JP2016113337A - Manufacturing method of iodine heptafluoride - Google Patents

Manufacturing method of iodine heptafluoride Download PDF

Info

Publication number
JP2016113337A
JP2016113337A JP2014254833A JP2014254833A JP2016113337A JP 2016113337 A JP2016113337 A JP 2016113337A JP 2014254833 A JP2014254833 A JP 2014254833A JP 2014254833 A JP2014254833 A JP 2014254833A JP 2016113337 A JP2016113337 A JP 2016113337A
Authority
JP
Japan
Prior art keywords
gas
iodine
reactor
yield
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014254833A
Other languages
Japanese (ja)
Other versions
JP6372340B2 (en
Inventor
真聖 長友
Masakiyo Nagatomo
真聖 長友
力哉 伊藤
Rikiya Ito
力哉 伊藤
章史 八尾
Akifumi Yao
章史 八尾
茂朗 柴山
Shigero Shibayama
柴山  茂朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2014254833A priority Critical patent/JP6372340B2/en
Publication of JP2016113337A publication Critical patent/JP2016113337A/en
Application granted granted Critical
Publication of JP6372340B2 publication Critical patent/JP6372340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance yield of iodine heptafluoride based on iodine in a method for manufacturing iodine heptafluoride by one step reaction by reacting fluorine gas and iodine gas in a reactor.SOLUTION: A manufacturing method of iodine heptafluoride by supplying fluorine gas and iodine gas to a reactor having a filler containing metal fluorinate inside and reacting them is used. It is preferable to supply the fluorine gas and the iodine gas to the reactor so that molar ratio (F/I) becomes 5 or more, the metal fluoride contains a least one or more kind of NiF, FeFand CoFand they are reacted at a temperature of the metal fluorinate of 150°C to 350°C.SELECTED DRAWING: None

Description

本発明は、フッ素化剤、或いは半導体産業におけるエッチングガス、クリーニングガスとして用いられる七フッ化ヨウ素の製造方法に関する。   The present invention relates to a method for producing iodine heptafluoride used as a fluorinating agent, or an etching gas or cleaning gas in the semiconductor industry.

七フッ化ヨウ素の製造方法としては、フッ素ガスと五フッ化ヨウ素ガスとを反応させることによって七フッ化ヨウ素を製造する方法が一般的であり、非特許文献1では、70〜80℃に加熱した五フッ化ヨウ素の液にフッ素ガスを吹き込み、得られる五フッ化ヨウ素ガスと同伴するフッ素ガスを、280〜290℃に加熱した反応器に導入し、フッ素と五フッ化ヨウ素を反応させる七フッ化ヨウ素の製造方法が報告されている。   As a method for producing iodine heptafluoride, a method of producing iodine heptafluoride by reacting fluorine gas and iodine pentafluoride gas is generally used. In Non-Patent Document 1, heating is performed at 70 to 80 ° C. Fluorine gas is blown into the obtained iodine pentafluoride liquid, and the resulting fluorine gas accompanying the iodine pentafluoride gas is introduced into a reactor heated to 280 to 290 ° C. to react fluorine with iodine pentafluoride. A method for producing iodine fluoride has been reported.

特許文献1では、フッ素ガスが流通する蒸発器に五フッ化ヨウ素の液滴を加えて蒸発・混合させた後、この混合ガスを300℃に加熱した反応器に導入し、フッ素と五フッ化ヨウ素を反応させる七フッ化ヨウ素の製造方法において、五フッ化ヨウ素を基準とした七フッ化ヨウ素の収率は60%であることが報告されている。   In Patent Document 1, iodine pentafluoride droplets are added to an evaporator through which fluorine gas flows and evaporated and mixed. Then, the mixed gas is introduced into a reactor heated to 300 ° C., and fluorine and pentafluoride are introduced. In the method for producing iodine heptafluoride in which iodine is reacted, it is reported that the yield of iodine heptafluoride based on iodine pentafluoride is 60%.

特許文献2では、フッ素ガスと五フッ化ヨウ素ガスを予め合流させて、230℃に加熱した反応器に導入して反応させ、生成物である七フッ化ヨウ素を冷却捕集し、未反応物である五フッ化ヨウ素を冷却捕集して原料として再利用すると共に、未反応のフッ素ガスをコンプレッサで循環供給する、フッ素循環方式による七フッ化ヨウ素の製造方法が報告されている。   In Patent Document 2, fluorine gas and iodine pentafluoride gas are combined in advance, introduced into a reactor heated to 230 ° C., reacted, and iodine heptafluoride as a product is collected by cooling. A method for producing iodine heptafluoride by a fluorine circulation method has been reported, in which iodine pentafluoride is cooled and collected and reused as a raw material, and unreacted fluorine gas is circulated and supplied by a compressor.

一方で、五フッ化ヨウ素を経由せずに、フッ素とヨウ素とを直接反応させることによって七フッ化ヨウ素を製造する方法も知られている。この場合、フッ素とヨウ素との直接反応はきわめて激しく反応し、局所的に膨大な発熱を発生させる為、特許文献3では、ヨウ素とフッ素を原料として反応器に投入する際に、七フッ化ヨウ素が存在している反応器に、フッ素含有ガスとヨウ素含有ガスをそれぞれ供給し、反応器中のガスを循環させながら反応させることにより、穏和に反応を進行させることが出来る七フッ化ヨウ素の製造方法が報告されている。   On the other hand, a method for producing iodine heptafluoride by directly reacting fluorine and iodine without going through iodine pentafluoride is also known. In this case, the direct reaction between fluorine and iodine reacts very vigorously and generates a huge amount of heat locally. Therefore, in Patent Document 3, when iodine and fluorine are used as raw materials in the reactor, iodine heptafluoride is used. Production of iodine heptafluoride that can be allowed to proceed gently by supplying fluorine-containing gas and iodine-containing gas to the reactor in which the gas is present and reacting while circulating the gas in the reactor A method has been reported.

特開2000−159505号公報JP 2000-159505 A 特開2006−265057号公報JP 2006-265057 A 特開2009−23896号公報JP 2009-23896 A

Walter C. Schumb、外1名、「Ind. Eng. Chem.」、1950、42 (7)、 pp 1383−1386Walter C.M. Schumb, 1 other, “Ind. Eng. Chem.”, 1950, 42 (7), pp 1383-1386

しかしながら、特許文献3に記載の発明では、ヨウ素とフッ素を一段の反応で七フッ化ヨウ素を形成させることが可能であったが、その収率にはまだ改善の余地があった。   However, in the invention described in Patent Document 3, it was possible to form iodine heptafluoride through a one-step reaction of iodine and fluorine, but there was still room for improvement in the yield.

本発明は、上記の問題点に鑑みてなされたものであり、反応器内でフッ素ガスとヨウ素ガスを反応させることによって一段の反応で七フッ化ヨウ素ガスを製造する方法において、ヨウ素を基準とした七フッ化ヨウ素の収率を向上させることが目的である。   The present invention has been made in view of the above problems, and in a method for producing iodine heptafluoride gas in a one-step reaction by reacting fluorine gas and iodine gas in a reactor, iodine is used as a reference. The purpose is to improve the yield of iodine heptafluoride.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、フッ素ガスとヨウ素ガスを、金属フッ化物の存在下で反応させることにより上記目的を達成できることを見出し、本発明に至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by reacting fluorine gas and iodine gas in the presence of a metal fluoride, leading to the present invention. It was.

すなわち、金属フッ化物を含有する充填物を内部に有する反応器に、フッ素ガスとヨウ素ガスを供給して反応させることを特徴とする、七フッ化ヨウ素の製造方法を提供するものである。   That is, the present invention provides a method for producing iodine heptafluoride, characterized by supplying fluorine gas and iodine gas to a reactor having a filler containing a metal fluoride therein to cause a reaction.

前記フッ素ガスと前記ヨウ素ガスを、モル比(F/I)が5以上となるように、前記反応器に供給することが好ましく、前記金属フッ化物が、NiF、FeF、及びCoFの中から、少なくとも1種類以上を含むことが好ましく、前記金属フッ化物の温度を150℃以上350℃以下で反応させることが好ましい。 The fluorine gas and the iodine gas are preferably supplied to the reactor so that the molar ratio (F 2 / I 2 ) is 5 or more, and the metal fluoride contains NiF 2 , FeF 3 , and CoF. It is preferable that at least one kind is included among 2 and it is preferable to make the temperature of the said metal fluoride react at 150 to 350 degreeC.

本発明により、反応器内でフッ素ガスとヨウ素ガスを反応させることによって一段の反応で七フッ化ヨウ素ガスを製造する方法において、ヨウ素を基準とした七フッ化ヨウ素の収率を向上させることができる。   According to the present invention, in a method for producing iodine heptafluoride gas in a one-step reaction by reacting fluorine gas and iodine gas in a reactor, the yield of iodine heptafluoride based on iodine can be improved. it can.

本発明は、反応器内でフッ素ガスとヨウ素ガスとを反応させることにより七フッ化ヨウ素を製造する七フッ化ヨウ素の製造方法において、前記反応器は、金属フッ化物を含有する充填物を内部に有し、前記充填物の存在下でフッ素ガスとヨウ素ガスとを反応させることを特徴とする。   The present invention provides an iodine heptafluoride production method for producing iodine heptafluoride by reacting fluorine gas and iodine gas in a reactor, wherein the reactor contains a packing containing a metal fluoride inside. And fluorine gas and iodine gas are reacted in the presence of the filler.

本発明で使用される充填物に含有する金属フッ化物として、金属をフッ素化したものであれば特に限定されない。例えば、NiF、FeF、CoF、LiF、NaF、KF、CsF、MgF、CaFなどが挙げられるが、安価且つ収率向上の寄与が大きいことを考慮すると、遷移金属のフッ化物であるNiF、FeF、及びCoFのいずれか1種類またはこれらの混合物を含有することが好ましい。 The metal fluoride contained in the filler used in the present invention is not particularly limited as long as the metal is fluorinated. For example, NiF 2 , FeF 3 , CoF 2 , LiF, NaF, KF, CsF, MgF 2 , CaF 2 and the like can be mentioned. there NiF 2, FeF 3, and preferably contains one kind or a mixture of these CoF 2.

使用する充填物の形状は、フッ素ガスとヨウ素ガスが効率よく接触し、且つ、流通させる両原料のガスが閉塞しなければ特に限定されない。充填物は、例えば、メッシュ状の金属片をフッ素ガス、三フッ化塩素ガス、七フッ化ヨウ素ガス等によりフッ素化することにより、該金属表面に金属フッ化物が生成した形で得ることができ、又は粉体状の金属フッ化物をペレット形状に成型して得ることができる。   The shape of the filler to be used is not particularly limited as long as the fluorine gas and iodine gas are in efficient contact with each other and the gas of both raw materials to be circulated is not blocked. The filler can be obtained, for example, in a form in which a metal fluoride is generated on the surface of the metal by fluorinating a mesh-shaped metal piece with fluorine gas, chlorine trifluoride gas, iodine heptafluoride gas, or the like. Alternatively, it can be obtained by molding powder metal fluoride into a pellet shape.

また、上記金属フッ化物は、フッ素ガスとヨウ素ガスの反応に用いる反応器の材質として用いることができる。この場合、本発明の効果を得るためには、該反応器にさらに上記充填物を充填する必要がある。   Moreover, the said metal fluoride can be used as a material of the reactor used for reaction of fluorine gas and iodine gas. In this case, in order to obtain the effect of the present invention, it is necessary to further fill the reactor with the above packing.

上記充填物を充填する反応器の材質として、上記金属フッ化物の他に、ニッケル、インコネル(登録商標)、ハステロイ(登録商標)、モネル(登録商標)、アルミニウム、アルミナ、ステンレス鋼等も使用できるが、反応器の温度が200℃超となる場合、耐腐食性を考慮すると、ニッケル、インコネル(登録商標)、ハステロイ(登録商標)、モネル(登録商標)、又はアルミナが好ましい。なお、インコネル(登録商標)は、ニッケルをベースとし、鉄、クロム、ニオブ、モリブデンなどを加えた合金である。ハステロイ(登録商標)は、ニッケルをベースとし、モリブデンやクロムを加えた合金である。モネルは、ニッケルをベースとし、銅を加えた合金である。   In addition to the metal fluoride, nickel, Inconel (registered trademark), Hastelloy (registered trademark), Monel (registered trademark), aluminum, alumina, stainless steel, etc. can be used as the material for the reactor filled with the packing. However, when the temperature of the reactor exceeds 200 ° C., nickel, Inconel (registered trademark), Hastelloy (registered trademark), Monel (registered trademark), or alumina is preferable in consideration of corrosion resistance. Inconel (registered trademark) is an alloy based on nickel and added with iron, chromium, niobium, molybdenum and the like. Hastelloy (registered trademark) is an alloy based on nickel and added with molybdenum and chromium. Monel is a nickel-based alloy with copper added.

反応器の形状としては、充填物を充填することができ、充填物を充填した状態でガスを流通又は封入することができる空洞を有し、且つ、上記材質で組成されていれば、特に限定されず、例えば、管を使用することができる。管を使用する場合は、内部が粗面であると、ガスの滞留、圧力損失の増大、又は局所的な反応等が生じ易くなり効率が低下する恐れがあるので、内部が平滑な管、例えば、光輝焼鈍管、が好ましい。   The shape of the reactor is particularly limited as long as it has a cavity that can be filled with a filler, can circulate or enclose a gas in a state filled with the filler, and is composed of the above materials. For example, a tube can be used. When using a tube, if the inside is rough, there is a risk of gas retention, increased pressure loss, or local reaction, etc., which may reduce the efficiency. A bright annealed tube is preferred.

反応器の方式は、フッ素ガスとヨウ素ガスが充填物と接触できれば、特に限定されず、例えば、流通式、及び、密閉式を使用できる。流通式では、フッ素ガスとヨウ素ガスを同時に反応器に導入する必要がある。密閉式では、フッ素ガスとヨウ素ガスを予め混合したガスを反応器に導入してもよいし、それぞれを個別に反応器に導入してもよい。それぞれ個別に導入する場合、導入の順番は特に限定されず、フッ素ガスとヨウ素ガスを同時に、または、何れか一方を先に導入してもよい。いずれの方式においても、フッ素ガス及びヨウ素ガスと充填物との効率的な接触を考慮すると、フッ素ガスとヨウ素ガスを混合したガスを反応器に導入する方法が好ましい。   The method of the reactor is not particularly limited as long as fluorine gas and iodine gas can come into contact with the packing material. For example, a flow type and a closed type can be used. In the flow type, it is necessary to simultaneously introduce fluorine gas and iodine gas into the reactor. In the closed type, a gas in which fluorine gas and iodine gas are mixed in advance may be introduced into the reactor, or each may be individually introduced into the reactor. When introducing each individually, the order of introduction is not particularly limited, and fluorine gas and iodine gas may be introduced at the same time or either one may be introduced first. In any method, in consideration of efficient contact between the fluorine gas and iodine gas and the packing, a method of introducing a gas mixture of fluorine gas and iodine gas into the reactor is preferable.

フッ素ガスとヨウ素ガスが接触するときに、フッ素、ヨウ素、五フッ化ヨウ素及び七フッ化ヨウ素と反応しない不活性ガスが存在していても特に問題はなく、不活性ガスとしては、例えば、ヘリウムガス、窒素ガス、アルゴンガス、フッ化水素ガス等があるが、経済性を考慮すると窒素ガスが好ましい。不活性ガスで希釈した状態で、フッ素ガスとヨウ素ガスの反応熱を、不活性ガスを通じて逃がすことができ、充填物や反応器の破損や反応の暴走を防ぐことができる。効率的に熱を逃がすために、不活性ガスの割合は、ガス全体の10体積%以上であることが好ましく、20体積%以上であることが好ましい。一方で、不活性ガスの割合が高いほどより安全に装置を運転することができるが、フッ素ガスやヨウ素ガスの割合が減り、七フッ化ヨウ素の生産量も減ってしまう。   There is no particular problem even if there is an inert gas that does not react with fluorine, iodine, iodine pentafluoride, and iodine heptafluoride when the fluorine gas and iodine gas are in contact with each other. There are gas, nitrogen gas, argon gas, hydrogen fluoride gas, etc., but nitrogen gas is preferable in consideration of economy. In a state diluted with an inert gas, the reaction heat of fluorine gas and iodine gas can be released through the inert gas, and damage to the packing and reactor and runaway of the reaction can be prevented. In order to efficiently release heat, the ratio of the inert gas is preferably 10% by volume or more, and more preferably 20% by volume or more of the entire gas. On the other hand, the higher the ratio of inert gas, the safer the apparatus can be operated, but the ratio of fluorine gas and iodine gas decreases, and the production amount of iodine heptafluoride also decreases.

フッ素ガスとヨウ素ガスを反応させる時の充填物の温度は、150℃以上350℃以下が好ましい。150℃未満ではフッ素とヨウ素の反応速度が遅くなる恐れがあり、350℃超では生成した七フッ化ヨウ素がフッ素、五フッ化ヨウ素、ヨウ素に分解する逆反応が進行する恐れがある。特に、200℃以上330℃以下が好ましい。また、充填物を充填した状態で反応器を電気ヒータや蒸気などで加熱することにより、充填物を所望の温度にできる。   The temperature of the packing when the fluorine gas and iodine gas are reacted is preferably 150 ° C. or higher and 350 ° C. or lower. If it is less than 150 ° C., the reaction rate of fluorine and iodine may be slow, and if it exceeds 350 ° C., the reverse reaction in which the produced iodine heptafluoride decomposes into fluorine, iodine pentafluoride, and iodine may proceed. In particular, 200 ° C. or higher and 330 ° C. or lower is preferable. Further, the packing can be brought to a desired temperature by heating the reactor with an electric heater or steam in a state where the packing is filled.

反応器に導入されたガスの反応器中の滞在時間として、逆反応が顕著とならない反応温度であれば、滞在時間の増加とともに収率は増加するが、生産性は滞在時間の増加により低下する恐れがある。したがって、滞在時間は、所望の収率と生産性を考慮し、種々選択できる。生産性を考慮する場合、滞在時間は短い方が望まれる。例えば、フッ素とヨウ素のモル比(F/I)が7以上でフッ素ガスとヨウ素ガスを反応させる場合、金属フッ化物の温度が200℃以上330℃以下であれば、少なくとも滞在時間は10秒以上あれば、収率は50%以上得ることができる。 If the reaction temperature is such that the reverse reaction does not become significant as the residence time of the gas introduced into the reactor, the yield increases as the residence time increases, but the productivity decreases as the residence time increases. There is a fear. Accordingly, the residence time can be variously selected in consideration of the desired yield and productivity. When considering productivity, it is desirable that the staying time be shorter. For example, when the molar ratio of fluorine to iodine (F 2 / I 2 ) is 7 or more and the fluorine gas and iodine gas are reacted, if the temperature of the metal fluoride is 200 ° C. or higher and 330 ° C. or lower, the residence time is at least 10 If it is 2 seconds or more, a yield of 50% or more can be obtained.

反応器に供給されたフッ素ガスとヨウ素ガスのモル比、すなわち、上記流通式の場合のフッ素ガスとヨウ素ガスの導入時の流量比や、上記密閉式の場合のフッ素ガスとヨウ素ガスの混合比は、いずれもF/Iで5以上が好ましく、7以上がより好ましい。特に、該モル比が10以上では、滞在時間10秒以上で収率90%以上を得ることができるが、該モル比を45以上とすると、収率の向上に対し、フッ素ガスの使用量増加による経済性の低下が顕著になるため好ましくない。また、該モル比が5未満では、五フッ化ヨウ素が主な生成物となり、七フッ化ヨウ素を得ることが困難である。また該モル比が5以上7未満では、七フッ化ヨウ素を製造することはできるが未反応のヨウ素及び中間生成物の五フッ化ヨウ素が増加するため七フッ化ヨウ素の収率が低下する恐れがある。 The molar ratio of fluorine gas and iodine gas supplied to the reactor, that is, the flow rate ratio at the time of introduction of fluorine gas and iodine gas in the case of the above-mentioned flow type, or the mixing ratio of fluorine gas and iodine gas in the case of the above-mentioned closed type Are both F 2 / I 2 and preferably 5 or more, more preferably 7 or more. In particular, when the molar ratio is 10 or higher, a yield of 90% or higher can be obtained with a residence time of 10 seconds or longer. However, when the molar ratio is 45 or higher, the amount of fluorine gas used increases as the yield increases. This is not preferable because the economic efficiency is significantly reduced. If the molar ratio is less than 5, iodine pentafluoride is the main product and it is difficult to obtain iodine heptafluoride. Moreover, when the molar ratio is 5 or more and less than 7, iodine heptafluoride can be produced, but unreacted iodine and the intermediate product iodine pentafluoride increase, which may reduce the yield of iodine heptafluoride. There is.

使用するフッ素ガスとヨウ素ガスの純度としては、本発明を実施する上で特に制約されることは無く、フッ素ガスとヨウ素ガスの濃度が前記モル比の範囲であれば良い。但し、使用するフッ素ガス及び、ヨウ素ガスの純度は、生成する七フッ化ヨウ素ガスの純度に影響するため、例えば99%以上の七フッ化ヨウ素ガスを得るためには、純度99%以上のフッ素ガス及び、ヨウ素ガスを用いることが好ましい。   The purity of the fluorine gas and iodine gas to be used is not particularly limited in carrying out the present invention, and the concentration of the fluorine gas and iodine gas may be in the range of the molar ratio. However, since the purity of the fluorine gas and iodine gas used affects the purity of iodine heptafluoride gas to be generated, for example, in order to obtain 99% or more iodine heptafluoride gas, fluorine having a purity of 99% or more Gas and iodine gas are preferably used.

ヨウ素ガスの供給方法として、例えば、容器にヨウ素を充填し、該容器を加熱することでヨウ素を融解し、融解したヨウ素中に不活性ガスをバブリングすることでヨウ素ガスを供給する方法がある。容器としては、例えば、ニッケル、インコネル(登録商標)、ハステロイ(登録商標)、モネル(登録商標)、アルミニウム、アルミナ、ステンレス鋼等製の容器が好ましい。容器を加熱する温度としては、ヨウ素の融点(115℃)以上が好ましい。バブリングする不活性ガスとしては、例えば、ヘリウムガス、窒素ガス、アルゴンガス等が好ましい。   As a supply method of iodine gas, for example, there is a method of filling iodine in a container, melting the iodine by heating the container, and supplying iodine gas by bubbling an inert gas in the molten iodine. As the container, for example, a container made of nickel, Inconel (registered trademark), Hastelloy (registered trademark), Monel (registered trademark), aluminum, alumina, stainless steel or the like is preferable. As a temperature which heats a container, melting | fusing point (115 degreeC) or more of iodine is preferable. As the inert gas to be bubbled, for example, helium gas, nitrogen gas, argon gas or the like is preferable.

反応器への充填物の充填方法として、フッ素ガス及びヨウ素ガスと充填物とが効率よく接触し、且つ、流通するガスが閉塞しなければ特に限定されない。   The method of filling the reactor with the packing material is not particularly limited as long as the fluorine gas and iodine gas are efficiently brought into contact with the packing material and the flowing gas is not blocked.

反応時の反応器内の圧力は、フッ素、ヨウ素、五フッ化ヨウ素、七フッ化ヨウ素に毒性があるために、漏洩を防止するために大気圧以下が好ましく、経済性を考慮すると40kPa(絶対圧)以上が好ましい。   The pressure in the reactor during the reaction is toxic to fluorine, iodine, iodine pentafluoride and iodine heptafluoride, and is preferably less than atmospheric pressure to prevent leakage. Considering economics, 40 kPa (absolute Pressure) or more.

以下、実施例により本発明を詳細に説明するが、本発明は、かかる実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example.

[実施例1]
粉末のNiF(純度99%、Apollo Scientific Limited製)を加圧成型によりペレット状(4mm×4mm×2mm)にした金属フッ化物を総量で48g(0.5モル)を、反応器として用いる電気ヒータ及び圧力計を備えたニッケル製の光輝焼鈍管(内径22.1mm、長さ300mm)に充填した。該電気ヒータにより該光輝焼鈍管を加熱することにより充填物の温度を270℃とした。この温度で、Fガスと窒素ガスで26.7体積%に希釈したIガスの混合ガス(モル比(F/I=10)(混合ガスの組成:F濃度72.7体積%、I濃度7.3体積%、N濃度20.0体積%)を該光輝焼鈍管の両端の一方(入口)から導入し、他方(出口)から排出させた。この時、該光輝焼鈍管内の圧力を101kPa(絶対圧)とし、該混合ガスを滞在時間が10秒となる流量(686cm/min)で1時間流通させた。また、該混合ガスの流通時に、該反応器出口のガスを一部抜き出して、IFとIFの組成をFT−IR(株式会社島津製作所製Prestige21)で、IとFの組成をUV−Vis(株式会社日立ハイテクサイエンス製U−2810)で速やかに分析した。組成分析結果に基づき、Iの供給量を基準としたIFの理論捕集量に対する収率を算出したところ、Iを基準としたIFの収率は85%だった。
[Example 1]
Electricity using 48 g (0.5 mol) of a total amount of metal fluoride obtained by pressing powder NiF 2 (purity 99%, manufactured by Apollo Scientific Limited) into a pellet form (4 mm × 4 mm × 2 mm) by pressure molding as a reactor A bright annealing tube made of nickel (inner diameter 22.1 mm, length 300 mm) equipped with a heater and a pressure gauge was filled. The bright annealing tube was heated by the electric heater, so that the temperature of the filling was 270 ° C. At this temperature, a mixed gas of I 2 gas diluted to 26.7% by volume with F 2 gas and nitrogen gas (molar ratio (F 2 / I 2 = 10) (composition of mixed gas: F 2 concentration 72.7 volume) %, I 2 concentration 7.3 vol%, N 2 concentration 20.0 vol%) were introduced from one end (inlet) of both ends of the bright annealing tube and discharged from the other (outlet). The pressure in the annealing tube was 101 kPa (absolute pressure), and the mixed gas was circulated for 1 hour at a flow rate (686 cm 3 / min) at which the residence time was 10 seconds. A part of the gas was extracted, the composition of IF 7 and IF 5 was FT-IR (Prestig 21 manufactured by Shimadzu Corporation), and the composition of I 2 and F 2 was UV-Vis (U-2810 manufactured by Hitachi High-Tech Science Co., Ltd.). The results of the composition analysis Based, it was calculated yield based on theoretical amount of trapped IF 7 relative to the feed amount of I 2, the yield of the IF 7 relative to the I 2 was 85%.

[実施例2]
金属フッ化物として、粉末のFeF(Strem Chemicals製、製品番号93−2610)を加圧成型によりペレット状にした金属フッ化物を総量で56g(0.5モル)を使用する以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は71%だった。
[Example 2]
Except using 56 g (0.5 mol) of the total amount of metal fluoride formed by pelletizing FeF 3 powder (manufactured by Strem Chemicals, product number 93-2610) as a metal fluoride by pressure molding, Examples When the yield was calculated in the same manner as in No. 1, the yield of IF 7 based on I 2 was 71%.

[実施例3]
金属フッ化物として、粉末のCoF(Sigma Aldrich製、製品番号236128)を加圧成型によりペレット状にした金属フッ化物を総量で48g(0.5モル)を使用する以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は53%だった。
[Example 3]
As Example 1, except that 48 g (0.5 mol) of the total amount of metal fluoride obtained by pelletizing powdered CoF 2 (manufactured by Sigma Aldrich, product number 236128) was used as the metal fluoride. When the yield was calculated in the same manner, the yield of IF 7 based on I 2 was 53%.

[実施例4]
メッシュ状(100メッシュ)に成形されたニッケル製のNiメッシュを総量で29g(0.5モル)を反応器に充填し、反応器を350℃に加熱させて圧力66.7kPa(絶対圧)、フッ素ガスを500cm/minで3時間流通させることでNiメッシュの表面にNiFを生成した。金属フッ化物として表面にNiFが生成したNiメッシュを使用する以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は76%だった。
[Example 4]
A total of 29 g (0.5 mol) of nickel Ni mesh formed into a mesh shape (100 mesh) was charged into the reactor, and the reactor was heated to 350 ° C. to a pressure of 66.7 kPa (absolute pressure). NiF 2 was generated on the surface of the Ni mesh by flowing fluorine gas at 500 cm 3 / min for 3 hours. Except for using Ni mesh with NiF 2 formed on the surface as the metal fluoride, the same procedure as in Example 1 was performed, and the yield was calculated. The yield of IF 7 based on I 2 was 76%. .

[実施例5]
金属フッ化物として、粉末のNiFを加圧成型によりペレット状にした金属フッ化物を総量で24g(0.25モル)と、粉末のFeFを加圧成型によりペレット状にした金属フッ化物を総量で28g(0.25モル)の混合物を使用する以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は83%だった。
[Example 5]
As a metal fluoride, a total of 24 g (0.25 mol) of a metal fluoride obtained by pelletizing NiF 2 in powder form by pressure molding, and a metal fluoride obtained by pelletizing FeF 3 in powder form by pressure molding. Except that a total of 28 g (0.25 mol) of the mixture was used, the yield was calculated in the same manner as in Example 1, and the yield of IF 7 based on I 2 was 83%.

[実施例6]
金属フッ化物の温度を150℃とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は54%だった。
[Example 6]
The yield was calculated in the same manner as in Example 1 except that the temperature of the metal fluoride was 150 ° C. As a result, the yield of IF 7 based on I 2 was 54%.

[実施例7]
金属フッ化物の温度を200℃とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は65%だった。
[Example 7]
The yield was calculated in the same manner as in Example 1 except that the temperature of the metal fluoride was 200 ° C., and the yield of IF 7 based on I 2 was 65%.

[実施例8]
金属フッ化物の温度を330℃とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は80%だった。
[Example 8]
The yield was calculated in the same manner as in Example 1 except that the temperature of the metal fluoride was changed to 330 ° C., and the yield of IF 7 based on I 2 was 80%.

[実施例9]
金属フッ化物の温度を350℃とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は64%だった。
[Example 9]
The yield was calculated in the same manner as in Example 1 except that the temperature of the metal fluoride was 350 ° C. The yield of IF 7 based on I 2 was 64%.

[実施例10]
滞在時間を20秒(流量346cm/min)とする以外は、実施例7と同様に行い、収率を算出したところ、Iを基準としたIFの収率は76%だった。
[Example 10]
Except that the residence time was 20 seconds (flow rate: 346 cm 3 / min), the same procedure as in Example 7 was performed, and the yield was calculated. The yield of IF 7 based on I 2 was 76%.

[実施例11]
滞在時間を20秒(流量348cm/min)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は96%だった。
[Example 11]
Except that the residence time was 20 seconds (flow rate of 348 cm 3 / min), the same procedure was performed as in Example 1 and the yield was calculated. The yield of IF 7 based on I 2 was 96%.

[実施例12]
ガスとIガスの混合ガスのモル比(F/I)を5(混合ガスの組成:F濃度66.7体積%、I濃度13.3体積%、N濃度20.0体積%)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は34%だった。
[Example 12]
The molar ratio (F 2 / I 2 ) of the mixed gas of F 2 gas and I 2 gas is 5 (composition of the mixed gas: F 2 concentration 66.7 vol%, I 2 concentration 13.3 vol%, N 2 concentration 20). Except for setting it to 0.0% by volume, the yield was calculated in the same manner as in Example 1, and the yield of IF 7 based on I 2 was 34%.

[実施例13]
ガスとIガスの混合ガスのモル比(F/I)を7(混合ガスの組成:F濃度70.0体積%、I濃度10体積%、N濃度20.0体積%)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は61%だった。
[Example 13]
The molar ratio (F 2 / I 2 ) of the mixed gas of F 2 gas and I 2 gas is 7 (composition of mixed gas: F 2 concentration 70.0 vol%, I 2 concentration 10 vol%, N 2 concentration 20.0) The yield was calculated in the same manner as in Example 1 except that the volume% was IF. The yield of IF 7 based on I 2 was 61%.

[実施例14]
ガスとIガスの混合ガスのモル比(F/I)を9(混合ガスの組成:F濃度72.0体積%、I濃度8.0体積%、N濃度20.0体積%)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は78%だった。
[Example 14]
The molar ratio (F 2 / I 2 ) of the mixed gas of F 2 gas and I 2 gas is 9 (composition of the mixed gas: F 2 concentration 72.0 vol%, I 2 concentration 8.0 vol%, N 2 concentration 20) 0.07% by volume) was carried out in the same manner as in Example 1 and the yield was calculated. As a result, the yield of IF 7 based on I 2 was 78%.

[実施例15]
ガスとIガスの混合ガスのモル比(F/I)を14(混合ガスの組成:F濃度71.1体積%、I濃度8.9体積%、N濃度20.0体積%)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は96%だった。
[Example 15]
The molar ratio (F 2 / I 2 ) of the mixed gas of F 2 gas and I 2 gas is 14 (composition of mixed gas: F 2 concentration 71.1 vol%, I 2 concentration 8.9 vol%, N 2 concentration 20) Except that the amount was 0.0 vol%), the yield was calculated in the same manner as in Example 1, and the yield of IF 7 based on I 2 was 96%.

[実施例16]
ガスとIガスの混合ガスのモル比(F/I)を21(混合ガスの組成:F濃度74.4体積%、I濃度3.6体積%、N濃度20.0体積%)とする以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は99%だった。
[Example 16]
The molar ratio (F 2 / I 2 ) of the mixed gas of F 2 gas and I 2 gas is 21 (composition of the mixed gas: F 2 concentration 74.4% by volume, I 2 concentration 3.6% by volume, N 2 concentration 20). 0.07 volume%), the yield was calculated in the same manner as in Example 1, and the yield of IF 7 based on I 2 was 99%.

[実施例17]
反応器として、電気ヒータと圧力計とを備え、さらに入口と出口にそれぞれ仕切弁が設置された、ニッケル製の光輝焼鈍管(内径22.1mm、長さ0.3m)を使用し、実施例1と同様に金属フッ化物を充填し、金属フッ化物を270℃に加熱した。FガスとIガスの混合ガス(モル比(F/I)=10.0(混合ガスの組成:F濃度72.7体積%、I濃度7.3体積%、N濃度20.0体積%)を圧力101kPa(絶対圧)となるように入口側の仕切弁から反応器に導入して、両側の仕切弁を閉じ密閉した。密閉してから120秒経過(滞在時間)後、反応器内のガスの一部を抜き出して実施例1とIFとIFの組成をFT−IR(株式会社島津製作所製Prestige21)で、IとFの組成をUV−Vis(株式会社日立ハイテクサイエンス製U−2810)で速やかに分析して収率を算出したところ、Iを基準としたIFの収率は96%だった。
[Example 17]
As a reactor, a bright annealing tube made of nickel (inner diameter 22.1 mm, length 0.3 m) provided with an electric heater and a pressure gauge, and further provided with gate valves at the inlet and outlet, respectively, Example 1 was filled with metal fluoride, and the metal fluoride was heated to 270 ° C. Mixed gas of F 2 gas and I 2 gas (molar ratio (F 2 / I 2 ) = 10.0 (composition of mixed gas: F 2 concentration 72.7% by volume, I 2 concentration 7.3% by volume, N 2 A concentration of 20.0% by volume) was introduced from the gate valve on the inlet side into the reactor so that the pressure was 101 kPa (absolute pressure), and the gate valves on both sides were closed and sealed. Then, a part of the gas in the reactor was extracted, and the composition of Example 1 and IF 7 and IF 5 was changed to FT-IR (Prestig 21 manufactured by Shimadzu Corporation), and the composition of I 2 and F 2 was changed to UV-Vis. When the yield was calculated by quick analysis using U-2810 (Hitachi High-Tech Science Co., Ltd.), the yield of IF 7 based on I 2 was 96%.

[実施例18]
密閉時間を240秒にする以外は、実施例17と同様に行い、収率を算出したところ、Iを基準としたIFの収率は95%だった。
[Example 18]
When the yield was calculated in the same manner as in Example 17 except that the sealing time was 240 seconds, the yield of IF 7 based on I 2 was 95%.

[実施例19]
ガス、次いで、Fガスを、モル比(F/I)=10(混合ガスの組成:F濃度72.7体積%、I濃度7.3体積%、N濃度20.0体積%)、圧力101kPa(絶対圧)となるように仕切弁から別々に反応器に導入する以外は、実施例17と同様に行い、収率を算出したところ、Iを基準としたIFの収率は75%だった。
[Example 19]
I 2 gas, then F 2 gas, molar ratio (F 2 / I 2 ) = 10 (composition of mixed gas: F 2 concentration 72.7% by volume, I 2 concentration 7.3% by volume, N 2 concentration 20) .0% by volume), except that introduced into the reactor separately from the gate valve so that the pressure 101 kPa (absolute pressure) were performed in the same manner as in example 17, was calculated yield, relative to the I 2 The yield of IF 7 was 75%.

[比較例1]
反応器に金属フッ化物を充填しない以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は35%だった。
[Comparative Example 1]
When the yield was calculated in the same manner as in Example 1 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 35%.

[比較例2]
反応器に金属フッ化物を充填しない以外は、実施例6と同様に行い、収率を算出したところ、Iを基準としたIFの収率は20%だった。
[Comparative Example 2]
When the yield was calculated in the same manner as in Example 6 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 20%.

[比較例3]
反応器に金属フッ化物を充填しない以外は、実施例11と同様に行い、収率を算出したところ、Iを基準としたIFの収率は38%だった。
[Comparative Example 3]
When the yield was calculated in the same manner as in Example 11 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 38%.

[比較例4]
反応器に金属フッ化物を充填しない以外は、実施例12と同様に行い、収率を算出したところ、Iを基準としたIFの収率は5%だった。
[Comparative Example 4]
When the yield was calculated in the same manner as in Example 12 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 5%.

[比較例5]
反応器に金属フッ化物を充填しない以外は、実施例17と同様に行い、収率を算出したところ、Iを基準としたIFの収率は45%だった。
[Comparative Example 5]
When the yield was calculated in the same manner as in Example 17 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 45%.

[比較例6]
反応器に金属フッ化物を充填しない以外は、実施例18と同様に行い、収率を算出したところ、Iを基準としたIFの収率は67%だった。
表1に上記の実施例及び比較例の結果を示す。
[Comparative Example 6]
When the yield was calculated in the same manner as in Example 18 except that the reactor was not filled with metal fluoride, the yield of IF 7 based on I 2 was 67%.
Table 1 shows the results of the above examples and comparative examples.

[比較例7]
反応器の充填物として、粉末のα―Al(Strem Chemicals製、製品番号13−0750、純度99.5%、)を加圧成型によりペレット状にした充填物を総量で51g(0.5モル)を使用する以外は、実施例1と同様に行い、収率を算出したところ、Iを基準としたIFの収率は37%だった。
[Comparative Example 7]
As a packing for the reactor, a powdered α-Al 2 O 3 (manufactured by Strem Chemicals, product number 13-0750, purity 99.5%) was pelletized by pressure molding in a total amount of 51 g (0 .5 mol) was used in the same manner as in Example 1 and the yield was calculated. The yield of IF 7 based on I 2 was 37%.

各実施例と比較例の結果を表1にまとめた。実施例1と比較例1、実施例6と比較例2、実施例11と比較例3、実施例12と比較例4、実施例17と比較例5、実施例18と比較例6を比べると、金属フッ化物を充填することで、収率が格段に向上していることが分かる。また、実施例1と比較例1と比較例7を比べると、アルミナを充填しても収率は向上しないことが分かる。   The results of each example and comparative example are summarized in Table 1. Compare Example 1 with Comparative Example 1, Example 6 with Comparative Example 2, Example 11 with Comparative Example 3, Example 12 with Comparative Example 4, Example 17 with Comparative Example 5, Example 18 with Comparative Example 6. It can be seen that the yield is remarkably improved by filling the metal fluoride. Moreover, when Example 1 is compared with Comparative Example 1 and Comparative Example 7, it can be seen that the yield is not improved even when alumina is filled.

本発明の製造方法は、フッ素化剤、或いは半導体の製造に用いられるエッチングガスやクリーニングガスとして、従来から用いられている七フッ化ヨウ素の効率的な製造方法として利用できる。   The production method of the present invention can be used as an efficient method for producing iodine heptafluoride that has been conventionally used as a fluorinating agent, or as an etching gas or cleaning gas used in the production of semiconductors.

Claims (8)

金属フッ化物を含有する充填物を内部に有する反応器に、フッ素ガスとヨウ素ガスを供給して反応させることを特徴とする、七フッ化ヨウ素の製造方法。   A method for producing iodine heptafluoride, characterized by supplying fluorine gas and iodine gas to a reactor having a filler containing a metal fluoride therein for reaction. 前記フッ素ガスと前記ヨウ素ガスを、モル比(F/I)が5以上となるように、前記反応器に供給することを特徴とする請求項1に記載の七フッ化ヨウ素の製造方法。 2. The method for producing iodine heptafluoride according to claim 1, wherein the fluorine gas and the iodine gas are supplied to the reactor so that a molar ratio (F 2 / I 2 ) is 5 or more. . 前記金属フッ化物が、NiF、FeF、及びCoFの中から、少なくとも1種類以上を含むことを特徴とする、請求項1または2に記載の七フッ化ヨウ素の製造方法。 3. The method for producing iodine heptafluoride according to claim 1, wherein the metal fluoride includes at least one of NiF 2 , FeF 3 , and CoF 2 . 前記フッ素ガスと前記ヨウ素ガスとが反応する際の前記金属フッ化物の温度が150℃以上350℃以下であることを特徴とする、請求項1〜3のいずれか1項に記載の七フッ化ヨウ素の製造方法。   The heptafluoride according to any one of claims 1 to 3, wherein a temperature of the metal fluoride when the fluorine gas reacts with the iodine gas is 150 ° C or higher and 350 ° C or lower. A method for producing iodine. 前記反応器中に供給されるガスに、不活性ガスが10体積%以上含まれることを特徴とする請求項1〜4のいずれか1項に記載の七フッ化ヨウ素の製造方法。   The method for producing iodine heptafluoride according to any one of claims 1 to 4, wherein the gas supplied into the reactor contains 10% by volume or more of an inert gas. 前記モル比が7以上であることを特徴とする請求項1〜5のいずれか1項に記載の七フッ化ヨウ素の製造方法。   The said molar ratio is 7 or more, The manufacturing method of the iodine heptafluoride of any one of Claims 1-5 characterized by the above-mentioned. 前記モル比(F/I)が10以上であり、
前記反応器中の滞在時間が10秒以上であることを特徴とする請求項1〜6のいずれか1項に記載の七フッ化ヨウ素の製造方法。
The molar ratio (F 2 / I 2 ) is 10 or more,
The method for producing iodine heptafluoride according to any one of claims 1 to 6, wherein a residence time in the reactor is 10 seconds or more.
前記フッ素ガスと前記ヨウ素ガスとが反応する際の前記金属フッ化物の温度が200℃以上330℃以下であり、
前記反応器中の滞在時間が10秒以上であることを特徴とする請求項1〜6のいずれか1項に記載の七フッ化ヨウ素の製造方法。
The temperature of the metal fluoride when the fluorine gas and the iodine gas react is 200 ° C. or higher and 330 ° C. or lower,
The method for producing iodine heptafluoride according to any one of claims 1 to 6, wherein a residence time in the reactor is 10 seconds or more.
JP2014254833A 2014-12-17 2014-12-17 Method for producing iodine heptafluoride Active JP6372340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254833A JP6372340B2 (en) 2014-12-17 2014-12-17 Method for producing iodine heptafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254833A JP6372340B2 (en) 2014-12-17 2014-12-17 Method for producing iodine heptafluoride

Publications (2)

Publication Number Publication Date
JP2016113337A true JP2016113337A (en) 2016-06-23
JP6372340B2 JP6372340B2 (en) 2018-08-15

Family

ID=56140842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254833A Active JP6372340B2 (en) 2014-12-17 2014-12-17 Method for producing iodine heptafluoride

Country Status (1)

Country Link
JP (1) JP6372340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048486A1 (en) * 2022-08-29 2024-03-07 株式会社レゾナック Method for producing iodine heptafluoride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018286A (en) * 2000-07-11 2002-01-22 Central Glass Co Ltd Method for treating metal fluoride and synthesizing catalyst comprising the same
JP2004331465A (en) * 2003-05-09 2004-11-25 Central Glass Co Ltd Method of manufacturing xenon difluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system
JP2009023896A (en) * 2007-06-18 2009-02-05 Central Glass Co Ltd Production method of iodine heptafluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018286A (en) * 2000-07-11 2002-01-22 Central Glass Co Ltd Method for treating metal fluoride and synthesizing catalyst comprising the same
JP2004331465A (en) * 2003-05-09 2004-11-25 Central Glass Co Ltd Method of manufacturing xenon difluoride
JP2006265057A (en) * 2005-03-25 2006-10-05 Japan Nuclear Cycle Development Inst States Of Projects Method for preparing iodine heptafluoride by fluorine circulation system
JP2009023896A (en) * 2007-06-18 2009-02-05 Central Glass Co Ltd Production method of iodine heptafluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048486A1 (en) * 2022-08-29 2024-03-07 株式会社レゾナック Method for producing iodine heptafluoride

Also Published As

Publication number Publication date
JP6372340B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6792151B2 (en) Manufacturing method of chlorine trifluoride
US11878915B2 (en) Production method and production apparatus for molybdenum hexafluoride
KR102350972B1 (en) Metallic acid fluoride treatment and cleaning method
US7976817B2 (en) Method for production of iodine heptafluoride
JP6372340B2 (en) Method for producing iodine heptafluoride
KR102544654B1 (en) Method for producing tungsten hexafluoride
JP6252214B2 (en) Method for producing iodine heptafluoride
JP7360045B2 (en) Method for producing molybdenum hexafluoride and method for removing oxide film on the surface of molybdenum
JP6467955B2 (en) Method for producing iodine pentafluoride
CN113905979B (en) Method for producing bromine pentafluoride
JP2017197390A (en) Production method of bromine pentafluoride
EP1900683A1 (en) Process for synthesis of halogenated nitrogen
TW201418162A (en) Method of producing hydrogen chloride
JP6687843B2 (en) Method for producing iodine pentafluoride
KR20110051289A (en) Method for producing germanium tetrafluoride
JP4994746B2 (en) COF2 manufacturing method and apparatus
CN110589893B (en) Preparation method of rhenium hexafluoride
JP6730605B2 (en) Method for producing iodine pentafluoride oxide
JP2015071562A (en) Method of producing perfluorotetramethyl compound
TW200300414A (en) Process for producing carbonyl difluoride
CN109956459A (en) A kind of method of industrialized production carbonyl fluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250