using fluorine, the utilization efficiency of fluorine is low, and the reactor needs to be enlarged in order to increase the utilization efficiency. Therefore, in the present invention, interhalogen compounds (XF 3 , where X = Cl or Br, which can efficiently use fluorine as a raw material and can reduce the size of the reactor used or improve productivity. The first object is to provide a synthesis method.
 本発明者らは、第1の目的を達成するため、鋭意検討を重ねた結果、以下のことを見出した。
フッ素と、塩素または臭素との反応において、下記反応式(3)、(4)に示す平衡反応を経て反応が進行する。
ClF + F2⇔ ClF3 (3)BrF + F2⇔ BrF3 (4) 従って、反応温度を上げすぎると平衡が左側にずれてしまい、収率が悪化しF2の利用効率が悪くなってしまう問題が生じる。また、反応温度を下げすぎると反応速度が小さくなり、反応器での必要な滞在時間が長くなるため反応器の容積が大きくなってしまう問題が生じる。これらより、本発明者らは、気体状の生成物であるClF3とBrF3を冷却捕集により気相から除去することで、上記反応式(3)、(4)に示すいずれの反応においても右側に進行し、F2を効率的に使用できることを見出し、本発明の第1の特徴(以下の第2方法)に至ったものである。
As a result of intensive studies to achieve the first object, the present inventors have found the following.
In the reaction between fluorine and chlorine or bromine, the reaction proceeds through equilibrium reactions shown in the following reaction formulas (3) and (4).
ClF + F 2 ⇔ ClF 3 (3) BrF + F 2 ⇔ BrF 3 (4) Therefore, if the reaction temperature is raised too much, the equilibrium will shift to the left side, the yield will deteriorate and the utilization efficiency of F 2 will deteriorate. Problem arises. Further, if the reaction temperature is lowered too much, the reaction rate becomes low, and the necessary residence time in the reactor becomes long, so that there arises a problem that the volume of the reactor becomes large. From these, the present inventors removed ClF 3 and BrF 3 , which are gaseous products, from the gas phase by cold collection, so that in any reaction shown in the above reaction formulas (3) and (4) Also proceeded to the right side, and found that F 2 can be used efficiently, leading to the first feature of the present invention (the following second method).
 本発明の第2の目的は、インターハロゲンを、高収率かつ安価に製造する方法を提供することである。 A second object of the present invention is to provide a method for producing an interhalogen with high yield and low cost.
 本発明者等は鋭意検討の結果、インターハロゲン化合物を合成するための反応器から放出され冷却捕集器を通過したガスを循環する閉鎖系内でインターハロゲン化合物の合成及び冷却捕集を行うことにより、高収率でかつ安価にインターハロゲン化合物が合成、製造可能であることを見出し、本発明の第2の特徴(以下の第5方法)に至った。 As a result of intensive studies, the present inventors have conducted synthesis and cooling collection of interhalogen compounds in a closed system that circulates the gas discharged from the reactor for synthesizing the interhalogen compounds and passed through the cold collector. Thus, it was found that an interhalogen compound can be synthesized and produced at a high yield and at a low cost, and the second feature (the fifth method below) of the present invention was reached.
 本発明は、ハロゲンと、インターハロゲンまたは該ハロゲンと異なる種類のハロゲンとを反応させた後、生成するインターハロゲン化合物を冷却捕集し、さらに該冷却捕集で捕集されなかったガス成分を加熱することによってインターハロゲン化合物を生成することを特徴とするインターハロゲン化合物の合成方法(第1方法)を提供する。 In the present invention, after reacting halogen with interhalogen or a different type of halogen, the produced interhalogen compound is cooled and collected, and the gas components not collected by the cold collection are heated. To provide an interhalogen compound synthesis method (first method) characterized in that an interhalogen compound is produced.
 本発明の第1の特徴に依れば、第1方法は、フッ素と、塩素または臭素のいずれか一方のハロゲンを反応させてインターハロゲン化合物(XF3、ただし、X=ClまたはBrを示す。)を合成するに際し、フッ素と該ハロゲンを反応させ更に反応生成物中の該インターハロゲン化合物を冷却により捕集する工程を2回以上繰り返すことを特徴とするインターハロゲン化合物の合成方法(第2方法)であってもよい。 According to the first feature of the present invention, the first method reacts fluorine with either halogen of chlorine or bromine to show an interhalogen compound (XF 3 , where X = Cl or Br. ), The step of reacting fluorine with the halogen and further collecting the interhalogen compound in the reaction product by cooling is repeated two or more times. ).
 さらに、本発明の第1の特徴に依れば、第2方法は、該ハロゲンが塩素、該インターハロゲン化合物がClF3、反応させる温度が250℃~400℃の範囲、捕集する温度が-100℃~12℃の範囲であることを特徴とする、インターハロゲン化合物の合成方法(第3方法)であってもよい。 Further, according to the first feature of the present invention, the second method is such that the halogen is chlorine, the interhalogen compound is ClF 3 , the reaction temperature is in the range of 250 ° C. to 400 ° C., and the temperature of collection is − An interhalogen compound synthesis method (third method) characterized by being in the range of 100 ° C. to 12 ° C. may be used.
さらに、本発明の第1の特徴に依れば、第2方法は、該ハロゲンが臭素、該インターハロゲン化合物がBrF3、反応させる温度が0℃~400℃の範囲、捕集する温度が-33℃~126℃の範囲であることを特徴とする、インターハロゲン化合物の合成方法(第4方法)であってもよい。 Further, according to the first feature of the present invention, the second method is such that the halogen is bromine, the interhalogen compound is BrF 3 , the reaction temperature is in the range of 0 ° C. to 400 ° C., and the temperature of collection is − An interhalogen compound synthesis method (fourth method) characterized by being in the range of 33 ° C. to 126 ° C. may be used.
 本発明の第2の特徴に依れば、第1方法は、該反応を行うための反応器に反応させるガスを、それぞれ個々に供給または予め混合して供給し、該反応器より放出される気体を冷却捕集器に通過させることにより該インターハロゲン化合物の一部を該冷却捕集器で捕集し、未反応物と生成物の混合気体である該冷却捕集器を通過する気体を再度該反応器に戻すことを特徴とする、インターハロゲン化合物の製造方法(第5方法)であってもよい。 According to the second aspect of the present invention, in the first method, the gases to be reacted to the reactor for carrying out the reaction are individually supplied or mixed in advance, and discharged from the reactor. A part of the interhalogen compound is collected by the cold collector by passing the gas through a cold collector, and the gas passing through the cold collector, which is a mixed gas of unreacted product and product, is collected. The method may be a method for producing an interhalogen compound (fifth method), which is returned to the reactor again.
本発明の第1の特徴に依る実施例で用いた反応装置の概略図。1 is a schematic view of a reactor used in an example according to the first feature of the present invention. FIG. 本発明の第1の特徴に依る実施例と対照をなす比較例で用いた反応装置の概略図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a reactor used in a comparative example in contrast to an example according to the first feature of the present invention. 本発明の第2の特徴に依る実施例で使用した反応装置の概略図Schematic of the reactor used in the examples according to the second aspect of the invention 本発明の第2の特徴に依る実施例と対照をなす比較例で使用した反応装置の概略図Schematic of the reactor used in the comparative example contrasting with the example according to the second aspect of the present invention.
詳細な説明Detailed description
 本発明の第1の特徴により、インターハロゲン化合物(XF3 、ただし、X=ClまたはBrを示す。)を合成する際、反応収率またはフッ素の利用効率を向上させることが可能となる。 According to the first feature of the present invention, when synthesizing an interhalogen compound (XF 3 , where X = Cl or Br is shown), the reaction yield or the utilization efficiency of fluorine can be improved.
 本発明の第2の特徴により、冷却捕集器を通過する生成ガスと未反応ガスを循環し反応器で再利用するため、高収率でかつ安価にインターハロゲン化合物を得ることが可能となる。また、循環流量を調節して任意の希釈濃度で原料ガスを導入できることから、反応の制御が可能となる。 According to the second feature of the present invention, the product gas passing through the cooling collector and the unreacted gas are circulated and reused in the reactor, so that an interhalogen compound can be obtained at a high yield and at a low cost. . Further, since the source gas can be introduced at an arbitrary dilution concentration by adjusting the circulation flow rate, the reaction can be controlled.
 以下、本発明の第1の特徴の内容を詳細に説明する。ただし、簡略化のために、第1の特徴であると逐一明記することを省略する。 Hereinafter, the contents of the first feature of the present invention will be described in detail. However, for simplification, the description of the first feature is omitted one by one.
 ClF3合成反応においては、フッ素と塩素とを反応させる温度は250℃~400℃の範囲が好ましく、より好ましくは250℃~350℃の範囲である。400℃を超えると反応器の金属部材とフッ素との反応が促進される虞があるため、反応器の腐食の原因やフッ素の利用効率の低下の原因となる可能性があり好ましくない。250℃未満では合成反応が進行し難くなる虞があるため同様に好ましくない。 In the ClF 3 synthesis reaction, the temperature at which fluorine and chlorine are reacted is preferably in the range of 250 ° C. to 400 ° C., more preferably in the range of 250 ° C. to 350 ° C. If the temperature exceeds 400 ° C., the reaction between the metal member of the reactor and fluorine may be promoted, which may cause corrosion of the reactor and decrease the utilization efficiency of fluorine. If it is less than 250 ° C., the synthesis reaction may be difficult to proceed.
 BrF3合成反応において、フッ素と臭素とを反応させる温度は0℃~400℃の範囲が好ましく、より好ましくは80℃~150℃の範囲である。400℃を超えると、反応器の金属部材とフッ素との反応が促進される虞があるため、反応器の腐食の原因やフッ素の利用効率の低下の原因となる可能性があり好ましくない。0℃未満では合成反応が進行し難くなる虞があるため同様に好ましくない。 In the BrF 3 synthesis reaction, the temperature at which fluorine and bromine are reacted is preferably in the range of 0 ° C. to 400 ° C., more preferably in the range of 80 ° C. to 150 ° C. If the temperature exceeds 400 ° C., the reaction between the metal member of the reactor and fluorine may be promoted, which may cause corrosion of the reactor and decrease the utilization efficiency of fluorine. If it is less than 0 ° C., the synthesis reaction may be difficult to proceed.
 合成したインターハロゲン化合物を冷却捕集する温度は、ClF3の場合、-156℃~12℃の範囲が好ましく、より好ましくは-30℃~-100℃の範囲である。-156℃未満ではClF3と同時にClFも捕集される虞が生じClFとClF3の分離が困難となるため好ましくない。また12℃を超えるとClF3の蒸気圧が高くなり捕集が困難になるため好ましくない。 In the case of ClF 3 , the temperature for cooling and collecting the synthesized interhalogen compound is preferably in the range of −156 ° C. to 12 ° C., more preferably in the range of −30 ° C. to −100 ° C. If it is less than −156 ° C., ClF 3 may be collected simultaneously with ClF 3 , and separation of ClF and ClF 3 becomes difficult. On the other hand, if the temperature exceeds 12 ° C., the vapor pressure of ClF 3 becomes high and it becomes difficult to collect, which is not preferable.
 さらに、上記条件において捕集されず通過する、Cl2、F2、またはClFを含有するガスは、再び、加熱して、上記と同様の反応温度の範囲にて反応させ、その後、再度、上記と同様の捕集温度の範囲にてインターハロゲン化合物を冷却捕集することが好ましい。 Further, the gas containing Cl 2 , F 2 , or ClF that passes without being collected under the above conditions is again heated and reacted in the reaction temperature range similar to the above, and then again the above It is preferable to cool and collect the interhalogen compound in the same collection temperature range.
 BrF3を冷却捕集する場合の温度は、-33℃~126℃の範囲が好ましく、より好ましくは0℃~70℃の範囲である。-33℃未満ではBrF3と同時にBrFも捕集される虞が生じBrFとBrF3の分離が困難となるため好ましくない。また126℃を超えるとBrF3の蒸気圧が高くなり捕集が困難になるため好ましくない。 The temperature when BrF 3 is collected by cooling is preferably in the range of −33 ° C. to 126 ° C., more preferably in the range of 0 ° C. to 70 ° C. If it is less than −33 ° C., BrF 3 may be trapped simultaneously with BrF 3 , and separation of BrF and BrF 3 becomes difficult. On the other hand, if it exceeds 126 ° C., the vapor pressure of BrF 3 becomes high and it becomes difficult to collect it.
 さらに、上記条件において捕集されず通過する、Br2、F2、またはBrFを含有するガスは、再び、加熱して、上記と同様の反応温度の範囲にて反応させ、その後、再度、上記と同様の捕集温度の範囲にてインターハロゲン化合物を冷却捕集することが好ましい。 Further, the gas containing Br 2 , F 2 , or BrF that passes without being collected under the above conditions is again heated and reacted in the reaction temperature range similar to the above, and then again the above It is preferable to cool and collect the interhalogen compound in the same collection temperature range.
 また、ClF3、BrF3いずれの場合の合成においても、冷却捕集されず通過するガスを反応させて冷却捕集する工程は、さらに繰り返されることで、インターハロゲン化合物の収率またはF2ガスの利用効率のさらなる向上が期待できる。 Further, ClF 3, BrF 3 also in the synthesis of either case, the step of cooling trapped by reacting a gas passing without being cold trap, by further repeated, the yield or F 2 gas interhalogen compound Can be expected to further improve the use efficiency.
インターハロゲン化合物を合成させる反応時の圧力はゲージ圧で、好ましくは-0.09MPa~1MPa、より好ましくは-0.05MPa~0.20MPaである。インターハロゲン化合物の合成にいたるまでの上記平衡反応は、各反応物質の分圧に依存しているため、-0.09MPa未満では、平衡反応の反応式(上記式(3)、(4))において、平衡が左側にずれる要因に働く可能性が高くなるため好ましくない。また1MPaを超えると、反応器の部材の腐食が促進される可能性があることや、合成したインターハロゲンが反応器内で液化してしまう可能性があるため好ましくない。 The pressure during the reaction for synthesizing the interhalogen compound is a gauge pressure, preferably -0.09 MPa to 1 MPa, more preferably -0.05 MPa to 0.20 MPa. Since the equilibrium reaction up to the synthesis of the interhalogen compound depends on the partial pressure of each reactant, the reaction formula of the equilibrium reaction (the above formulas (3) and (4)) is less than −0.09 MPa. In this case, the possibility that the balance is shifted to the left side is increased, which is not preferable. On the other hand, if it exceeds 1 MPa, corrosion of the reactor members may be accelerated, and the synthesized interhalogen may be liquefied in the reactor, which is not preferable.
 以下、実施例により本発明の第1の特徴をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the first feature of the present invention will be described more specifically by way of examples, but the present invention is not limited to these.
 本実施例に用いる装置の概略図を図1に示す。一段目の反応器1及び二段目の反応器10には、外部ヒーターで加熱できる構造となっている容積4Lの円筒型ニッケル製反応器を使用した。捕集器2及び捕集器11には容積4Lのステンレス製トラップを使用し、入口ガス側の配管をディップ構造として、液化捕集できるものを使用した。冷媒充填用デュアー瓶3、12に充填した冷媒はエタノールであり、ドライアイスを添加することにより-50℃に冷却した。Cl2ガス、F2ガス、N2ガスを各々マスフローコントローラー4、5、6により反応器1に供給しガス流通させた。反応器1から放出されるガスは、捕集器2に導入されClF3が捕集される。捕集器2を通過するガスは、反応器10に導入され加熱され、その後、捕集器11に導入されClF3が捕集される。捕集器11の出口ガスは、フロート式流量計7を使用し流量測定を行った。系内の圧力は圧力計8に連動させたコントロール弁9によりゲージ圧で-0.01MPaに保つように制御される。また、配管には全てステンレス配管を使用した。 A schematic diagram of an apparatus used in this embodiment is shown in FIG. For the first-stage reactor 1 and the second-stage reactor 10, a cylindrical nickel reactor having a volume of 4 L and having a structure that can be heated by an external heater was used. As the collector 2 and the collector 11, a stainless steel trap having a volume of 4 L was used, and a pipe capable of being liquefied and collected was used with a pipe on the inlet gas side as a dip structure. The refrigerant filled in the refrigerant filling dewars 3 and 12 was ethanol, and was cooled to −50 ° C. by adding dry ice. Cl 2 gas, F 2 gas, and N 2 gas were supplied to the reactor 1 by the mass flow controllers 4, 5, and 6, respectively, and allowed to flow. The gas released from the reactor 1 is introduced into the collector 2 and ClF 3 is collected. The gas passing through the collector 2 is introduced into the reactor 10 and heated, and then introduced into the collector 11 to collect ClF 3 . The outlet gas of the collector 11 was measured for flow rate using a float type flow meter 7. The pressure in the system is controlled by a control valve 9 linked to the pressure gauge 8 so as to be kept at -0.01 MPa as a gauge pressure. Moreover, all the piping used stainless steel piping.
 捕集器11の出口ガスの組成分析はコントロール弁9の出口ガスをサンプリングして行った。分析は、ClF3およびClFについてはFT-IR(赤外分光光度計、島津製作所社製Prestage-21)を用い、F2についてはUV(紫外可視分光光度計、日立社製U-2810)を用い、N2についてはGC(ガスクロマトグラフィー、島津製作所社製GC-2014)を用いて行った。
ガス組成および出口ガス流量から各ガス成分の流量を算出し、その結果からClF3の収率を算出した。
The composition analysis of the outlet gas of the collector 11 was performed by sampling the outlet gas of the control valve 9. The analysis was performed using FT-IR (infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation) for ClF 3 and ClF, and UV (ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.) for F 2. Regarding N 2 , GC (gas chromatography, GC-2014, manufactured by Shimadzu Corporation) was used.
The flow rate of each gas component was calculated from the gas composition and the outlet gas flow rate, and the yield of ClF 3 was calculated from the result.
 反応器1に供給させるガスの流量は、Cl2ガスを0.15SLM、F2ガスを0.45SLM、N2ガスを0.20SLMとし同時に流通させた。 The flow rate of the gas supplied to the reactor 1 was 0.15 SLM for Cl 2 gas, 0.45 SLM for F 2 gas, and 0.20 SLM for N 2 gas.
 一段目の反応器1の設定温度を290℃とし、二段目の反応器10の設定温度も290℃として反応させたところ、ClF3の収率はF2基準で93%であった。 When the preset temperature of the first-stage reactor 1 was 290 ° C. and the preset temperature of the second-stage reactor 10 was 290 ° C., the ClF 3 yield was 93% based on F 2 .
一段目の反応器1の設定温度を320℃、二段目の反応器10の設定温度を290℃で反応させる以外は実施例1と同様の条件で行ったところ、ClF3の収率はF2基準で92%であった。 The reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a preset temperature of the first reactor 1 of 320 ° C. and a preset temperature of the second reactor 10 of 290 ° C. The yield of ClF 3 was F It was 92% based on 2 criteria.
 一段目の反応器1の設定温度を400℃、二段目の反応器10の設定温度を290℃で反応させる以外は実施例1と同様の条件で行ったところ、ClF3の収率はF2基準で93%であった。 The reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at 400 ° C. for the first-stage reactor 1 and 290 ° C. for the second-stage reactor 10. As a result, the yield of ClF 3 was F It was 93% based on 2 criteria.
 一段目の反応器1の設定温度を400℃、二段目の反応器10の設定温度を250℃で反応させる以外は実施例1と同様の条件で行ったところ、ClF3の収率はF2基準で95%であった。 The reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a set temperature of the first reactor 1 of 400 ° C. and a set temperature of the second reactor 10 of 250 ° C. The yield of ClF 3 was F It was 95% based on 2 criteria.
 一段目の反応器1の容積を50L、二段目の反応器10の容積を20L、捕集器2のステンレス製トラップの容積を30L、捕集器11のステンレス製トラップの容積を5Lに、反応器1に供給させるガスの流量を、Cl2ガスについては0.67SLM、F2ガスについては2.00SLM、N2ガスについては0.89SLMに変更し、さらに、一段目の反応器1の設定温度を320℃、二段目の反応器10の設定温度を290℃として反応させる以外は実施例1と同様の条件で行ったところ、ClF3の収率はF2基準で94%であった。 The volume of the first-stage reactor 1 is 50 L, the volume of the second-stage reactor 10 is 20 L, the volume of the stainless steel trap of the collector 2 is 30 L, and the volume of the stainless steel trap of the collector 11 is 5 L. The flow rate of the gas supplied to the reactor 1 is changed to 0.67 SLM for Cl 2 gas, 2.00 SLM for F 2 gas, and 0.89 SLM for N 2 gas. When the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a setting temperature of 320 ° C. and the setting temperature of the second-stage reactor 10 at 290 ° C., the yield of ClF 3 was 94% based on F 2. It was.
 一段目の反応器1の設定温度を350℃、二段目の反応器10の設定温度を290℃で反応させる以外は実施例5と同様の条件で行ったところ、ClF3の収率はF2基準で92%であった。 The reaction was carried out under the same conditions as in Example 5 except that the reaction was carried out at 350 ° C. for the first-stage reactor 1 and 290 ° C. for the second-stage reactor 10. The yield of ClF 3 was F It was 92% based on 2 criteria.
 Cl2ガスをBr2ガスに変更してBr2ガスの供給配管を80℃に加温し、冷媒充填用デュアー瓶3、12に充填する冷媒を水とし氷を添加することにより0℃に冷却し、反応器1に供給させるガスの流量をBr2ガスについては0.15SLM、F2ガスについては0.45SLM、N2ガスについては0.15SLMに変更し、一段目の反応器1の設定温度を80℃、二段目の反応器10の設定温度を80℃として反応させる以外は実施例1と同様の条件で行ったところ、BrF3の収率はF2基準で91%であった。 Cl 2 gas Br 2 was changed to a gas supply pipe of Br 2 gas heated to 80 ° C., cooling the refrigerant filling the refrigerant filling dewar 3 and 12 to 0 ℃ by the addition of ice and water Then, the flow rate of the gas supplied to the reactor 1 is changed to 0.15 SLM for Br 2 gas, 0.45 SLM for F 2 gas, and 0.15 SLM for N 2 gas. The reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at a temperature of 80 ° C. and the second-stage reactor 10 at a set temperature of 80 ° C. The yield of BrF 3 was 91% based on F 2 . .
 一段目の反応器1の設定温度を80℃、二段目の反応器10の設定温度を100℃で反応させる以外は実施例7と同様の条件で行ったところ、BrF3の収率はF2基準で88%であった。 The reaction was carried out under the same conditions as in Example 7 except that the reaction was conducted at a preset temperature of the first reactor 1 of 80 ° C. and a preset temperature of the second reactor 10 of 100 ° C. The yield of BrF 3 was F It was 88% based on 2 criteria.
 一段目の反応器1の設定温度を100℃、二段目の反応器10の設定温度を80℃で反応させる以外は実施例7と同様の条件で行ったところ、BrF3の収率はF2基準で90%であった。 The reaction was carried out under the same conditions as in Example 7 except that the reaction was carried out at 100 ° C. for the first-stage reactor 1 and 80 ° C. for the second-stage reactor 10. As a result, the yield of BrF 3 was F 90% based on 2 criteria.
一段目の反応器1の設定温度を100℃、二段目の反応器10の設定温度を100℃で反応させる以外は実施例7と同様の条件で行ったところ、BrF3の収率はF2基準で91%であった。 When the reaction was carried out under the same conditions as in Example 7 except that the reaction was carried out at 100 ° C. for the first reactor 1 and 100 ° C. for the second reactor 10, the yield of BrF 3 was F. It was 91% based on 2 criteria.
 本発明の第1の特徴による上記の実施例と対照をなす比較例を以下に示す。 The following is a comparative example in contrast to the above example according to the first feature of the present invention.
[比較例1]
 本比較例に用いる装置の概略図を図2に示す。
[Comparative Example 1]
A schematic diagram of the apparatus used in this comparative example is shown in FIG.
 反応器21は外部ヒーターで加熱できる構造となっている円筒型のニッケル製反応器で、容積が50Lのものを使用した。Cl2ガス、F2ガス、N2ガスを各々マスフローコントローラー24、25、26により反応器21に供給し流通させた。捕集器22は、ステンレス製で容積が30Lのトラップを使用し、入口ガス側の配管をディップ構造として、液化捕集できるものを使用した。冷却充填用デュアー瓶23に充填した冷媒はエタノールであり、ドライアイスを添加することにより-50℃に冷却した。反応器21から放出されるガスは、捕集器22に導入されClF3が捕集される。捕集器22の出口ガスは、フロート式流量計27を使用し流量測定を行った。系内の圧力は圧力計28に連動させたコントロール弁29によりゲージ圧で-0.01MPaに保つように制御される。また、配管には全てステンレス配管を使用した。 The reactor 21 is a cylindrical nickel reactor having a structure that can be heated by an external heater, and has a volume of 50 L. Cl 2 gas, F 2 gas, and N 2 gas were supplied to the reactor 21 by the mass flow controllers 24, 25, and 26, respectively, and circulated. The collector 22 used was a stainless steel trap with a volume of 30 L, and the inlet gas side piping had a dip structure and could be liquefied and collected. The refrigerant filled in the cooling filling dewar 23 was ethanol, and was cooled to −50 ° C. by adding dry ice. The gas released from the reactor 21 is introduced into the collector 22 where ClF 3 is collected. The outlet gas of the collector 22 was measured using a float type flow meter 27. The pressure in the system is controlled to be kept at -0.01 MPa as a gauge pressure by a control valve 29 linked to a pressure gauge 28. Moreover, all the piping used stainless steel piping.
 捕集器22の出口ガスの組成分析はコントロール弁29の出口ガスをサンプリングして、行った。分析は、ClF3およびClFについてはFT-IR(赤外分光光度計、島津製作所社製Prestage-21)を用い、F2についてはUV(紫外可視分光光度計、日立社製U-2810)を用い、N2についてはGC(ガスクロマトグラフィー、島津製作所社製GC-2014)を用いて行った。 The composition analysis of the outlet gas of the collector 22 was performed by sampling the outlet gas of the control valve 29. The analysis was performed using FT-IR (infrared spectrophotometer, Presage-21 manufactured by Shimadzu Corporation) for ClF 3 and ClF, and UV (ultraviolet-visible spectrophotometer, U-2810 manufactured by Hitachi, Ltd.) for F 2. Regarding N 2 , GC (gas chromatography, GC-2014, manufactured by Shimadzu Corporation) was used.
 ガス組成および出口ガス流量から各ガス成分の流量を算出し、その結果からClF3の収率を算出した。 The flow rate of each gas component was calculated from the gas composition and the outlet gas flow rate, and the yield of ClF 3 was calculated from the result.
 反応器21に供給させるガスの流量は、Cl2ガスを0.67SLM、F2ガスを2.00SLM、N2ガスを0.89SLMとし同時に流通させた。ニッケル製反応器の反応器設定温度を260℃で反応させたところ、ClF3の収率はF2基準で72%であり、反応速度が小さいため収率が低くなっているのがわかる。 The flow rate of the gas to be fed to the reactor 21, and the Cl 2 gas 0.67SLM, the F 2 gas 2.00SLM, the N 2 gas was 0.89SLM is circulated simultaneously. When the reactor was set to a reaction temperature of 260 ° C. in a nickel reactor, the yield of ClF 3 was 72% on the basis of F 2 , indicating that the yield was low due to the low reaction rate.
[比較例2]
 反応器21の設定温度を290℃に変更した以外は比較例1と同様の条件で行ったところ、ClF3の収率はF2基準で81%であった。
[Comparative Example 2]
When the reaction was conducted under the same conditions as in Comparative Example 1 except that the set temperature of the reactor 21 was changed to 290 ° C., the yield of ClF 3 was 81% based on F 2 .
[比較例3]
 反応器21の設定温度を320℃に変更した以外は比較例1と同様の条件で行ったところ、ClF3の収率はF2基準で80%であった。
[Comparative Example 3]
Except that the set temperature of the reactor 21 was changed to 320 ° C., the reaction was performed under the same conditions as in Comparative Example 1. As a result, the yield of ClF 3 was 80% based on F 2 .
[比較例4]
 反応器21の設定温度を350℃に変更した以外は比較例1と同様の条件で行ったところ、ClF3の収率はF2基準で72%であった。
[Comparative Example 4]
Except that the set temperature of the reactor 21 was changed to 350 ° C., the same conditions as in Comparative Example 1 were performed. As a result, the yield of ClF 3 was 72% based on F 2 .
[比較例5]
 反応器21の設定温度を400℃に変更した以外は比較例1と同様の条件で行ったところ、ClF3の収率はF2基準で60%であった。
[Comparative Example 5]
The reaction was performed under the same conditions as in Comparative Example 1 except that the set temperature of the reactor 21 was changed to 400 ° C., and the yield of ClF 3 was 60% based on F 2 .
[比較例6]
Cl2ガスをBr2ガスに変更してBr2ガスの供給配管を80℃に加温し、冷媒充填用デュアー瓶23に充填する冷媒を水とし氷を添加することにより0℃に冷却し、反応器21に供給させるガスの流量を、Br2ガスについては0.15SLM、F2ガスについては0.45SLM、N2ガスについては0.15SLMに変更し、反応器21の設定温度を80℃として反応させる以外は比較例1と同様の条件で行ったところ、BrF3の収率はF2基準で64%であった。
[Comparative Example 6]
Cl 2 gas Br 2 was changed to a gas supply pipe of Br 2 gas heated to 80 ° C., the refrigerant filled in the refrigerant filling dewar 23 and cooled to 0 ℃ by the addition of ice and water, The flow rate of the gas supplied to the reactor 21 is changed to 0.15 SLM for Br 2 gas, 0.45 SLM for F 2 gas, and 0.15 SLM for N 2 gas, and the set temperature of the reactor 21 is 80 ° C. The reaction was carried out under the same conditions as in Comparative Example 1 except that the yield of BrF 3 was 64% based on F 2 .
[比較例7]
 反応器21の設定温度を100℃に変更した以外は比較例6と同様の条件で行ったところ、BrF3の収率はF2基準で72%であった。
[Comparative Example 7]
Except that the set temperature of the reactor 21 was changed to 100 ° C., it was carried out under the same conditions as in Comparative Example 6. As a result, the yield of BrF 3 was 72% based on F 2 .
[比較例8]
 反応器21の設定温度を150℃に変更した以外は比較例6と同様の条件で行ったところ、BrF3の収率はF2基準で56%であった。
[Comparative Example 8]
When the reaction was conducted under the same conditions as in Comparative Example 6 except that the set temperature of the reactor 21 was changed to 150 ° C., the yield of BrF 3 was 56% based on F 2 .
 上記の測定結果を、実施例1~6及び比較例1~5について表1に、実施例7~10及び比較例6~8について表2に示す。 The above measurement results are shown in Table 1 for Examples 1 to 6 and Comparative Examples 1 to 5, and in Table 2 for Examples 7 to 10 and Comparative Examples 6 to 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[図1,2における符号の説明]
1、10:反応器
2、11:捕集器
3、12:冷媒充填用デュアー瓶
4、5、6:マスフローコントローラー
7:フロート式流量計
8:圧力計
9:コントロール弁
21:反応器
22:捕集器
23:冷媒充填用デュアー瓶
24、25、26:マスフローコントローラー
27:フロート式流量計
28:圧力計
29:コントロール弁
[Explanation of Symbols in FIGS. 1 and 2]
DESCRIPTION OF SYMBOLS 1, 10: Reactor 2, 11: Collector 3, 12: Dewar bottle 4, 5, 6 for refrigerant filling: Mass flow controller 7: Float flow meter 8: Pressure gauge 9: Control valve 21: Reactor 22: Collector 23: Dewar bottles 24, 25, 26 for charging refrigerant: Mass flow controller 27: Float type flow meter 28: Pressure gauge 29: Control valve
 以下、本発明の第2の特徴について詳細に述べる。ただし、簡略化のために、第2の特徴であると逐一明記することを省略する。 Hereinafter, the second feature of the present invention will be described in detail. However, for the sake of simplification, the description of the second feature is omitted one by one.
 本発明の第2の特徴において、使用されるハロゲンガスとしては、フッ素ガス、塩素ガス、臭素ガス、ヨウ素ガス、使用されるインターハロゲンガスとしては、ClF3ガス、BrF5ガス、IF7ガスなどが挙げられる。反応器に用いる材質は、ニッケルあるいはモネルのような、反応時の温度においてハロゲンガスに対する耐食性を示すものが好ましい。 In the second feature of the present invention, the halogen gas used is fluorine gas, chlorine gas, bromine gas, iodine gas, and the interhalogen gas used is ClF 3 gas, BrF 5 gas, IF 7 gas, etc. Is mentioned. The material used for the reactor is preferably one that exhibits corrosion resistance to halogen gas at the reaction temperature, such as nickel or monel.
 反応器で生成したインターハロゲン化合物を捕集する冷却捕集器の温度はインターハロゲン化合物の露点以下であれば任意に選択可能であるが、融点近傍であることが好ましい。具体的には、ClF3を製造する場合は-60~-70℃、BrF3を製造する場合は10~20℃、IF5を製造する場合は10~20℃が好ましい。 The temperature of the cold collector for collecting the interhalogen compound produced in the reactor can be arbitrarily selected as long as it is not higher than the dew point of the interhalogen compound, but is preferably in the vicinity of the melting point. Specifically, it is preferably −60 to −70 ° C. when producing ClF 3 , 10 to 20 ° C. when producing BrF 3, and 10 to 20 ° C. when producing IF 5 .
 冷却捕集器を通過したガスはポンプ等の循環器により反応器内へと戻され循環する。このとき、循環流量を調節することで反応器内の原料ガスの濃度を制御できる。 The gas that has passed through the cooling collector is returned to the reactor by a circulator such as a pump and circulated. At this time, the concentration of the raw material gas in the reactor can be controlled by adjusting the circulation flow rate.
 原料ガスであるハロゲンガスまたはインターハロゲンガスの供給方法は、反応器に供給可能であれば特に限定されない。 The supply method of the halogen gas or interhalogen gas as the raw material gas is not particularly limited as long as it can be supplied to the reactor.
 反応温度は、反応部の温度が20℃~400℃であることが好ましい。具体的には、ClF3またはIF7を製造する場合には250~350℃、ClFを製造する場合には100~200℃、BrF3、BrF5、またはIF5を製造する場合には20~200℃が好ましい。400℃を超えると反応器の材質と原料のハロゲンガスまたはインターハロゲンガスとの反応が促進される可能性があるため好ましくない。 The reaction temperature is preferably 20 ° C. to 400 ° C. in the reaction part. Specifically, when producing ClF 3 or IF 7 , 250 to 350 ° C., when producing ClF, 100 to 200 ° C., and when producing BrF 3 , BrF 5 , or IF 5 , 20 to 200 ° C. is preferred. If the temperature exceeds 400 ° C., the reaction between the material of the reactor and the halogen gas or interhalogen gas of the raw material may be accelerated, which is not preferable.
 以下、実施例により本発明の第2の特徴を詳細に説明するが、本発明は、かかる実施例に限定されるものではない。 Hereinafter, the second feature of the present invention will be described in detail by way of examples. However, the present invention is not limited to such examples.
 本発明の第2の特徴による以下の実施例で用いた反応装置の概略図を図3に示す。反応器4内のガスは、冷却捕集器5に導入され、反応生成物が冷却捕集される。冷却捕集器5で捕集されず通過するガスは、ポンプ3により反応器4内に戻され循環する。マスフローコントローラ1、2により、個々に流量を制御された原料ガスである、ハロゲンガスやインターハロゲン化合物は、ポンプ3と冷却捕集器5の間で導入され、循環するガス中に供給される。反応器4に設置されているヒーター6により、反応器4を所定の温度に加熱できる。 FIG. 3 shows a schematic diagram of a reaction apparatus used in the following examples according to the second feature of the present invention. The gas in the reactor 4 is introduced into the cold collector 5 and the reaction product is cooled and collected. The gas that passes without being collected by the cold collector 5 is returned to the reactor 4 by the pump 3 and circulated. A source gas whose flow rate is individually controlled by the mass flow controllers 1 and 2 is introduced between the pump 3 and the cooling collector 5 and supplied into the circulating gas. The heater 4 installed in the reactor 4 can heat the reactor 4 to a predetermined temperature.
 また、系内を真空置換するために、反応器4と冷却捕集器5の間に真空ライン及び置換ガス(ヘリウムガス)の供給ラインがそれぞれ開閉弁を経て接続されている。 Also, in order to perform vacuum replacement in the system, a vacuum line and a supply line for replacement gas (helium gas) are connected between the reactor 4 and the cooling collector 5 via on-off valves.
[実施例1]
 ニッケル製で内径80mm、長さ1000mmの管状の反応器4の外壁温度を300℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-50℃に冷却した。その後、ポンプ3の循環流量を6L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを600cc/min、マスフローコントローラ2を用いて塩素ガスを200cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClF3の生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、10vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたClF3の質量によりClF3の収率を求めたところ、フッ素基準で94%であった。
[Example 1]
The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm was set to 300 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 6 L / min, the fluorine gas is supplied at 600 cc / min using the mass flow controller 1, and the chlorine gas is supplied at a flow rate of 200 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the formation of ClF 3 . The fluorine gas concentration in the gas in the reactor 4 was 10 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF 3 was determined from the amount of fluorine gas introduced and the mass of the collected ClF 3 , which was 94% based on fluorine.
[実施例2]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を200℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-150℃に冷却した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを100cc/min、マスフローコントローラ2を用いて塩素ガスを100cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClFの生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0.5vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたClFの質量によりClFの収率を求めたところ、フッ素基準で98%であった。
[Example 2]
The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −150 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 100 cc / min using the mass flow controller 1, and chlorine gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF. The fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of fluorine gas introduced and the mass of the collected ClF, and it was 98% on the basis of fluorine.
[実施例3]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を150℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は10℃に冷却した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを50cc/min、マスフローコントローラ2を用いてヨウ素を10cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しIF5の生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0.5vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたIF5の質量によりIF5の収率を求めたところ、フッ素基準で96%であった。
[Example 3]
The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 150 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to 10 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, the fluorine gas is supplied at 50 cc / min using the mass flow controller 1, and the iodine is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. It was. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of IF 5 . The fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the cold trap 5 was vacuum substitution was determined the yield of IF 5 by weight of IF 5 trapped and introduced fluorine gas quantity, was 96% with fluorine criteria.
[実施例4]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を330℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-20℃に冷却した。その後、ポンプ3の循環流量を2L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを350cc/min、マスフローコントローラ2を用いてヨウ素を50cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しIF7の生成を確認した。反応器4内のフッ素ガスのガス中の濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、1.0vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたIF7の質量によりIF7の収率を求めたところ、フッ素基準で93%であった。
[Example 4]
The outer wall temperature of the tubular reactor 4 made of nickel having an inner diameter of 40 mm and a length of 500 mm was set to 330 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to -20 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 2 L / min, the fluorine gas is supplied at 350 cc / min using the mass flow controller 1, and the iodine is supplied at a flow rate of 50 cc / min using the mass flow controller 2 to react for 1 hour. It was. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of IF 7 . The concentration of fluorine gas in the reactor 4 in the gas was 1.0 vol% as analyzed by an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the cold trap 5 was vacuum substitution was determined the yield of IF 7 by the mass of the IF 7 trapped and introduced fluorine gas quantity, was 93% with fluorine criteria.
[実施例5]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を150℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は15℃に冷却した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを30cc/min、マスフローコントローラ2を用いて臭素ガスを10cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しBrF3の生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0.5vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたBrF3の質量によりBrF3の収率を求めたところ、フッ素基準で94%であった。
[Example 5]
The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 150 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to 15 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 30 cc / min using the mass flow controller 1, and bromine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrF 3 . The fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of BrF 3 was determined from the amount of fluorine gas introduced and the mass of the collected BrF 3 , which was 94% on the basis of fluorine.
[実施例6]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を200℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-50℃に冷却した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを50cc/min、マスフローコントローラ2を用いて臭素ガスを10cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しBrF5の生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0.5vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたBrF5の質量によりBrF5の収率を求めたところ、フッ素基準で94%であった。
[Example 6]
The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 50 cc / min using the mass flow controller 1, and bromine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrF 5 . The fluorine gas concentration in the gas in the reactor 4 was 0.5 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the cold trap 5 was vacuum substitution was determined the yield of BrF 5 by weight of the introduced fluorine gas amount and the collected BrF 5, was 94% with fluorine criteria.
[実施例7]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の系内を真空置換した。外壁温度を170℃に設定し、冷却捕集器5は-110℃に冷却した。その後、反応器4にフッ素ガス及び塩素ガスをそれぞれ10cc/minで導入し、系内の圧力が80kPaになった時点でガスの供給を停止した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いてフッ素ガスを100cc/min、マスフローコントローラ2を用いて塩素ガスを100cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClFの生成を確認した。反応器4内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、3vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入したフッ素ガス量と捕集されたClFの質量によりClFの収率を求めたところ、フッ素基準で97%であった。
[Example 7]
The inside of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was vacuum-replaced. The outer wall temperature was set to 170 ° C., and the cooling collector 5 was cooled to −110 ° C. Thereafter, fluorine gas and chlorine gas were respectively introduced into the reactor 4 at 10 cc / min, and the gas supply was stopped when the pressure in the system reached 80 kPa. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, fluorine gas is supplied at 100 cc / min using the mass flow controller 1, and chlorine gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF. The fluorine gas concentration in the gas in the reactor 4 was 3 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of fluorine gas introduced and the mass of the collected ClF. The result was 97% based on fluorine.
[実施例8]
 ニッケル製で内径80mm、長さ1000mmの管状の反応器4の外壁温度を300℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-140℃に冷却した。その後、ポンプ3の循環流量を6L/minに設定し、マスフローコントローラ1を用いて塩素ガスを100cc/min、マスフローコントローラ2を用いてClF3ガスを100cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClFの生成を確認した。反応器4内のガス中の塩素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入した塩素ガス量と捕集されたClFの質量によりClFの収率を求めたところ、塩素基準で96%であった。
[Example 8]
The outer wall temperature of the tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm was set to 300 ° C., and the system was evacuated, and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −140 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 6 L / min, chlorine gas is supplied at 100 cc / min using the mass flow controller 1, and ClF 3 gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. Went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF. The chlorine gas concentration in the gas in the reactor 4 was 0 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of chlorine gas introduced and the mass of the collected ClF, and it was 96% based on chlorine.
[実施例9]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の外壁温度を200℃に設定し、系内を真空置換した後、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は-50℃に冷却した。その後、ポンプ3の循環流量を1L/minに設定し、マスフローコントローラ1を用いて臭素ガスを10cc/min、マスフローコントローラ2を用いて塩素ガスを10cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しBrClの生成を確認した。反応器4内のガス中の塩素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、1vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入した塩素ガス量と捕集されたBrClの質量によりBrClの収率を求めたところ、塩素基準で90%であった。
[Example 9]
The outer wall temperature of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was set to 200 ° C., and the system was evacuated and then helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to −50 ° C. Thereafter, the circulation flow rate of the pump 3 is set to 1 L / min, bromine gas is supplied at 10 cc / min using the mass flow controller 1, and chlorine gas is supplied at a flow rate of 10 cc / min using the mass flow controller 2 to react for 1 hour. went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the production of BrCl. The chlorine gas concentration in the gas in the reactor 4 was 1 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cooling collector 5 was vacuum-substituted, and the yield of BrCl was determined from the amount of introduced chlorine gas and the mass of the collected BrCl. As a result, it was 90% based on chlorine.
[実施例10]
 ニッケル製で内径40mm、長さ500mmの管状の反応器4の系内を真空置換した。外壁温度を300℃に設定し、冷却捕集器5を-110℃に冷却した。その後、反応器4に塩素ガス及びClF3ガスをそれぞれ10cc/minで導入し、系内の圧力が80kPaになった時点でガスの供給を停止した。
[Example 10]
The inside of a tubular reactor 4 made of nickel and having an inner diameter of 40 mm and a length of 500 mm was vacuum-replaced. The outer wall temperature was set to 300 ° C., and the cooling collector 5 was cooled to −110 ° C. Thereafter, chlorine gas and ClF 3 gas were respectively introduced into the reactor 4 at a rate of 10 cc / min, and the gas supply was stopped when the pressure in the system reached 80 kPa.
 その後、ポンプ3の循環流量を6L/minに設定し、マスフローコントローラ1を用いて塩素ガスを100cc/min、マスフローコントローラ2を用いてClF3ガスを100cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClFの生成を確認した。反応器4内のガス中の塩素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0vol%であった。反応終了後、冷却捕集器5内を真空置換し、導入した塩素ガス量と捕集されたClFの質量によりClFの収率を求めたところ、塩素基準で95%であった。 Thereafter, the circulation flow rate of the pump 3 is set to 6 L / min, chlorine gas is supplied at 100 cc / min using the mass flow controller 1, and ClF 3 gas is supplied at a flow rate of 100 cc / min using the mass flow controller 2 to react for 1 hour. Went. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF. The chlorine gas concentration in the gas in the reactor 4 was 0 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 5 was vacuum-substituted, and the yield of ClF was determined from the amount of introduced chlorine gas and the mass of the collected ClF, and it was 95% based on chlorine.
 本発明の第2の特徴による上記の実施例と対照をなす比較例を以下に示す。 The following is a comparative example that contrasts with the above example according to the second feature of the present invention.
[比較例1]
 本比較例に用いた反応器を図4に示す。反応器14内のガスは、冷却捕集器15に導入され、反応生物が冷却捕集される。マスフローコントローラ11、12により個々に流量を制御された原料ガスである、塩素ガスとフッ素ガスは反応器14に供給される。反応器14に設置されているヒーター16により、反応器14は所定の温度に加熱できる。
[Comparative Example 1]
The reactor used in this comparative example is shown in FIG. The gas in the reactor 14 is introduced into the cold collector 15 and the reaction organisms are cooled and collected. Chlorine gas and fluorine gas, which are source gases whose flow rates are individually controlled by the mass flow controllers 11 and 12, are supplied to the reactor 14. By the heater 16 installed in the reactor 14, the reactor 14 can be heated to a predetermined temperature.
 また、系内を真空置換するために、反応器14と冷却捕集器15の間に真空ライン及び置換ガス(ヘリウムガス)の供給ラインがそれぞれ開閉弁を経て接続されている。 Also, in order to perform vacuum replacement in the system, a vacuum line and a supply line for replacement gas (helium gas) are connected between the reactor 14 and the cooling collector 15 via on-off valves.
 ニッケル製で内径150mm、長さ500mmの内部攪拌翼を持つ円筒状の反応器14の外壁温度を300℃に設定し、系内を真空置換した後に冷却捕集器15を-50℃に冷却した。その後、マスフローコントローラ11を用いて塩素ガスを50cc/min、マスフローコントローラ12を用いてフッ素ガスを150cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClF3の生成を確認した。反応器14内のガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、10vol%であった。反応終了後、冷却捕集器15内を真空置換し、導入したフッ素ガス量と捕集されたClF3の質量によりClF3の収率を求めたところ、フッ素基準で80%であった。 The outer wall temperature of a cylindrical reactor 14 made of nickel and having an inner stirring blade having an inner diameter of 150 mm and a length of 500 mm was set to 300 ° C., and after the system was evacuated, the cold collector 15 was cooled to −50 ° C. . Thereafter, chlorine gas was supplied at 50 cc / min using the mass flow controller 11 and fluorine gas was supplied at a flow rate of 150 cc / min using the mass flow controller 12 to react for 1 hour. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the formation of ClF 3 . The fluorine gas concentration in the gas in the reactor 14 was 10 vol% when analyzed with an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 15 was vacuum-substituted, and the yield of ClF 3 was determined from the amount of fluorine gas introduced and the mass of the collected ClF 3 , and was 80% based on fluorine.
[比較例2]
 本比較例に用いた反応器を図4に示す。反応器14内のガスは、冷却捕集器15に導入され、反応生成物が冷却捕集される。マスフローコントローラ11、12により個々に流量を制御された原料ガスである、塩素ガスとClF3ガスは反応器14に供給される。反応器14に設置されているヒーター16により、反応器14は所定の温度に加熱できる。
[Comparative Example 2]
The reactor used in this comparative example is shown in FIG. The gas in the reactor 14 is introduced into the cold collector 15 and the reaction product is cooled and collected. Chlorine gas and ClF 3 gas, which are source gases whose flow rates are individually controlled by the mass flow controllers 11 and 12, are supplied to the reactor 14. By the heater 16 installed in the reactor 14, the reactor 14 can be heated to a predetermined temperature.
 また、系内を真空置換するために、反応器14と冷却捕集器15の間に真空ライン及び置換ガス(ヘリウムガス)の供給ラインがそれぞれ開閉弁を経て接続されている。 Also, in order to perform vacuum replacement in the system, a vacuum line and a supply line for replacement gas (helium gas) are connected between the reactor 14 and the cooling collector 15 via on-off valves.
 ニッケル製で内径150mm、長さ500mmの内部攪拌翼を持つ円筒状の反応器14の外壁温度を300℃に設定し、系内を真空置換した後に冷却捕集器15を-130℃に冷却した。その後、マスフローコントローラ11を用いて塩素ガスを50cc/min、マスフローコントローラ12を用いてClF3ガスを50cc/minの流量で供給して1時間反応を行った。捕集されたガスをFT-IR(大塚電子社製 IG-1000)で分析しClFの生成を確認した。反応器14内のガス中の塩素ガス濃度は、紫外分光光度計(日立製 U-2810)で分析したところ、0vol%であった。反応終了後、冷却捕集器15内を真空置換し、導入した塩素ガス量と捕集されたClFの質量によりClFの収率を求めたところ、塩素基準で50%であった。 The outer wall temperature of a cylindrical reactor 14 made of nickel and having an inner stirring blade having an inner diameter of 150 mm and a length of 500 mm was set to 300 ° C., and after the system was evacuated, the cooling collector 15 was cooled to −130 ° C. . Thereafter, chlorine gas was supplied at 50 cc / min using the mass flow controller 11, and ClF 3 gas was supplied at a flow rate of 50 cc / min using the mass flow controller 12 to react for 1 hour. The collected gas was analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) to confirm the generation of ClF. The chlorine gas concentration in the gas in the reactor 14 was 0 vol% when analyzed by an ultraviolet spectrophotometer (Hitachi U-2810). After completion of the reaction, the inside of the cold collector 15 was vacuum-substituted, and the yield of ClF was determined from the amount of introduced chlorine gas and the mass of the collected ClF, and it was 50% based on chlorine.
[図3、4における符号の説明]
1、2、11、12:マスフローコントローラ
3:ポンプ
4、14:反応器
5、15:冷却捕集器
6、16:ヒーター
[Explanation of Symbols in FIGS. 3 and 4]
1, 2, 11, 12: Mass flow controller 3: Pump 4, 14: Reactor 5, 15: Cooling collector 6, 16: Heater

Claims (5)

  1. ハロゲンと、インターハロゲンまたは該ハロゲンと異なる種類のハロゲンとを反応させた後、生成するインターハロゲン化合物を冷却捕集し、さらに該冷却捕集で捕集されなかったガス成分を加熱することによってインターハロゲン化合物を生成することを特徴とするインターハロゲン化合物の合成方法。 After reacting halogen with interhalogen or a different type of halogen, the produced interhalogen compound is cooled and collected, and further, the gas components not collected by the cold collection are heated, thereby heating the interhalogen compound. A method for synthesizing an interhalogen compound, comprising producing a halogen compound.
  2. 請求項1において、フッ素と、塩素または臭素のいずれか一方のハロゲンを反応させてインターハロゲン化合物(XF3、ただし、X=ClまたはBrを示す。)を合成するに際し、フッ素と該ハロゲンを反応させ更に反応生成物中の該インターハロゲン化合物を冷却により捕集する工程を2回以上繰り返すことを特徴とする、請求項1に記載のインターハロゲン化合物の合成方法。 2. In synthesizing an interhalogen compound (XF 3 , wherein X = Cl or Br) by reacting fluorine with one of chlorine and bromine, the fluorine and the halogen are reacted. The method for synthesizing an interhalogen compound according to claim 1, wherein the step of collecting the interhalogen compound in the reaction product by cooling is repeated twice or more.
  3. 請求項2において、該ハロゲンが塩素、該インターハロゲン化合物がClF3、反応させる温度が250℃~400℃の範囲、捕集する温度が-100℃~12℃の範囲であることを特徴とする、請求項2に記載のインターハロゲン化合物の合成方法。 3. The method according to claim 2, wherein the halogen is chlorine, the interhalogen compound is ClF 3 , the reaction temperature is in the range of 250 ° C. to 400 ° C., and the collection temperature is in the range of −100 ° C. to 12 ° C. The method for synthesizing an interhalogen compound according to claim 2.
  4. 請求項2において、該ハロゲンが臭素、該インターハロゲン化合物がBrF3、反応させる温度が0℃~400℃の範囲、捕集する温度が-33℃~126℃の範囲であることを特徴とする、請求項2に記載のインターハロゲン化合物の合成方法。 3. The method according to claim 2, wherein the halogen is bromine, the interhalogen compound is BrF 3 , the reaction temperature is in the range of 0 ° C. to 400 ° C., and the collection temperature is in the range of −33 ° C. to 126 ° C. The method for synthesizing an interhalogen compound according to claim 2.
  5. 請求項1において、該反応を行うための反応器に反応させるガスを、それぞれ個々に供給または予め混合して供給し、該反応器より放出される気体を冷却捕集器に通過させることにより該インターハロゲン化合物の一部を該冷却捕集器で捕集し、未反応物と生成物の混合気体である該冷却捕集器を通過する気体を再度該反応器に戻すことを特徴とする、請求項1に記載のインターハロゲン化合物の合成方法。 In Claim 1, the gas made to react with the reactor for performing this reaction is supplied individually or previously mixed and supplied, and the gas released from the reactor is passed through a cooled collector. A part of the interhalogen compound is collected by the cold collector, and the gas passing through the cold collector which is a mixed gas of unreacted product and product is returned to the reactor again. The method for synthesizing the interhalogen compound according to claim 1.
PCT/JP2009/068373 2008-11-12 2009-10-27 Inter-halogen compound synthesis method WO2010055769A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-289335 2008-11-12
JP2008289335A JP2010116281A (en) 2008-11-12 2008-11-12 Method for producing interhalogen compound
JP2008-289334 2008-11-12
JP2008289334A JP2010116280A (en) 2008-11-12 2008-11-12 Method for synthesizing interhalogen compound

Publications (1)

Publication Number Publication Date
WO2010055769A1 true WO2010055769A1 (en) 2010-05-20

Family

ID=42169905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068373 WO2010055769A1 (en) 2008-11-12 2009-10-27 Inter-halogen compound synthesis method

Country Status (1)

Country Link
WO (1) WO2010055769A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179458A1 (en) * 2016-04-11 2017-10-19 セントラル硝子株式会社 Method for purifying fluorinated interhalogen compound
JP2017190284A (en) * 2016-04-11 2017-10-19 セントラル硝子株式会社 Method for purifying interhalogen fluoride compound
WO2024055512A1 (en) * 2022-09-16 2024-03-21 福建德尔科技股份有限公司 One-step synthesis method for chlorine trifluoride and reaction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876754A (en) * 1964-06-09 1975-04-08 North American Rockwell Preparation of chlorine pentafluoride
JP2000159505A (en) * 1998-11-20 2000-06-13 Kanto Denka Kogyo Co Ltd Production of halogen fluoride compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876754A (en) * 1964-06-09 1975-04-08 North American Rockwell Preparation of chlorine pentafluoride
JP2000159505A (en) * 1998-11-20 2000-06-13 Kanto Denka Kogyo Co Ltd Production of halogen fluoride compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAWRENCE STEIN: "Pressure Studies of the Reaction of Fluorine with Bromine", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 81, no. 6, 30 March 1959 (1959-03-30), pages 1269 - 1273 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179458A1 (en) * 2016-04-11 2017-10-19 セントラル硝子株式会社 Method for purifying fluorinated interhalogen compound
JP2017190284A (en) * 2016-04-11 2017-10-19 セントラル硝子株式会社 Method for purifying interhalogen fluoride compound
WO2024055512A1 (en) * 2022-09-16 2024-03-21 福建德尔科技股份有限公司 One-step synthesis method for chlorine trifluoride and reaction device

Similar Documents

Publication Publication Date Title
JP6754356B2 (en) Continuous flow carboxylation reaction
EP2165973B1 (en) Method for production of iodine heptafluoride
CN106660907A (en) Method for producing trans-1-chloro-3,3,3-trifluoropropane
WO2010055769A1 (en) Inter-halogen compound synthesis method
CN113993828A (en) Method for producing reaction gas containing (E) -1, 2-difluoroethylene
US11286221B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
EP2628709A1 (en) Method for producing phosphorus pentafluoride
Ramsperger et al. The kinetics of the thermal decomposition of trichloromethyl chloroformate
TWI510435B (en) Production of hydrogen chloride
JP2010116280A (en) Method for synthesizing interhalogen compound
CN101948367A (en) Preparation method taking 1,1,1-trifluoroethane as raw material
WO2021070550A1 (en) Method for producing bromine pentafluoride
JP2019019024A (en) Method for producing tungsten hexafluoride
JP6730605B2 (en) Method for producing iodine pentafluoride oxide
JP2010116281A (en) Method for producing interhalogen compound
TWI698412B (en) 1,2,3,4-Tetrachlorobutane manufacturing method and manufacturing device
JP6252214B2 (en) Method for producing iodine heptafluoride
KR20110051289A (en) Method for producing germanium tetrafluoride
CN111757854A (en) Tantalum chloride and method for producing tantalum chloride
EP3741736B1 (en) Method for producing tetrafluoromethane
CN210764338U (en) Carbon tetrafluoride synthesis device
CN102815686A (en) Manufacturing method for carbonyl fluoride
JP2017197390A (en) Production method of bromine pentafluoride
WO2022131349A1 (en) Method for producing reaction gas containing 1,1,2-trifluoroethane (r-143) and/or (e, z)-1,2-difluoroethylene (r-1132 (e, z))
WO2010067713A1 (en) Method for producing nitrogen trifluoride or chlorine-fluoride compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826019

Country of ref document: EP

Kind code of ref document: A1