JP2010116282A - Method for producing germanium tetrafluoride - Google Patents

Method for producing germanium tetrafluoride Download PDF

Info

Publication number
JP2010116282A
JP2010116282A JP2008289337A JP2008289337A JP2010116282A JP 2010116282 A JP2010116282 A JP 2010116282A JP 2008289337 A JP2008289337 A JP 2008289337A JP 2008289337 A JP2008289337 A JP 2008289337A JP 2010116282 A JP2010116282 A JP 2010116282A
Authority
JP
Japan
Prior art keywords
gas
reactor
germanium
germanium tetrafluoride
tetrafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008289337A
Other languages
Japanese (ja)
Inventor
Tomonori Umezaki
智典 梅崎
Isamu Mori
勇 毛利
Keita Nakahara
啓太 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008289337A priority Critical patent/JP2010116282A/en
Priority to KR1020117008010A priority patent/KR20110051289A/en
Priority to PCT/JP2009/068372 priority patent/WO2010055768A1/en
Priority to CN2009801385013A priority patent/CN102164857A/en
Publication of JP2010116282A publication Critical patent/JP2010116282A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/04Halides of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/06Halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method capable of safely and high-efficiently fluorinating by a direct reaction of metal germanium and fluorine gas in a method for producing germanium tetrafluoride. <P>SOLUTION: The method for producing germanium tetrafluoride is characterized by supplying fluorine gas to a reactor which is filled with metal germanium and dilution gas, collecting germanium tetrafluoride which is a reaction product by passing gas emitted from this reactor through a cooling collector and returning again the gas which passes the cooling collector to the reactor for circulation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、四フッ化ゲルマニウムを製造する方法に関するものである。   The present invention relates to a method for producing germanium tetrafluoride.

四フッ化ゲルマニウムの製造方法としては、(a)四塩化ゲルマニウムにフッ化アンチモンあるいは塩化アンチモンを加え反応させるハロゲン交換法(例えば、非特許文献1)、(b)六フッ化ゲルマニウム酸塩を熱分解する方法(例えば、非特許文献2)、(c)酸化ゲルマニウムと三フッ化臭素との反応による方法(例えば、非特許文献3)、(d)金属ゲルマニウムとフッ素ガスによる直接フッ素化等の方法がよく知られている。   As a method for producing germanium tetrafluoride, (a) a halogen exchange method in which antimony fluoride or antimony chloride is added to germanium tetrachloride to cause a reaction (for example, Non-Patent Document 1), and (b) hexafluorogermanate is heated. Decomposition methods (for example, Non-Patent Document 2), (c) a method by reaction of germanium oxide and bromine trifluoride (for example, Non-Patent Document 3), (d) direct fluorination with metal germanium and fluorine gas, etc. The method is well known.

しかしながら、上記(a)、(b)及び(c)の方法で得られる四フッ化ゲルマニウム中には、フッ化塩化ゲルマニウム、HF,CO,CF,N,Oなど多種類のガスを不純物として含有する。 However, in the germanium tetrafluoride obtained by the above methods (a), (b) and (c), various gases such as fluorinated germanium, HF, CO 2 , CF 4 , N 2 and O 2 are used. Is contained as an impurity.

一方、上記(d)の方法では、高純度の金属ゲルマニウムやフッ素ガスが入手可能なことから、純度の良い四フッ化ゲルマニウムを得ることが可能となる。しかしながら、下記反応式(1)に示すように、金属ゲルマニウムとフッ素ガスとの反応による発熱量が大きいため、フッ素ガスを希釈導入しなければ反応が暴走する。
Ge+2F→GeF (ΔH273=−284.4kcal) (1)
また、生成した四フッ化ゲルマニウムを冷却捕集する際に、四フッ化ゲルマニウムの蒸気圧が−80℃においても2.6kPa以上であるため、捕集効率を向上させるためには極低温の冷媒を使用する必要がある。
H.S.Booth et al.J.Am.Chem.Soc. 58,90(1936) Inorganic Syntheses IV 147 H.J.,J.Chem.Soc. 164(1950)
On the other hand, in the method (d), since high-purity metal germanium and fluorine gas are available, it is possible to obtain germanium tetrafluoride with high purity. However, as shown in the following reaction formula (1), the amount of heat generated by the reaction between the metal germanium and the fluorine gas is large, and the reaction runs out of control unless the fluorine gas is diluted.
Ge + 2F 2 → GeF 4 (ΔH 273 = −284.4 kcal) (1)
In addition, when the generated germanium tetrafluoride is cooled and collected, the vapor pressure of germanium tetrafluoride is 2.6 kPa or higher even at −80 ° C., so that a cryogenic refrigerant can be used to improve the collection efficiency. Need to use.
H. S. Booth et al. J. et al. Am. Chem. Soc. 58, 90 (1936) Inorganic Synthesis IV 147 H. J. et al. , J .; Chem. Soc. 164 (1950)

本発明の目的は、四フッ化ゲルマニウムの製造方法において、安全に且つ高効率に、金属ゲルマニウムとフッ素ガスの直接反応によるフッ素化を行える製造方法を提供することにある。   An object of the present invention is to provide a production method capable of performing fluorination by a direct reaction between metal germanium and fluorine gas in a production method of germanium tetrafluoride safely and with high efficiency.

本発明者等は鋭意検討の結果、閉鎖系内で四フッ化ゲルマニウムの合成及び冷却捕集を行うことにより、上記目的が達成できることを見出し、本発明に至った。   As a result of intensive studies, the present inventors have found that the above object can be achieved by synthesizing and cooling and collecting germanium tetrafluoride in a closed system, and have reached the present invention.

すなわち、本発明は金属ゲルマニウムと希釈ガスが充填されている反応器にフッ素ガスを供給し、該反応器より放出される気体を冷却捕集器に通過させて反応生成物である四フッ化ゲルマニウムを捕集し、該冷却捕集器を通過するガスを再び該反応器へ戻し循環させることを特徴とする四フッ化ゲルマニウムの製造方法を提供するものである。   That is, in the present invention, fluorine gas is supplied to a reactor filled with metal germanium and a diluent gas, and the gas released from the reactor is passed through a cooling collector to form germanium tetrafluoride which is a reaction product. Is collected, and the gas passing through the cold collector is returned to the reactor and circulated again. Thus, a method for producing germanium tetrafluoride is provided.

さらに、該反応器内の金属ゲルマニウムの温度が100℃〜400℃の範囲にあることを特徴とする上記に記載の四フッ化ゲルマニウムの製造方法、該反応器より放出される気体中のフッ素濃度が10.0vol%未満であることを特徴とする上記に記載の四フッ化ゲルマニウムの製造方法を提供するものである。   Furthermore, the temperature of the metal germanium in the reactor is in the range of 100 ° C. to 400 ° C., the method for producing germanium tetrafluoride as described above, the fluorine concentration in the gas released from the reactor Is less than 10.0 vol%, and provides the method for producing germanium tetrafluoride as described above.

本発明により、閉鎖系でガスを循環させることにより任意の希釈濃度での反応が可能となり、反応を容易に制御することが可能となる。また、高収率で四フッ化ゲルマニウムを得ることが可能となる。   According to the present invention, by circulating gas in a closed system, a reaction at an arbitrary dilution concentration is possible, and the reaction can be easily controlled. Moreover, it becomes possible to obtain germanium tetrafluoride with a high yield.

以下、本発明について詳細に述べる。   The present invention will be described in detail below.

本発明において、反応器に充填される金属ゲルマニウムは、その形状を特に限定するものではなく、塊状又はロッド状のものが使用できる。その純度は反応生成物である四フッ化ゲルマニウムの純度に直接影響を及ぼすことから99.99%以上のものが望まれる。また、反応器に充填される希釈ガスは、フッ素ガスとの反応性の低いものであれば特に限定されず、例えば、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等を用いることができる。   In the present invention, the shape of the metal germanium charged in the reactor is not particularly limited, and a lump or rod can be used. Since its purity directly affects the purity of germanium tetrafluoride as a reaction product, it is desired to have a purity of 99.99% or more. Further, the diluent gas charged in the reactor is not particularly limited as long as it has low reactivity with fluorine gas, and for example, nitrogen gas, helium gas, neon gas, argon gas, or the like can be used.

金属ゲルマニウムをフッ素化する原料ガスとしてフッ素ガスが用いられ、このフッ素ガスを、金属ゲルマニウムと希釈ガスが充填されている反応器に供給する。ただし、フッ素ガスの純度も四フッ化ゲルマニウムの純度に直接影響を及ぼすことから99%以上のものが望まれる。反応器に用いる材質は、ニッケルあるいはモネルのような、少なくとも、金属ゲルマニウムとフッ素ガスとの反応温度において、フッ素ガスに対する耐食性を示すものでなければならない。   Fluorine gas is used as a source gas for fluorinating metal germanium, and this fluorine gas is supplied to a reactor filled with metal germanium and a diluent gas. However, since the purity of fluorine gas directly affects the purity of germanium tetrafluoride, 99% or more is desired. The material used for the reactor must be resistant to fluorine gas, at least at the reaction temperature between metal germanium and fluorine gas, such as nickel or monel.

反応器で生成した四フッ化ゲルマニウムを捕集する冷却捕集器の温度は、該冷却捕集器内における四フッ化ゲルマニウムの露点以下であれば任意に選択可能であるが、フッ素ガス及び希釈ガスである窒素ガス、ヘリウムガス、ネオンガス、アルゴンガスの沸点以上となる−180℃以上であることが望ましい。−180℃未満ではフッ素ガスの利用効率が下がる可能性がある。   The temperature of the cold collector for collecting germanium tetrafluoride produced in the reactor can be arbitrarily selected as long as it is below the dew point of germanium tetrafluoride in the cold collector, but fluorine gas and dilution It is desirable that the temperature be −180 ° C. or higher, which is higher than the boiling point of nitrogen gas, helium gas, neon gas, or argon gas. If it is less than −180 ° C., the utilization efficiency of fluorine gas may be lowered.

冷却捕集器を通過したガスはポンプ等の循環器により反応器内へと戻される。
反応温度は、反応器内の金属ゲルマニウムの温度が100℃〜400℃の範囲であることが好ましく、更に好ましくは200℃〜300℃が好適である。400℃を超えると反応器の材質とフッ素ガスとの反応が促進される可能性があるため好ましくない。
The gas that has passed through the cold collector is returned to the reactor by a circulator such as a pump.
The reaction temperature is preferably such that the temperature of the metal germanium in the reactor is in the range of 100 ° C to 400 ° C, more preferably 200 ° C to 300 ° C. If it exceeds 400 ° C., the reaction between the material of the reactor and the fluorine gas may be accelerated, which is not preferable.

反応器より放出される気体中のフッ素濃度は10.0vol%未満であることが好ましい。10.0vol%以上では反応器内で金属ゲルマニウムとフッ素ガスとの反応が暴走している可能性があり、反応器の材質を損傷する恐れがあるため好ましくない。   The fluorine concentration in the gas released from the reactor is preferably less than 10.0 vol%. If it is 10.0 vol% or more, there is a possibility that the reaction between metal germanium and fluorine gas may run away in the reactor, and the material of the reactor may be damaged.

また、反応器より放出される気体中のフッ素濃度は、反応器への希釈ガスの充填量、循環器の循環流量、またはフッ素ガスの供給流量を調節することで、適宜、調整できる。   In addition, the fluorine concentration in the gas released from the reactor can be appropriately adjusted by adjusting the amount of diluent gas charged into the reactor, the circulation flow rate of the circulator, or the supply flow rate of the fluorine gas.

反応器内の希釈ガスの充填量は、反応器内に希釈ガスが存在していればよく、特に限定するものではない。   The filling amount of the diluent gas in the reactor is not particularly limited as long as the diluent gas exists in the reactor.

以下、実施例により本発明を詳細に説明するが、本発明は、かかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example.

本発明を用いた例の概略図を図1に示す。反応器4内ガスは、冷却捕集器5に導入され、反応生物が冷却捕集される。冷却捕集器5で捕集されず通過するガスは、ポンプ2により反応器4内に戻され循環する。F用マスフローコントローラ1により流量を制御されたフッ素ガスは、ポンプ2と冷却捕集器5の間で導入され、循環するガス中に供給される。反応器4内の中央部には金属ゲルマニウム3が充填されている。反応器4に設置されているヒーター6により、反応器4を所定の温度に加熱できる。 A schematic diagram of an example using the present invention is shown in FIG. The gas in the reactor 4 is introduced into the cold collector 5 and the reaction organisms are cooled and collected. The gas that passes without being collected by the cold collector 5 is returned to the reactor 4 by the pump 2 and circulated. The fluorine gas whose flow rate is controlled by the F 2 mass flow controller 1 is introduced between the pump 2 and the cooling collector 5 and supplied into the circulating gas. The central portion in the reactor 4 is filled with metal germanium 3. The heater 4 installed in the reactor 4 can heat the reactor 4 to a predetermined temperature.

また、系内を真空置換するために、反応器4と冷却捕集器5の間に真空ライン及び置換ガス(ヘリウムガス)の供給ラインがそれぞれ開閉弁を経て接続されている。
[実施例1]
純度99.99%の金属ゲルマニウム3の粉末1000gを、ニッケル製で内径80mm、長さ1000mmの管状反応器4内の中央部に充填し、系内を真空置換した後、反応器4の外壁温度を200℃に設定し、系内にヘリウムガスを導入し80kPaとした。冷却捕集器5は−60℃に冷却した。
In addition, in order to perform vacuum replacement in the system, a vacuum line and a supply line for replacement gas (helium gas) are connected between the reactor 4 and the cooling collector 5 through on-off valves.
[Example 1]
After charging 1000 g of metal germanium 3 powder with a purity of 99.99% into the central part of the tubular reactor 4 made of nickel and having an inner diameter of 80 mm and a length of 1000 mm, the inside of the system was vacuum-substituted, and then the outer wall temperature of the reactor 4 Was set to 200 ° C., and helium gas was introduced into the system to 80 kPa. The cold collector 5 was cooled to -60 ° C.

次に、ポンプ2の循環流量を6L/minに設定し、F用マスフローコントローラ1により400cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT−IR(大塚電子社製 IG−1000)、紫外分光光度計(日立製 U−2810)で分析したところ、四フッ化ゲルマニウムの生成を確認した。 Next, the circulation flow rate of the pump 2 was set to 6 L / min, and fluorine was supplied at a flow rate of 400 cc / min by the F 2 mass flow controller 1 to react for 10 hours. Then, when the product gas collected by the cooling collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), production of germanium tetrafluoride was generated. It was confirmed.

また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U−2810)で分析したところ2vol%、四フッ化ゲルマニウムの濃度は、FT−IR(大塚電子社製 IG−1000)で分析したところ14vol%であり、他の成分はヘリウムガスである。   Further, the fluorine gas concentration in the outlet gas of the reactor 4 was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (IG-IG manufactured by Otsuka Electronics Co., Ltd.). 1000) and 14 vol%, and the other component is helium gas.

反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で98%であった。
[実施例2]
純度99.99%の金属ゲルマニウム3の粉末500gを、ニッケル製で内径80mm、長さ1000mmの管状反応器4内の中央部に充填し、系内を真空置換した後、反応器4の外壁温度を150℃に設定し、系内にヘリウムガスを導入し120kPaとした。冷却捕集器5は−60℃に冷却した。
After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 98% based on germanium.
[Example 2]
After filling the central part of the tubular reactor 4 made of nickel with an inner diameter of 80 mm and a length of 1000 mm with 500 g of metal germanium 3 powder having a purity of 99.99%, the inside of the system was vacuum-substituted, and the outer wall temperature of the reactor 4 Was set to 150 ° C., and helium gas was introduced into the system to 120 kPa. The cold collector 5 was cooled to -60 ° C.

次に、ポンプ2の循環流量を10L/minに設定し、F用マスフローコントローラ1により300cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT−IR(大塚電子社製 IG−1000)、紫外分光光度計(日立製 U−2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。 Next, the circulation flow rate of the pump 2 was set to 10 L / min, and fluorine was supplied at a flow rate of 300 cc / min by the F 2 mass flow controller 1 to react for 10 hours. Then, when the product gas collected by the cooling collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was confirmed. confirmed.

また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U−2810)で分析したところ1.5vol%、四フッ化ゲルマニウムの濃度は、FT−IR(大塚電子社製 IG−1000)で分析したところ11vol%であり、他の成分はヘリウムガスである。   Further, the fluorine gas concentration in the outlet gas of the reactor 4 was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). It is 11 vol% when analyzed by IG-1000), and other components are helium gas.

反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[実施例3]
純度99.99%の金属ゲルマニウム3の粉末2000gを、ニッケル製で内径130mm、長さ700mmの反応器4内の中央部に充填し、系内を真空置換した後、反応器4の外壁温度を250℃に設定し、系内にヘリウムガスを導入し101kPaとした。冷却捕集器5は−60℃に冷却した。
After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
[Example 3]
2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the central part of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm, and the inside of the system was vacuum-substituted, and then the outer wall temperature of the reactor 4 was changed. The temperature was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to -60 ° C.

次に、ポンプ2の循環流量を15L/minに設定し、F用マスフローコントローラ1により700cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT−IR(大塚電子社製 IG−1000)、紫外分光光度計(日立製 U−2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。 Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 700 cc / min by the F 2 mass flow controller 1 to react for 10 hours. Then, when the product gas collected by the cooling collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was confirmed. confirmed.

また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U−2810)で分析したところ1.8vol%、四フッ化ゲルマニウムの濃度は、FT−IR(大塚電子社製 IG−1000)で分析したところ13vol%であり、他の成分はヘリウムガスである。   Further, the fluorine gas concentration in the outlet gas of the reactor 4 was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). It is 13 vol% when analyzed by IG-1000), and other components are helium gas.

反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[実施例4]
純度99.99%の金属ゲルマニウム3の粉末2000gを、ニッケル製で内径130mm、長さ700mmの反応器4内の中央部に充填し、系内を真空置換した後、反応器4の外壁温度を250℃に設定し、系内にヘリウムガスを導入し101kPaとした。冷却捕集器5は−60℃に冷却した。
After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
[Example 4]
2000 g of metal germanium 3 powder having a purity of 99.99% was filled in the central part of the reactor 4 made of nickel and having an inner diameter of 130 mm and a length of 700 mm, and the inside of the system was vacuum-substituted, and then the outer wall temperature of the reactor 4 was changed. The temperature was set to 250 ° C., and helium gas was introduced into the system to 101 kPa. The cold collector 5 was cooled to -60 ° C.

次に、ポンプ2の循環流量を15L/minに設定し、F用マスフローコントローラ1により50cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT−IR(大塚電子社製 IG−1000)、紫外分光光度計(日立製 U−2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。 Next, the circulation flow rate of the pump 2 was set to 15 L / min, and fluorine was supplied at a flow rate of 50 cc / min by the mass flow controller 1 for F 2 to react for 10 hours. Then, when the product gas collected by the cooling collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was confirmed. confirmed.

また、反応器4出口ガス中のフッ素ガス濃度は、紫外分光光度計(日立製 U−2810)で分析したところ0.6vol%、四フッ化ゲルマニウムの濃度は、FT−IR(大塚電子社製 IG−1000)で分析したところ13vol%であり、他の成分はヘリウムガスである。
反応終了後、冷却捕集器5内を真空置換し、希釈ガスであるヘリウムガス及びフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で99%であった。
[比較例1]
用いた反応系の概略図を図2に示す。
Further, the fluorine gas concentration in the outlet gas of the reactor 4 was analyzed by an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), and the concentration of germanium tetrafluoride was FT-IR (manufactured by Otsuka Electronics Co., Ltd.). It is 13 vol% when analyzed by IG-1000), and other components are helium gas.
After completion of the reaction, the inside of the cooling collector 5 is vacuum-replaced, and helium gas and fluorine gas as dilution gases are removed, and the amount of germanium tetrafluoride is determined by the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. When the yield was determined, it was 99% based on germanium.
[Comparative Example 1]
A schematic diagram of the reaction system used is shown in FIG.

用マスフローコントローラ11により流量を制御されたフッ素ガスは、内部に金属ゲルマニウム13が充填されている反応器14に供給される。反応器14より排出されるガスは、冷却捕集器15に導入され、反応生物が冷却捕集される。冷却捕集器15で捕集されず通過するガスは、排出ガスとして系外の除害装置に送られる。反応器14に設置されているヒーター16により、反応器14を所定の温度に加熱できる。 The fluorine gas whose flow rate is controlled by the mass flow controller 11 for F 2 is supplied to the reactor 14 in which the metal germanium 13 is filled. The gas discharged from the reactor 14 is introduced into the cold collector 15 where the reaction organisms are cooled and collected. The gas that passes without being collected by the cooling collector 15 is sent as exhaust gas to an abatement apparatus outside the system. The heater 14 installed in the reactor 14 can heat the reactor 14 to a predetermined temperature.

また、系内を真空置換するために、反応器14と冷却捕集器15の間に真空ライン及び置換ガス(ヘリウムガス)の供給ラインが開閉弁を経て接続されている。   Further, in order to perform vacuum replacement in the system, a vacuum line and a supply line for replacement gas (helium gas) are connected between the reactor 14 and the cooling collector 15 via an on-off valve.

純度99.99%の金属ゲルマニウム13の粉末1000gを、ニッケル製で内径200mm、長さ700mmの反応器14内に充填し、系内を真空置換した後、反応器の外壁温度を200℃に設定し、系内にヘリウムガスを導入し80kPaとした。冷却捕集器15は−60℃に冷却した。   1000 g of metal germanium 13 powder with a purity of 99.99% was filled in a reactor 14 made of nickel and having an inner diameter of 200 mm and a length of 700 mm, and the system was evacuated, and then the outer wall temperature of the reactor was set to 200 ° C. Then, helium gas was introduced into the system to 80 kPa. The cold collector 15 was cooled to -60 ° C.

次に、フッ素ガスをF用マスフローコントローラ11により400cc/minの流量でフッ素を供給して10時間反応を行った。その後、冷却捕集器5に捕集された生成ガスをFT−IR(大塚電子社製 IG−1000)、紫外分光光度計(日立製 U−2810)で分析したところ四フッ化ゲルマニウムの生成を確認した。 Next, the fluorine gas was supplied at a flow rate of 400 cc / min by the F 2 mass flow controller 11 and reacted for 10 hours. Then, when the product gas collected by the cooling collector 5 was analyzed with FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) and an ultraviolet spectrophotometer (U-2810 manufactured by Hitachi), the production of germanium tetrafluoride was confirmed. confirmed.

反応終了後、冷却捕集器15内を真空置換することによりフッ素ガスを除去し、導入したフッ素ガス量と捕集された四フッ化ゲルマニウムの質量により四フッ化ゲルマニウムの収率を求めたところ、ゲルマニウム基準で87%であった。   After completion of the reaction, the inside of the cooling collector 15 is vacuum-substituted to remove fluorine gas, and the yield of germanium tetrafluoride is determined from the amount of fluorine gas introduced and the mass of germanium tetrafluoride collected. And 87% based on germanium.

また、反応器14の内面に損傷が生じているのが確認された。損傷の原因は100%濃度のフッ素ガスを導入したため、局所的に大きな発熱が生じたためであると推測される。   Moreover, it was confirmed that the inner surface of the reactor 14 was damaged. The cause of the damage is presumed to be that a large amount of heat was generated locally because 100% concentration of fluorine gas was introduced.

本発明の実施様態の一例を示す概略図Schematic showing an example of an embodiment of the present invention 従来法による実施様態の一例を示す概略図Schematic showing an example of the implementation by the conventional method

符号の説明Explanation of symbols

1、11:F用マスフローコントローラ
2:ポンプ
3、13:金属ゲルマニウム
4、14:反応器
5、15:冷却捕集器
6、16:ヒーター
1, 11: Mass flow controller for F2 2 : Pump 3, 13: Metal germanium 4, 14: Reactor 5, 15: Cooling collector 6, 16: Heater

Claims (3)

金属ゲルマニウムと希釈ガスが充填されている反応器にフッ素ガスを供給し、該反応器より放出される気体を冷却捕集器に通過させて反応生成物である四フッ化ゲルマニウムを捕集し、該冷却捕集器を通過するガスを再び該反応器へ戻し循環させることを特徴とする、四フッ化ゲルマニウムの製造方法。 Fluorine gas is supplied to a reactor filled with metal germanium and a diluent gas, and the gas released from the reactor is passed through a cooling collector to collect germanium tetrafluoride as a reaction product, A process for producing germanium tetrafluoride, characterized in that the gas passing through the cold collector is recycled back to the reactor. 該反応器内の金属ゲルマニウムの温度が100℃〜400℃の範囲にあることを特徴とする、請求項1に記載の四フッ化ゲルマニウムの製造方法。 The method for producing germanium tetrafluoride according to claim 1, wherein the temperature of the metal germanium in the reactor is in the range of 100C to 400C. 該反応器より放出される気体中のフッ素濃度が10.0vol%未満であることを特徴とする、請求項1に記載の四フッ化ゲルマニウムの製造方法。
The method for producing germanium tetrafluoride according to claim 1, wherein the fluorine concentration in the gas released from the reactor is less than 10.0 vol%.
JP2008289337A 2008-11-12 2008-11-12 Method for producing germanium tetrafluoride Pending JP2010116282A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008289337A JP2010116282A (en) 2008-11-12 2008-11-12 Method for producing germanium tetrafluoride
KR1020117008010A KR20110051289A (en) 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride
PCT/JP2009/068372 WO2010055768A1 (en) 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride
CN2009801385013A CN102164857A (en) 2008-11-12 2009-10-27 Method for producing germanium tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289337A JP2010116282A (en) 2008-11-12 2008-11-12 Method for producing germanium tetrafluoride

Publications (1)

Publication Number Publication Date
JP2010116282A true JP2010116282A (en) 2010-05-27

Family

ID=42169904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289337A Pending JP2010116282A (en) 2008-11-12 2008-11-12 Method for producing germanium tetrafluoride

Country Status (4)

Country Link
JP (1) JP2010116282A (en)
KR (1) KR20110051289A (en)
CN (1) CN102164857A (en)
WO (1) WO2010055768A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546659B (en) * 2020-12-08 2022-02-15 云南临沧鑫圆锗业股份有限公司 Purification device and method for germanium tetrafluoride
CN115231609B (en) * 2022-08-24 2024-05-10 和远潜江电子特种气体有限公司 Synthetic purification method and system for high-purity germanium tetrafluoride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234301A (en) * 1988-03-16 1989-09-19 Mitsui Toatsu Chem Inc Production of gaseous metal fluoride
JPH02172806A (en) * 1988-12-23 1990-07-04 Mitsubishi Electric Corp Device for producing hydrogen peroxide solution
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333084B1 (en) * 1988-03-16 1994-07-27 MITSUI TOATSU CHEMICALS, Inc. Method for preparing gaseous fluorides
JP3258413B2 (en) * 1993-02-12 2002-02-18 三井化学株式会社 Method for producing germanium tetrafluoride
JP2000072438A (en) * 1998-08-25 2000-03-07 Mitsui Chemicals Inc Purifying method of germanium tetrafluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234301A (en) * 1988-03-16 1989-09-19 Mitsui Toatsu Chem Inc Production of gaseous metal fluoride
JPH02172806A (en) * 1988-12-23 1990-07-04 Mitsubishi Electric Corp Device for producing hydrogen peroxide solution
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system

Also Published As

Publication number Publication date
CN102164857A (en) 2011-08-24
KR20110051289A (en) 2011-05-17
WO2010055768A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4693823B2 (en) Production method of iodine heptafluoride
JP6792151B2 (en) Manufacturing method of chlorine trifluoride
JP3727797B2 (en) Method for producing nitrogen trifluoride
JP2010116282A (en) Method for producing germanium tetrafluoride
TW201348136A (en) Method and apparatus for producing fluorine gas
WO2020003924A1 (en) Boron trichloride production method
TWI510435B (en) Production of hydrogen chloride
JP5034322B2 (en) Synthesis method of nitrogen halides
WO2010055769A1 (en) Inter-halogen compound synthesis method
JP4166025B2 (en) Method for producing carbonyl difluoride
JP4230169B2 (en) Fluorine generation method
WO2021070550A1 (en) Method for producing bromine pentafluoride
US20140238195A1 (en) Treatment of chemical feedstocks
JP4104320B2 (en) Method for producing carbonyl difluoride
JP6252214B2 (en) Method for producing iodine heptafluoride
JPS58162536A (en) Production of carbon tetrafluoride
KR20180006439A (en) How to make 5-fluorinated iodine
JPH09241187A (en) Production of tetrafluoromethane
CN103443065B (en) The method of purification of difluoroacetic acid chloride
RU2454366C2 (en) Method of producing silicon tetrafluoride and apparatus for realising said method
JP2017197390A (en) Production method of bromine pentafluoride
JP2010116280A (en) Method for synthesizing interhalogen compound
JP2016113337A (en) Manufacturing method of iodine heptafluoride
宮崎達夫 Study on NF3 synthesis using CIF3 as a mediator
CN106380072B (en) The preparation method and quartz glass of quartz glass

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304