JP6687843B2 - Method for producing iodine pentafluoride - Google Patents
Method for producing iodine pentafluoride Download PDFInfo
- Publication number
- JP6687843B2 JP6687843B2 JP2016076936A JP2016076936A JP6687843B2 JP 6687843 B2 JP6687843 B2 JP 6687843B2 JP 2016076936 A JP2016076936 A JP 2016076936A JP 2016076936 A JP2016076936 A JP 2016076936A JP 6687843 B2 JP6687843 B2 JP 6687843B2
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- pentafluoride
- heptafluoride
- gas
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CEBDXRXVGUQZJK-UHFFFAOYSA-N 2-methyl-1-benzofuran-7-carboxylic acid Chemical compound C1=CC(C(O)=O)=C2OC(C)=CC2=C1 CEBDXRXVGUQZJK-UHFFFAOYSA-N 0.000 title claims description 171
- 238000004519 manufacturing process Methods 0.000 title claims description 66
- XRURPHMPXJDCOO-UHFFFAOYSA-N iodine heptafluoride Chemical compound FI(F)(F)(F)(F)(F)F XRURPHMPXJDCOO-UHFFFAOYSA-N 0.000 claims description 126
- 238000006243 chemical reaction Methods 0.000 claims description 109
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 99
- 239000011630 iodine Substances 0.000 claims description 98
- 229910052740 iodine Inorganic materials 0.000 claims description 98
- 239000007791 liquid phase Substances 0.000 claims description 69
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 61
- 239000011737 fluorine Substances 0.000 claims description 61
- 229910052731 fluorine Inorganic materials 0.000 claims description 61
- 239000007787 solid Substances 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 17
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 14
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 13
- 239000000945 filler Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- PDJAZCSYYQODQF-UHFFFAOYSA-N iodine monofluoride Chemical compound IF PDJAZCSYYQODQF-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 122
- 235000019000 fluorine Nutrition 0.000 description 59
- 239000012071 phase Substances 0.000 description 27
- 239000011261 inert gas Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 206010024769 Local reaction Diseases 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/24—Inter-halogen compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、ヨウ素と七フッ化ヨウ素とを反応させて五フッ化ヨウ素を製造する方法および五フッ化ヨウ素から七フッ化ヨウ素を製造する方法に関する。 The present invention relates to a method for producing iodine pentafluoride by reacting iodine with iodine heptafluoride and a method for producing iodine heptafluoride from iodine pentafluoride.
フッ素化剤や含フッ素化合物の中間体製造の原料として有用な五フッ化ヨウ素を製造する方法としては、ヨウ素とフッ素を反応させる方法が知られている。 As a method for producing iodine pentafluoride, which is useful as a raw material for producing an intermediate for a fluorinating agent or a fluorine-containing compound, a method of reacting iodine with fluorine is known.
例えば、特許文献1には、「溶融沃素の直接弗素化による五弗化沃素の製造方法」が開示されている。 For example, Patent Document 1 discloses "a method for producing iodine pentafluoride by direct fluorination of molten iodine".
特許文献2には、「(1)(イ)液状のヨウ素にフッ素ガスを通じて反応させ五フッ化ヨウ素とヨウ素とを含む蒸気混合物を生成させ、(ロ)既に生成されていた液状の五フッ化ヨウ素の存在下で該蒸気混合物と新たなフッ素ガスとを反応させてさらに五フッ化ヨウ素を生成させる、ことを特徴とする五フッ化ヨウ素の製造方法。」が開示されている。 Patent Document 2 discloses that "(1) (a) liquid iodine is reacted with fluorine gas through a fluorine gas to produce a vapor mixture containing iodine pentafluoride and iodine, and (b) liquid pentafluoride that has already been produced. A method for producing iodine pentafluoride, which comprises reacting the vapor mixture with fresh fluorine gas in the presence of iodine to further generate iodine pentafluoride. "
フッ素とヨウ素を反応させて五フッ化ヨウ素を生成する反応は、生成熱が800kJ/molを超え、大きな発熱を伴う。そのため、固体(非特許文献1)、液体(特許文献1)、気体(特許文献2)を問わず、純粋なヨウ素とフッ素を反応させると、局所的に反応し発熱し、反応を制御し難いという懸念があった。 The reaction of reacting fluorine with iodine to generate iodine pentafluoride has a heat of formation exceeding 800 kJ / mol and is accompanied by a large amount of heat generation. Therefore, when pure iodine and fluorine are reacted regardless of solid (non-patent document 1), liquid (patent document 1), and gas (patent document 2), they react locally to generate heat and it is difficult to control the reaction. There was a concern.
以上を鑑みて、特許文献3には「フッ素とヨウ素との反応を穏やかに実施して、結果的に、より安全に、また、より生産性に優れた五フッ化ヨウ素の製造方法を提供する」ために「フッ素とヨウ素とを反応させて五フッ化ヨウ素を製造する方法であって、ヨウ素を含む五フッ化ヨウ素の液相に隣接する気相にフッ素を供給することを特徴とする五フッ化ヨウ素の製造方法」が開示されている。 In view of the above, Patent Document 3 discloses that "a reaction between fluorine and iodine is carried out gently, and as a result, a method for producing iodine pentafluoride which is safer and more excellent in productivity is provided. "A method for producing iodine pentafluoride by reacting fluorine with iodine, which comprises supplying fluorine to a gas phase adjacent to a liquid phase of iodine pentafluoride containing iodine. A method for producing iodine fluoride "is disclosed.
特許文献3に記載の五フッ化ヨウ素の製造方法は、液相の五フッ化ヨウ素に分散または溶解させたヨウ素に、フッ素ガスを含む気相を接触させてヨウ素とフッ素ガスを反応させることで五フッ化ヨウ素を製造する方法である。 In the method for producing iodine pentafluoride described in Patent Document 3, iodine dispersed and dissolved in liquid phase iodine pentafluoride is brought into contact with a gas phase containing fluorine gas to react iodine with fluorine gas. This is a method for producing iodine pentafluoride.
しかしながら、特許文献3に記載の液相の五フッ化ヨウ素に分散または溶解させたヨウ素に、フッ素ガスを含む気相を接触させてヨウ素とフッ素ガスを反応させることで五フッ化ヨウ素を製造する五フッ化ヨウ素の製造方法において、気相中のフッ素と、液相から気化したヨウ素または液相中のヨウ素とを接触させる限りにおいては、気相のフッ素ガスは液相の五フッ化ヨウ素に溶解し難く、フッ素ガスとヨウ素との反応が進み難いという懸念があった。 However, iodine pentafluoride is produced by bringing iodine dispersed in or dissolved in liquid-phase iodine pentafluoride described in Patent Document 3 into contact with a gas phase containing fluorine gas to react iodine with fluorine gas. In the method for producing iodine pentafluoride, as long as fluorine in the gas phase is contacted with iodine vaporized from the liquid phase or iodine in the liquid phase, fluorine gas in the gas phase becomes iodine pentafluoride in the liquid phase. There was a concern that it would be difficult to dissolve and the reaction between fluorine gas and iodine would be difficult to proceed.
即ち、本発明は、五フッ化ヨウ素を温和な反応により、局所反応および急な発熱を発生させることなく、五フッ化ヨウ素の生成速度が高い製造方法、言い換えれば、単位時間当たりの五フッ化ヨウ素の生成量が多い製造方法を提供することを目的とする。 That is, the present invention is a method for producing iodine pentafluoride with a high production rate of iodine pentafluoride by a mild reaction of iodine pentafluoride without causing a local reaction and sudden heat generation, in other words, per unit time of pentafluoride. It is an object to provide a production method that produces a large amount of iodine.
さらに、本発明は、得られた五フッ化ヨウ素から七フッ化ヨウ素を簡便に製造する七フッ化ヨウ素の製造方法を提供することを目的とする。 A further object of the present invention is to provide a method for producing iodine heptafluoride that easily produces iodine heptafluoride from the obtained iodine pentafluoride.
本発明者らが鋭意検討した結果、ヨウ素を含む液相の五フッ化ヨウ素を有する反応槽中の反応系に、七フッ化ヨウ素ガスを溶解または分散させて、ヨウ素と七フッ化ヨウ素を接触させ反応させることで五フッ化ヨウ素の生成速度が高い製造をすることが可能となることを見出し、本発明の五フッ化ヨウ素の製造方法を完成させるに至った。 As a result of diligent studies by the present inventors, the iodine heptafluoride gas was dissolved or dispersed in a reaction system having a liquid phase iodine pentafluoride containing iodine, and iodine was contacted with iodine heptafluoride. It was found that it is possible to produce iodine pentafluoride with a high production rate by carrying out the reaction, and has completed the method for producing iodine pentafluoride of the present invention.
ヨウ素(I2)と七フッ化ヨウ素(IF7)から五フッ化ヨウ素(IF5)を得る際の反応式は、以下の通りである。 The reaction formula for obtaining iodine pentafluoride (IF 5 ) from iodine (I 2 ) and iodine heptafluoride (IF 7 ) is as follows.
本発明者らは、フッ素ガスは液相の五フッ化ヨウ素に溶解し難いが、七フッ化ヨウ素ガスは液相の五フッ化ヨウ素に容易に溶解することに着目した。フッ素ガスは液相の五フッ化ヨウ素に難溶なので、液相の五フッ化ヨウ素中でのフッ素ガスとヨウ素との反応は、気液反応または気固反応であり、五フッ化ヨウ素の生成速度を高くすることが期待できない。しかしながら、七フッ化ヨウ素ガスは液相の五フッ化ヨウ素に易溶であり、液相の五フッ化ヨウ素中での七フッ化ヨウ素とヨウ素との反応は、気液反応、気固反応だけでなく、七フッ化ヨウ素とヨウ素との液固反応または液液反応で進行し、五フッ化ヨウ素の生成速度は高い。 The present inventors have noted that fluorine gas is difficult to dissolve in liquid-phase iodine pentafluoride, but iodine heptafluoride gas is easily dissolved in liquid-phase iodine pentafluoride. Since fluorine gas is poorly soluble in liquid phase iodine pentafluoride, the reaction between fluorine gas and iodine in liquid phase iodine pentafluoride is a gas-liquid reaction or a gas-solid reaction, and iodine pentafluoride is produced. You cannot expect to increase the speed. However, iodine heptafluoride gas is easily dissolved in liquid phase iodine pentafluoride, and the reaction between iodine heptafluoride and iodine in liquid phase iodine pentafluoride is only gas-liquid reaction or gas-solid reaction. Instead, it proceeds by a liquid-solid reaction or a liquid-liquid reaction between iodine heptafluoride and iodine, and the production rate of iodine pentafluoride is high.
本明細書の実施例1および比較例2に示すように、本発明に係る「ヨウ素を含む液相の五フッ化ヨウ素を有する反応槽に、七フッ化ヨウ素ガスを供給して、ヨウ素と七フッ化ヨウ素とを反応させる五フッ化ヨウ素の製造方法」では速やかに進行し五フッ化ヨウ素が得られたのに対し(実施例1)、従来の方法「ヨウ素を含む五フッ化ヨウ素の液相に隣接する気相にフッ素を供給し、ヨウ素とフッ素を反応させる五フッ化ヨウ素の製造方法」では進行し難かった(比較例2)。 As shown in Example 1 and Comparative Example 2 of the present specification, iodine heptafluoride gas is supplied to a reaction tank having “a liquid phase iodine pentafluoride containing iodine” according to the present invention to supply iodine and In the “method for producing iodine pentafluoride by reacting with iodine fluoride”, iodine pentafluoride was rapidly obtained (Example 1), whereas in the conventional method “iodine pentafluoride solution containing iodine”. It was difficult to proceed with the “method for producing iodine pentafluoride by supplying fluorine to the gas phase adjacent to the phase and reacting iodine with fluorine” (Comparative Example 2).
また、本発明者らは、得られた五フッ化ヨウ素から七フッ化ヨウ素を簡便に製造する七フッ化ヨウ素の製造方法を見出した。 Further, the present inventors have found a method for producing iodine heptafluoride by simply producing iodine heptafluoride from the obtained iodine pentafluoride.
即ち、本発明は、以下の発明1〜9を含む。
[発明1]
ヨウ素を含む液相の五フッ化ヨウ素を有する反応槽に、七フッ化ヨウ素を供給して、ヨウ素と七フッ化ヨウ素とを反応させて、五フッ化ヨウ素を製造する工程を含む、五フッ化ヨウ素の製造方法。
[発明2]
ヨウ素と七フッ化ヨウ素との反応中に、反応槽内を攪拌しつつ七フッ化ヨウ素を供給する、発明1の五フッ化ヨウ素の製造方法。
[発明3]
前記ヨウ素を含む液相の五フッ化ヨウ素は、溶解しているヨウ素を含む溶液状態、または液相中に固体のヨウ素が分散及び沈殿している状態である、発明1または発明2の五フッ化ヨウ素の製造方法。
[発明4]
前記ヨウ素を含む液相の五フッ化ヨウ素中に、ヨウ素と五フッ化ヨウ素の総量に対する含有率で表して、ヨウ素を0.01質量%以上、70質量%以下含む、発明1〜3の五フッ化ヨウ素の製造方法。
[発明5]
前記ヨウ素を含む液相の五フッ化ヨウ素中に、ヨウ素と五フッ化ヨウ素及び七フッ化ヨウ素との総量に対する含有率で表して、七フッ化ヨウ素が0.001質量%以上、91質量%以下含まれる、発明1〜4の五フッ化ヨウ素の製造方法。
[発明6]
発明1〜5の五フッ化ヨウ素の製造方法で、
ヨウ素と七フッ化ヨウ素を反応させて五フッ化ヨウ素を得る工程と、
得られた五フッ化ヨウ素にフッ素ガスを反応させて七フッ化ヨウ素を得る工程を含む、七フッ化ヨウ素の製造方法。
[発明7]
前記七フッ化ヨウ素を得る工程において、
金属フッ化物を含有する充填物を内部に有する反応器に、五フッ化ヨウ素ガスとフッ素ガスを供給して反応させる、発明6の七フッ化ヨウ素の製造方法。
[発明8]
前記金属フッ化物が、NiF2、FeF3、及びCoF2からなる群より選ばれる少なくとも1種類の化合物を含む、発明7の七フッ化ヨウ素の製造方法。
[発明9]
前記五フッ化ヨウ素ガスと前記フッ素ガスが反応する際の前記金属フッ化物の温度が、150℃以上、350℃以下である、発明7または発明8に記載の七フッ化ヨウ素の製造方法。
That is, the present invention includes the following inventions 1 to 9.
[Invention 1]
A step of supplying iodine pentaheptafluoride to a reaction tank having liquid phase iodine pentafluoride containing iodine, reacting iodine with iodine pentafluoride to produce iodine pentafluoride, Method for producing iodine fluoride.
[Invention 2]
The method for producing iodine pentafluoride according to Invention 1, wherein iodine heptafluoride is supplied while stirring the inside of the reaction tank during the reaction between iodine and iodine heptafluoride.
[Invention 3]
The liquid phase iodine pentafluoride containing iodine is in a solution state containing dissolved iodine or in a state where solid iodine is dispersed and precipitated in the liquid phase. Method for producing iodine fluoride.
[Invention 4]
In the iodine pentafluoride in the liquid phase containing iodine, the content of iodine and iodine pentafluoride is expressed by the content ratio with respect to the total amount of iodine and is 0.01% by mass or more and 70% by mass or less. A method for producing iodine fluoride.
[Invention 5]
In the iodine pentafluoride in the liquid phase containing iodine, the content of iodine, iodine pentafluoride and iodine heptafluoride is represented by 0.001 mass% or more, 91 mass% or more. A method for producing iodine pentafluoride according to Inventions 1 to 4, which is included below.
[Invention 6]
A method for producing iodine pentafluoride according to Inventions 1 to 5,
A step of reacting iodine with iodine heptafluoride to obtain iodine pentafluoride,
A method for producing iodine heptafluoride, comprising the step of reacting the obtained iodine pentafluoride with fluorine gas to obtain iodine heptafluoride.
[Invention 7]
In the step of obtaining iodine heptafluoride,
The method for producing iodine heptafluoride according to Invention 6, wherein iodine pentafluoride gas and fluorine gas are supplied to and reacted with a reactor having a filler containing a metal fluoride therein.
[Invention 8]
The method for producing iodine heptafluoride according to Invention 7, wherein the metal fluoride contains at least one compound selected from the group consisting of NiF 2 , FeF 3 , and CoF 2 .
[Invention 9]
9. The method for producing iodine heptafluoride according to Invention 7 or 8, wherein the temperature of the metal fluoride when the iodine pentafluoride gas and the fluorine gas react with each other is 150 ° C. or higher and 350 ° C. or lower.
本発明の五フッ化ヨウ素の製造方法によれば、五フッ化ヨウ素の生成速度を高くすることが可能であり、さらに当該製造方法で製造された五フッ化ヨウ素から七フッ化ヨウ素を簡便に製造することができる。 According to the method for producing iodine pentafluoride of the present invention, it is possible to increase the production rate of iodine pentafluoride, and moreover, easily produce iodine heptafluoride from the iodine pentafluoride produced by the production method. It can be manufactured.
1.五フッ化ヨウ素の製造方法
本発明は、ヨウ素を含む液相の五フッ化ヨウ素を有する反応槽に、七フッ化ヨウ素ガスを供給して、ヨウ素と七フッ化ヨウ素とを反応させて、五フッ化ヨウ素を製造する工程を含む、五フッ化ヨウ素の製造方法である。
1. The present invention relates to a method for producing iodine pentafluoride by supplying iodine heptafluoride gas to a reaction tank containing liquid iodine pentafluoride containing iodine to react iodine with iodine heptafluoride, A method for producing iodine pentafluoride, which comprises the step of producing iodine fluoride.
本発明の五フッ化ヨウ素の製造方法の実施形態の一例を、図1を用いて説明する。本発明は、以下に示す実施の形態に限定されるものではない。 An example of the embodiment of the method for producing iodine pentafluoride according to the present invention will be described with reference to FIG. The present invention is not limited to the embodiments described below.
尚、本発明において、液相とは物質が液体の状態である相を言い、気相とは物質が気体の状態にある相を言う。 In the present invention, the liquid phase means a phase in which the substance is in a liquid state, and the gas phase means a phase in which the substance is in a gas state.
[反応装置]
本発明の五フッ化ヨウ素の製造方法の実施形態に係る反応装置10を図1に示す。反応装置10は、反応槽11内にヨウ素12が沈殿、分散または溶解している液相(液状)の五フッ化ヨウ素13を有する。反応槽11内の液相15中に七フッ化ヨウ素を供給し、液相15中で七フッ化ヨウ素とヨウ素12を反応させて五フッ化ヨウ素を生成することができる。
[Reactor]
FIG. 1 shows a reactor 10 according to an embodiment of the method for producing iodine pentafluoride of the present invention. The reactor 10 has a liquid phase (liquid) iodine pentafluoride 13 in which iodine 12 is precipitated, dispersed or dissolved in a reaction tank 11. Iodine heptafluoride can be supplied into the liquid phase 15 in the reaction tank 11, and iodine heptafluoride and iodine 12 can be reacted in the liquid phase 15 to generate iodine pentafluoride.
その際、七フッ化ヨウ素は液相15中に供給してもよく、気相14中に供給してもよい。七フッ化ヨウ素を液相15中に供給した場合、七フッ化ヨウ素は気相14中にある割合で移動し、七フッ化ヨウ素を気相14に供給した場合、七フッ化ヨウ素は液相15中にある割合で移動する。七フッ化ヨウ素を、ヨウ素12を含む五フッ化ヨウ素である液相15中に吹き込む方が、七フッ化ヨウ素ガスを液相15中に速やかに溶解させることができ、七フッ化ヨウ素とヨウ素12の反応が効率よく進行し、五フッ化ヨウ素の生成速度を高めることができる。 At that time, iodine heptafluoride may be supplied into the liquid phase 15 or the gas phase 14. When iodine heptafluoride is supplied into the liquid phase 15, iodine heptafluoride moves at a certain rate in the gas phase 14, and when iodine heptafluoride is supplied to the gas phase 14, iodine heptafluoride is in the liquid phase. Move at a rate in 15. By blowing iodine heptafluoride into the liquid phase 15 that is iodine pentafluoride containing iodine 12, iodine heptafluoride gas can be dissolved more quickly in the liquid phase 15, and iodine heptafluoride and iodine The reaction of 12 efficiently proceeds, and the production rate of iodine pentafluoride can be increased.
七フッ化ヨウ素は、好ましくは反応槽11に付設された七フッ化ヨウ素供給源16から液相15中に供給される。五フッ化ヨウ素の蒸気圧は低いので、反応槽11の圧力制御を容易にするため並びにポンプ19の駆動圧力を確保するため、緩衝ガス(バッファー)として不活性ガスを、反応槽11に付設される不活性ガス供給源18から反応槽11中に、好ましくは気相14中に供給してもよい。不活性ガスとしては、ヨウ素、七フッ化ヨウ素、五フッ化ヨウ素に反応しないガス、例えば、窒素ガス、アルゴンガス、ヘリウムガスを挙げることができる。好ましくは、入手が容易な窒素ガスである。 The iodine heptafluoride is preferably supplied into the liquid phase 15 from an iodine heptafluoride supply source 16 attached to the reaction tank 11. Since the vapor pressure of iodine pentafluoride is low, an inert gas is attached to the reaction tank 11 as a buffer gas in order to facilitate the pressure control of the reaction tank 11 and to secure the driving pressure of the pump 19. It may be supplied from the inert gas supply source 18 into the reaction tank 11, preferably in the gas phase 14. Examples of the inert gas include gases that do not react with iodine, iodine heptafluoride, and iodine pentafluoride, such as nitrogen gas, argon gas, and helium gas. Nitrogen gas, which is easily available, is preferable.
ヨウ素12と七フッ化ヨウ素の反応中、反応槽11内の液相15は、ポンプ19または攪拌器20によって攪拌される。 During the reaction of iodine 12 and iodine heptafluoride, the liquid phase 15 in the reaction tank 11 is agitated by the pump 19 or the agitator 20.
[ヨウ素と七フッ化ヨウ素の反応]
ヨウ素と七フッ化ヨウ素の反応は、気相14中において、液相15中において、または気相14と液相15との界面において起こる。すなわち、液相15において、五フッ化ヨウ素13中に存在するヨウ素12は蒸気圧相当の気体となって気相14に移動し、気相14中に存在する七フッ化ヨウ素と反応する。また、気相14中に存在する七フッ化ヨウ素は、気相14から液相15に移動して、液相15中に存在するヨウ素12と反応する。また、気相14中に存在する七フッ化ヨウ素は、液相15において五フッ化ヨウ素13中に存在するヨウ素12と、気相14と液相15の界面で反応する。また、液相15中において七フッ化ヨウ素が、五フッ化ヨウ素13中に存在するヨウ素12と反応する。
[Reaction of iodine with iodine heptafluoride]
The reaction between iodine and iodine heptafluoride occurs in the gas phase 14, in the liquid phase 15, or at the interface between the gas phase 14 and the liquid phase 15. That is, in the liquid phase 15, the iodine 12 present in the iodine pentafluoride 13 becomes a gas corresponding to the vapor pressure, moves to the gas phase 14, and reacts with the iodine heptafluoride present in the gas phase 14. Further, iodine heptafluoride existing in the gas phase 14 moves from the gas phase 14 to the liquid phase 15 and reacts with the iodine 12 existing in the liquid phase 15. Further, iodine heptafluoride existing in the gas phase 14 reacts with iodine 12 existing in the iodine pentafluoride 13 in the liquid phase 15 at the interface between the gas phase 14 and the liquid phase 15. Further, in the liquid phase 15, iodine heptafluoride reacts with the iodine 12 present in the iodine pentafluoride 13.
反応槽11は、図示しない水冷装置により冷却されてもよい。ヨウ素と七フッ化ヨウ素の反応中に反応槽11中の液相15を温度10℃以上、95℃以下に保つことで、液相の状態を維持することが好ましい。液相15を10℃未満で維持した場合、五フッ化ヨウ素13が凝固する懸念があり、冷却に必要なエネルギー消費も大きくなる。一方で、液相15を95℃よりも高い温度で維持した場合、反応中に反応槽11内の圧力が高くなる上に、液相15において、五フッ化ヨウ素13に溶解している七フッ化ヨウ素の量が減少し、五フッ化ヨウ素の生成速度が低下するなどの問題が生じる虞がある。液相15の維持される温度は、好ましくは15℃以上、75℃以下であり、より好ましくは20℃以上、50℃以下である。 The reaction tank 11 may be cooled by a water cooling device (not shown). It is preferable to maintain the liquid phase state by maintaining the temperature of the liquid phase 15 in the reaction vessel 11 at a temperature of 10 ° C. or higher and 95 ° C. or lower during the reaction of iodine and iodine heptafluoride. If the liquid phase 15 is maintained below 10 ° C., there is a concern that the iodine pentafluoride 13 will solidify, and the energy consumption required for cooling will increase. On the other hand, when the liquid phase 15 is maintained at a temperature higher than 95 ° C., the pressure in the reaction tank 11 increases during the reaction and, in the liquid phase 15, the seven fluorines dissolved in the iodine pentafluoride 13 are added. There is a possibility that problems such as a decrease in the amount of iodine fluoride and a decrease in the production rate of iodine pentafluoride may occur. The temperature at which the liquid phase 15 is maintained is preferably 15 ° C or higher and 75 ° C or lower, and more preferably 20 ° C or higher and 50 ° C or lower.
反応中における反応槽11内の気相14の圧力は、好ましくは絶対圧で40kPa以上、133kPa以下であり、より好ましくは67kPa以上、101kPa以下である。反応槽11内の圧力が40kPa未満であると、五フッ化ヨウ素13に溶解する七フッ化ヨウ素の量が減少し、五フッ化ヨウ素の生成速度が低下する。反応槽11内の圧力が133kPaより高いと、反応槽11を圧力に耐える構造とする必要がある。圧力は、七フッ化ヨウ素ガス16の供給速度、反応槽11の冷却、不活性ガスの添加等によって調整することができる。七フッ化ヨウ素の供給速度は、反応装置の大きさおよび反応のスケールによるが、反応中において、反応槽11内の気相14の圧力が上記範囲内に収まることが好ましい。 The pressure of the gas phase 14 in the reaction tank 11 during the reaction is preferably 40 kPa or more and 133 kPa or less in absolute pressure, more preferably 67 kPa or more and 101 kPa or less. When the pressure in the reaction tank 11 is less than 40 kPa, the amount of iodine heptafluoride dissolved in the iodine pentafluoride 13 decreases, and the production rate of iodine pentafluoride decreases. When the pressure in the reaction tank 11 is higher than 133 kPa, the reaction tank 11 needs to be structured to withstand the pressure. The pressure can be adjusted by the supply rate of the iodine heptafluoride gas 16, cooling of the reaction tank 11, addition of an inert gas, and the like. Although the supply rate of iodine heptafluoride depends on the size of the reaction apparatus and the scale of the reaction, it is preferable that the pressure of the gas phase 14 in the reaction tank 11 be within the above range during the reaction.
[反応時のヨウ素および七フッ化ヨウ素の含有率]
ヨウ素12は、反応開始前に反応槽11内に仕込んでもよいし、反応開始時および反応中に間欠的または連続的にヨウ素供給源17から反応槽11中に供給してもよい。本発明の五フッ化ヨウ素の製造方法において、反応槽11中のヨウ素12の含有率は、反応槽11中のヨウ素と五フッ化ヨウ素の総量を100質量%とする含有率で表して、好ましくは0.01質量%以上、70質量%以下である。
[Content of iodine and iodine heptafluoride during reaction]
The iodine 12 may be charged into the reaction tank 11 before the reaction starts, or may be intermittently or continuously supplied from the iodine supply source 17 into the reaction tank 11 at the start of the reaction and during the reaction. In the method for producing iodine pentafluoride according to the present invention, the content of iodine 12 in the reaction tank 11 is preferably represented by the content rate in which the total amount of iodine and iodine pentafluoride in the reaction tank 11 is 100% by mass. Is 0.01% by mass or more and 70% by mass or less.
ヨウ素の含有率が0.01質量%より少ないと、生成する五フッ化ヨウ素の量が少ない。ヨウ素の含有率が70質量%より多いと、反応熱を除去できずに局所反応や反応暴走を引き起こす虞がある。なお、五フッ化ヨウ素の生産量を高めるため、ヨウ素12の濃度は高いほうが好ましく、より好ましくは、1質量%以上、60質量%以下である。 When the content of iodine is less than 0.01% by mass, the amount of iodine pentafluoride produced is small. If the content of iodine is more than 70% by mass, the reaction heat cannot be removed, which may cause local reaction or reaction runaway. In order to increase the production amount of iodine pentafluoride, the concentration of iodine 12 is preferably high, and more preferably 1 mass% or more and 60 mass% or less.
尚、温度圧力等の条件にもよるが、液相15において、液状の五フッ化ヨウ素13中にヨウ素12は約1質量%以上溶解することができない。五フッ化ヨウ素13中に溶解できないヨウ素12は固体の状態で液相15中に分散および沈殿することになる。 Although it depends on conditions such as temperature and pressure, in the liquid phase 15, iodine 12 cannot be dissolved in the liquid iodine pentafluoride 13 in an amount of about 1% by mass or more. Iodine 12 that cannot be dissolved in iodine pentafluoride 13 is dispersed and precipitated in liquid phase 15 in a solid state.
反応において、反応槽11の液相15中に七フッ化ヨウ素供給源16から七フッ化ヨウ素ガスを供給することが好ましい。気相14中に七フッ化ヨウ素を供給することによってもヨウ素12と七フッ化ヨウ素の反応は進み、五フッ化ヨウ素を製造することができる。しかしながら、ヨウ素12と七フッ化ヨウ素の反応効率を高め、五フッ化ヨウ素の生成速度が高い製造を行うためには、液相15中に七フッ化ヨウ素を供給することが好ましい。 In the reaction, it is preferable to supply iodine heptafluoride gas from the iodine heptafluoride supply source 16 into the liquid phase 15 of the reaction tank 11. By supplying iodine heptafluoride into the gas phase 14, the reaction between iodine 12 and iodine heptafluoride proceeds, and iodine pentafluoride can be produced. However, it is preferable to supply iodine heptafluoride into the liquid phase 15 in order to increase the reaction efficiency of iodine 12 and iodine heptafluoride and to perform production with a high production rate of iodine pentafluoride.
反応中、反応槽11中の液相15における七フッ化ヨウ素の含有率は、反応槽11中の五フッ化ヨウ素13と七フッ化ヨウ素の総量を100質量%とする含有率で表して、好ましくは0.001質量%以上、91質量%以下である。液相15中の七フッ化ヨウ素の含有率が0.001質量%より少ないと、生成する五フッ化ヨウ素の量が少なくなる。七フッ化ヨウ素の濃度が91質量%より多いと、反応槽11の温度と圧力が上昇し、局所反応や反応暴走を引き起こす虞がある。より好ましくは、七フッ化ヨウ素の含有率0.01質量%以上、64質量%以下である。 During the reaction, the content of iodine heptafluoride in the liquid phase 15 in the reaction tank 11 is represented by a content rate in which the total amount of iodine pentafluoride 13 and iodine heptafluoride in the reaction tank 11 is 100% by mass, Preferably it is 0.001 mass% or more and 91 mass% or less. When the content of iodine heptafluoride in the liquid phase 15 is less than 0.001% by mass, the amount of iodine pentafluoride produced is small. If the concentration of iodine heptafluoride is more than 91% by mass, the temperature and pressure of the reaction tank 11 may increase, which may cause local reaction or reaction runaway. More preferably, the content of iodine heptafluoride is 0.01% by mass or more and 64% by mass or less.
液相15中に供給する七フッ化ヨウ素ガスの純度は、好ましくは純度98質量%以上であり、より好ましくは純度99質量%以上である。七フッ化ヨウ素ガスの純度が低い場合、生成物である五フッ化ヨウ素の純度が低下する虞がある。 The purity of the iodine heptafluoride gas supplied into the liquid phase 15 is preferably 98% by mass or more and more preferably 99% by mass or more. When the purity of iodine heptafluoride gas is low, the purity of iodine pentafluoride as a product may be reduced.
[攪拌]
液相15中におけるヨウ素12と七フッ化ヨウ素を反応させ五フッ化ヨウ素を得る反応中、局所的に反応が進む不均一反応が生じたり、過度の反応熱が生じることを避けるため、液相15を攪拌することが好ましい。反応槽11内の液相15の攪拌方法としては、ポンプ19で液相15を循環させることによる攪拌、または回転翼を有する攪拌機20による攪拌を例示することができる。ポンプ19で液相15を攪拌する場合、ポンプ19の駆動圧力を確保するために、反応槽11内に所定圧力の不活性ガスを導入することが好ましい。例えば、不活性ガスは不活性ガス供給源18から供給される。不活性ガスとしては、ヨウ素、七フッ化ヨウ素、五フッ化ヨウ素に反応しないガス、例えば、窒素ガス、アルゴンガス、ヘリウムガスを挙げることができる。不活性ガスの純度としては、生成物である五フッ化ヨウ素の純度に影響を及ぼすため、高い純度が好ましく、純度99質量%以上が好ましい。好ましくは、入手が容易な窒素ガスである。
[Stirring]
During the reaction of reacting iodine 12 with iodine heptafluoride in the liquid phase 15 to obtain iodine pentafluoride, in order to avoid the occurrence of a heterogeneous reaction in which the reaction locally progresses or an excessive reaction heat is generated, It is preferable to stir 15. Examples of the method of stirring the liquid phase 15 in the reaction tank 11 include stirring by circulating the liquid phase 15 with a pump 19 or stirring with a stirrer 20 having a rotary blade. When the liquid phase 15 is agitated by the pump 19, it is preferable to introduce an inert gas having a predetermined pressure into the reaction tank 11 in order to secure the driving pressure of the pump 19. For example, the inert gas is supplied from the inert gas supply source 18. Examples of the inert gas include gases that do not react with iodine, iodine heptafluoride, and iodine pentafluoride, such as nitrogen gas, argon gas, and helium gas. As the purity of the inert gas, the purity of iodine pentafluoride, which is a product, is affected, and thus high purity is preferable, and purity of 99% by mass or more is preferable. Nitrogen gas, which is easily available, is preferable.
[ヨウ素と七フッ化ヨウ素の純度]
本発明の五フッ化ヨウ素の製造方法に使用するヨウ素および七フッ化ヨウ素の純度は、本発明を実施する上で特に制約されることはない。しかしながら、ヨウ素及び、七フッ化ヨウ素の純度は、生成する五フッ化ヨウ素の純度に影響する。例えば99質量%以上の五フッ化ヨウ素を得るためには、純度99質量%以上のヨウ素及び、七フッ化ヨウ素を用いることが好ましい。
[Purity of iodine and iodine heptafluoride]
The purity of iodine and iodine heptafluoride used in the method for producing iodine pentafluoride of the present invention is not particularly limited in carrying out the present invention. However, the purity of iodine and iodine heptafluoride affects the purity of iodine pentafluoride produced. For example, in order to obtain 99 mass% or more of iodine pentafluoride, it is preferable to use iodine having a purity of 99 mass% or more and iodine heptafluoride.
また、七フッ化ヨウ素供給源16から供給される七フッ化ヨウ素に不活性ガスが含まれる場合、不活性ガスは反応槽11における液相15をバブリングによって撹拌し、ヨウ素12と七フッ化ヨウ素を反応させて五フッ化ヨウ素を得る際の反応熱を除去する効果がある。しかしながら、反応槽11の圧力は不活性ガスの分圧の増加によって経時に従い増加するため、圧力調整弁を設置するなどして、圧力を制御する必要が生じる。 Further, when the iodine heptafluoride supplied from the iodine heptafluoride supply source 16 contains an inert gas, the inert gas stirs the liquid phase 15 in the reaction tank 11 by bubbling to obtain iodine 12 and iodine heptafluoride. Has the effect of removing the heat of reaction when the iodine is reacted to obtain iodine pentafluoride. However, since the pressure in the reaction tank 11 increases with time due to the increase in the partial pressure of the inert gas, it is necessary to control the pressure by installing a pressure adjusting valve or the like.
2.七フッ化ヨウ素の製造方法
本発明は、前記五フッ化ヨウ素の製造方法で、ヨウ素と七フッ化ヨウ素を反応させて五フッ化ヨウ素を得る工程と、得られた五フッ化ヨウ素にフッ素ガスを反応させて七フッ化ヨウ素を得る工程を含む、七フッ化ヨウ素の製造方法である。
2. Method for producing iodine heptafluoride The present invention relates to the method for producing iodine pentafluoride, wherein the step of reacting iodine with iodine heptafluoride to obtain iodine pentafluoride, and the obtained iodine pentafluoride with fluorine gas. Is a method for producing iodine heptafluoride, which comprises the step of reacting with to obtain iodine heptafluoride.
本発明の前記五フッ化ヨウ素の製造方法で得られた五フッ化ヨウ素に、フッ素ガスを反応させることで、七フッ化ヨウ素を製造することができる。 Iodine heptafluoride can be produced by reacting iodine pentafluoride obtained by the method for producing iodine pentafluoride of the present invention with fluorine gas.
五フッ化ヨウ素とフッ素ガスを反応させ七フッ化ヨウ素を得る方法の例としては、五フッ化ヨウ素の液にフッ素ガスを吹き込んで得られる五フッ化ヨウ素ガスと同伴するフッ素ガスを反応器に導入し、五フッ化ヨウ素とフッ素ガスを反応させ七フッ化ヨウ素を得る方法を挙げることができる。あるいは、五フッ化ヨウ素を加熱により気化して五フッ化ヨウ素ガスとし、反応器に供給する方法や、液相の五フッ化ヨウ素を反応器に直接供給する方法も考えられる。 As an example of a method of reacting iodine pentafluoride with fluorine gas to obtain iodine heptafluoride, fluorine gas entrained with iodine pentafluoride gas obtained by blowing fluorine gas into a liquid of iodine pentafluoride is added to a reactor. A method of introducing iodine pentafluoride and fluorine gas to obtain iodine heptafluoride can be mentioned. Alternatively, a method in which iodine pentafluoride is vaporized by heating to form iodine pentafluoride gas and supplied to the reactor, or a method in which liquid-phase iodine pentafluoride is directly supplied to the reactor may be considered.
五フッ化ヨウ素ガスとフッ素ガスを反応器に供給反応させて七フッ化ヨウ素を得る方法を採用した場合、その工程において金属フッ化物を含有する高温の充填物を内部に有する反応器に、五フッ化ヨウ素ガスとフッ素ガスを供給することが好ましい。充填物を使用することで、五フッ化ヨウ素を基準とした七フッ化ヨウ素の収率を高くすることができ、例えば、収率70%以上に向上させることができる。 When the method of supplying iodine pentafluoride gas and fluorine gas to the reactor to react them to obtain iodine heptafluoride is adopted, in the step, a reactor having a high temperature filler containing metal fluoride is used. It is preferable to supply iodine fluoride gas and fluorine gas. By using the filler, the yield of iodine heptafluoride based on iodine pentafluoride can be increased, and for example, the yield can be improved to 70% or more.
本発明の七フッ化ヨウ素の製造方法で使用される充填物に含有する金属フッ化物は、金属をフッ素化したものであればよく、特に限定されない。例えば、金属フッ化物として、NiF2、FeF3、CoF2、LiF、NaF、KF、CsF、MgF2またはCaF2を挙げることができ、これらの2種以上が混合されていてもよい。安価且つ収率向上の寄与が大きいことを考慮すると、遷移金属のフッ化物であるNiF2、FeF3、およびCoF2のいずれか1種類以上を含む充填物を用いることが好ましい。 The metal fluoride contained in the filler used in the method for producing iodine heptafluoride of the present invention is not particularly limited as long as it is a fluorinated metal. For example, the metal fluoride may be NiF 2 , FeF 3 , CoF 2 , LiF, NaF, KF, CsF, MgF 2 or CaF 2, and two or more of these may be mixed. Considering that it is inexpensive and contributes greatly to the improvement of yield, it is preferable to use a filler containing at least one of transition metal fluorides NiF 2 , FeF 3 , and CoF 2 .
使用する充填物の形状は、五フッ化ヨウ素ガスとフッ素ガスが効率よく接触し、且つ、流通させる際に、これらガスが閉塞しなければ特に限定されない。充填物は、例えば、メッシュ状の金属片をフッ素ガス、三フッ化塩素ガス、七フッ化ヨウ素等によりフッ素化することにより、金属表面に金属フッ化物が生成した形で得る、または粉体状の金属フッ化物をペレット形状に成型して得ることができる。 The shape of the filler to be used is not particularly limited as long as the iodine pentafluoride gas and the fluorine gas are in efficient contact with each other and the gas is not blocked during circulation. The filler is obtained, for example, by fluorinating a mesh-shaped metal piece with fluorine gas, chlorine trifluoride gas, iodine heptafluoride, or the like, in the form in which the metal fluoride is generated on the metal surface, or in the form of powder. It can be obtained by molding the metal fluoride of the above into a pellet shape.
五フッ化ヨウ素ガスとフッ素ガスを反応させ七フッ化ヨウ素を得る際の充填物の温度は、150℃以上、350℃以下が好ましい。充填物の温度が150℃未満では、五フッ化ヨウ素ガスとフッ素ガスから七フッ化ヨウ素を製造する際の生成速度が低下する虞があり、350℃を超えると、生成した七フッ化ヨウ素が五フッ化ヨウ素とフッ素に分解する逆反応が進行する虞がある。特に好ましい充填物の温度は、200℃以上330℃以下である。例えば、充填物を充填した状態で反応器を電気ヒータや蒸気などで加熱することにより、充填物を所望の温度にすることができる。 The temperature of the filler when the iodine pentafluoride gas and the fluorine gas are reacted to obtain iodine heptafluoride is preferably 150 ° C. or higher and 350 ° C. or lower. If the temperature of the filling is less than 150 ° C, the production rate at the time of producing iodine heptafluoride from the iodine pentafluoride gas and the fluorine gas may decrease, and if the temperature exceeds 350 ° C, the produced iodine heptafluoride may be reduced. The reverse reaction of decomposing iodine pentafluoride into fluorine may proceed. A particularly preferable temperature of the filler is 200 ° C or higher and 330 ° C or lower. For example, the reactor can be heated to a desired temperature by heating the reactor with an electric heater, steam or the like while the reactor is filled with the filler.
上記五フッ化ヨウ素とフッ素ガスを反応させ七フッ化ヨウ素を得る反応において、逆反応が顕著とならない反応温度であれば、反応器内の五フッ化ヨウ素ガスとフッ素ガスの滞在時間の増加とともに七フッ化ヨウ素の収率は増加する。七フッ化ヨウ素の生産性は滞在時間の増加により低下する虞があり、反応器内の五フッ化ヨウ素ガスとフッ素ガスの滞在時間は、七フッ化ヨウ素の所望の収率と生産性を考慮し、種々選択できる。七フッ化ヨウ素の生産性を考慮する場合、反応器中の五フッ化ヨウ素ガスとフッ素ガスの滞在時間は短い方が望まれる。例えば、F2/IF5のモル比が1以上で五フッ化ヨウ素ガスとフッ素ガスを反応させ七フッ化ヨウ素を得る場合、金属フッ化物の温度が200℃以上、330℃以下であり、少なくとも五フッ化ヨウ素ガスとフッ素ガスの滞在時間は4秒以上あれば、収率は80%以上得ることができる。 In the reaction of reacting iodine pentafluoride with fluorine gas to obtain iodine heptafluoride, if the reaction temperature is such that the reverse reaction is not significant, the iodine pentafluoride gas and the fluorine gas in the reactor will increase in time. The yield of iodine heptafluoride increases. The productivity of iodine heptafluoride may decrease due to the increase in residence time, and the residence time of iodine pentafluoride gas and fluorine gas in the reactor should be set considering the desired yield and productivity of iodine heptafluoride. However, various selections can be made. Considering the productivity of iodine heptafluoride, it is desirable that the residence time of iodine pentafluoride gas and fluorine gas in the reactor is short. For example, when iodine pentafluoride gas and fluorine gas are reacted at a F 2 / IF 5 molar ratio of 1 or more to obtain iodine heptafluoride, the temperature of the metal fluoride is 200 ° C. or higher and 330 ° C. or lower, and at least If the residence time of iodine pentafluoride gas and fluorine gas is 4 seconds or more, a yield of 80% or more can be obtained.
流通式反応器を用いて五フッ化ヨウ素ガスとフッ素ガスを反応させ七フッ化ヨウ素を得る場合の五フッ化ヨウ素ガスとフッ素ガスの導入時の流量比、または密閉式反応器を用いる場合の五フッ化ヨウ素ガスとフッ素ガスの混合比は、いずれも五フッ化ヨウ素とフッ素のモル比(F2/IF5)で1以上が好ましい。特に、モル比が1.3以上では、五フッ化ヨウ素ガスとフッ素ガスの滞在時間4秒以上で七フッ化ヨウ素の収率80%以上を得ることができるが、モル比(F2/IF5)を35以上とすると、七フッ化ヨウ素の収率の向上に対し、フッ素ガスの使用量増加による経済性の低下が顕著になるため好ましくない。またモル比(F2/IF5)が1未満では、未反応の五フッ化ヨウ素が増加するため七フッ化ヨウ素の収率が低下する虞がある。 Flow rate ratio when introducing iodine pentafluoride gas and fluorine gas when reacting iodine pentafluoride gas and fluorine gas using a flow reactor to obtain iodine heptafluoride, or when using a closed reactor The mixing ratio of iodine pentafluoride gas to fluorine gas is preferably 1 or more in terms of the molar ratio of iodine pentafluoride to fluorine (F 2 / IF 5 ). In particular, when the molar ratio is 1.3 or more, a yield of iodine heptafluoride of 80% or more can be obtained when the residence time of iodine pentafluoride gas and fluorine gas is 4 seconds or more, but the molar ratio (F 2 / IF When 5 ) is 35 or more, the yield of iodine heptafluoride is improved, but the economical efficiency is significantly reduced due to an increase in the amount of fluorine gas used, which is not preferable. When the molar ratio (F 2 / IF 5 ) is less than 1, the unreacted iodine pentafluoride increases and the yield of iodine heptafluoride may decrease.
五フッ化ヨウ素ガスとフッ素ガスから七フッ化ヨウ素を得る反応時の反応器内の圧力は、フッ素、五フッ化ヨウ素、七フッ化ヨウ素に毒性があるために、漏洩を防止するために大気圧以下が好ましく、経済性を考慮すると40kPa(絶対圧)以上が好ましい。 The pressure inside the reactor during the reaction to obtain iodine pentafluoride from iodine pentafluoride gas and fluorine gas is large in order to prevent leakage because fluorine, iodine pentafluoride and iodine heptafluoride are toxic. Atmospheric pressure is preferable, and in view of economy, 40 kPa (absolute pressure) or more is preferable.
以下に本発明の実施例を比較例とともに挙げるが、本発明は以下の実施例に制限されるものではない。 Examples of the present invention will be given below together with comparative examples, but the present invention is not limited to the following examples.
実施例1
図1に示す様に、槽内雰囲気を窒素置換した容積2.3Lのステンレス鋼製の反応槽11に、液状の五フッ化ヨウ素13、質量3036gを入れ、次いで固体ヨウ素12、質量3710gを加えた。仕込み時の液状の五フッ化ヨウ素13中のヨウ素12の濃度は、五フッ化ヨウ素13中と固体ヨウ素12を合わせた質量に対し約55質量%であった。液相15における固体ヨウ素12を含む五フッ化ヨウ素13の攪拌方法として、ポンプ19を駆動し液相15を循環させた。七フッ化ヨウ素供給源16から七フッ化ヨウ素ガスを0.6L/minの流量で液相15中に供給して七フッ化ヨウ素ガスと、五フッ化ヨウ素13内の固体ヨウ素12を反応させ、五フッ化ヨウ素を得た。反応中は、反応槽11内の圧力を93kPa(絶対圧)に保持した。また、反応中の反応槽11の内温を30〜60℃になるように冷却しつつ、60分間反応させた。実験開始前に仕込んだ以外の五フッ化ヨウ素の新規生成量は499gであった。
Example 1
As shown in FIG. 1, liquid iodine pentafluoride 13, mass 3036 g, was put into a stainless steel reaction tank 11 having a volume of 2.3 L in which the atmosphere in the tank was replaced with nitrogen, and then solid iodine 12, mass 3710 g was added. It was The concentration of iodine 12 in the liquid iodine pentafluoride 13 at the time of charging was about 55 mass% with respect to the total mass of the iodine pentafluoride 13 and the solid iodine 12. As a method of stirring the iodine pentafluoride 13 containing the solid iodine 12 in the liquid phase 15, the pump 19 was driven to circulate the liquid phase 15. Iodine heptafluoride gas is supplied from the iodine heptafluoride supply source 16 into the liquid phase 15 at a flow rate of 0.6 L / min to react the iodine heptafluoride gas with the solid iodine 12 in the iodine pentafluoride 13. , Iodine pentafluoride was obtained. During the reaction, the pressure in the reaction tank 11 was maintained at 93 kPa (absolute pressure). Further, the reaction was performed for 60 minutes while cooling the reaction vessel 11 during the reaction so that the internal temperature was 30 to 60 ° C. The amount of newly produced iodine pentafluoride other than that charged before the start of the experiment was 499 g.
実施例2
攪拌方法として、実施例1で行ったポンプ19で液相15を循環させる替わりに、回転翼を備えた攪拌器20を回転数100rpmで回転させ液相15を攪拌する以外は、実施例1と同様に七フッ化ヨウ素ガスと固体ヨウ素12を反応させた。実験開始前に仕込んだ以外の五フッ化ヨウ素の新規生成量は499gであった。
Example 2
As a stirring method, instead of circulating the liquid phase 15 by the pump 19 performed in the first embodiment, the liquid phase 15 is agitated by rotating the stirrer 20 equipped with a rotary blade at a rotation speed of 100 rpm, as in the first embodiment. Similarly, iodine heptafluoride gas and solid iodine 12 were reacted. The amount of newly produced iodine pentafluoride other than that charged before the start of the experiment was 499 g.
ポンプ、攪拌機、いずれの攪拌によっても、五フッ化ヨウ素中のヨウ素と七フッ化ヨウ素とを反応させることで、効率よく除熱でき、安全且つ安定に五フッ化ヨウ素を製造できた。 With any of a pump and a stirrer, by reacting iodine in iodine pentafluoride with iodine heptafluoride, it was possible to efficiently remove heat and safely and stably produce iodine pentafluoride.
比較例1
槽内雰囲気を窒素置換した容積2.3Lのステンレス鋼製の反応槽11に、固体ヨウ素12、質量3710gを仕込み、七フッ化ヨウ素供給源16から七フッ化ヨウ素ガスを0.6L/minで供給して固体ヨウ素12と直接反応させた。反応中の反応槽内の圧力は93kPa(絶対圧)に制御したが、七フッ化ヨウ素ガスの供給開始から5分経過後、反応槽11の七フッ化ヨウ素ガスの供給口付近に反応熱による温度上昇がみられ、七フッ化ヨウ素ガスの供給を停止し、反応を中断せざるを得なかった。
各実施例の製造条件と結果を表1に示す。
Comparative Example 1
Solid iodine 12 and mass 3710 g were charged into a stainless steel reaction tank 11 having a volume of 2.3 L in which the atmosphere in the tank was replaced with nitrogen, and iodine heptafluoride gas was supplied from an iodine heptafluoride supply source 16 at 0.6 L / min. It was fed and reacted directly with solid iodine 12. The pressure in the reaction tank during the reaction was controlled to 93 kPa (absolute pressure), but after 5 minutes from the start of the supply of iodine heptafluoride gas, the reaction heat was generated in the vicinity of the iodine heptafluoride gas supply port of the reaction tank 11. As the temperature increased, the supply of iodine heptafluoride gas was stopped and the reaction had to be interrupted.
Table 1 shows the production conditions and results of each example.
液体の5フッ化ヨウ素中で、七フッ化ヨウ素とヨウ素を反応させた実施例1〜2においては、液相15中への0.6L/minの七フッ化ヨウ素ガスの供給速度において、局所的な発熱を伴うことなく反応「5IF7+I2→7IF5」が速やかに進行し、1時間当たり499gの五フッ化ヨウ素が得られた。このように、本発明の五フッ化ヨウ素の製造方法により、五フッ化ヨウ素が単位時間当たりの収量多く、高速度で生産できることが、確認された。 In Examples 1 and 2 in which iodine heptafluoride and iodine were reacted in liquid iodine pentafluoride, at a feed rate of 0.6 L / min of iodine heptafluoride gas into the liquid phase 15, local The reaction “5IF 7 + I 2 → 7IF 5 ” progressed rapidly without a specific exotherm, and 499 g of iodine pentafluoride was obtained per hour. As described above, it was confirmed that the method for producing iodine pentafluoride according to the present invention can produce iodine pentafluoride in a high yield per unit time and at a high rate.
ところが、本発明の範疇にない、七フッ化ヨウ素と固定ヨウ素を直接反応させる比較例1においては、反応「5IF7+I2→7IF5」が局所的に起こる発熱を生じ、反応を中断させざるを得なかった。 However, in Comparative Example 1 in which iodine heptafluoride is directly reacted with fixed iodine, which does not fall within the scope of the present invention, the reaction “5IF 7 + I 2 → 7IF 5 ” locally generates heat and the reaction must be interrupted. Didn't get
比較例2
槽内雰囲気を窒素置換した容積2.3Lのステンレス製反応槽11に、液状の五フッ化ヨウ素13、質量3036gを入れ、固体ヨウ素12、質量3710gを加えた。仕込み時の五フッ化ヨウ素13と固体ヨウ素12を合わせた質量に対する固体ヨウ素12の濃度は、約55質量%であった。液相15を、回転翼を備えた攪拌器により回転数100rpmで攪拌した。
Comparative example 2
Liquid iodine pentafluoride (13, mass: 3036 g) was placed in a stainless steel reaction tank (11) having a volume of 2.3 L in which the atmosphere in the tank was replaced with nitrogen, and solid iodine (12) and mass (3710 g) were added. The concentration of solid iodine 12 with respect to the combined mass of iodine pentafluoride 13 and solid iodine 12 at the time of charging was about 55 mass%. The liquid phase 15 was stirred with a stirrer equipped with a rotary blade at a rotation speed of 100 rpm.
攪拌下、反応槽11の気相14に窒素ガスで70体積%に希釈したフッ素ガスを供給し、ヨウ素とフッ素ガスから五フッ化ヨウ素を得る反応を開始した。反応中の反応槽11内の圧力は圧力調整弁によって93kPa(絶対圧)に保たれた。また、反応中の反応槽11の温度は30〜60℃になるように冷却しつつ、60分間反応させた。 Under stirring, fluorine gas diluted to 70% by volume with nitrogen gas was supplied to the gas phase 14 of the reaction tank 11, and the reaction of obtaining iodine pentafluoride from iodine and fluorine gas was started. The pressure in the reaction tank 11 during the reaction was kept at 93 kPa (absolute pressure) by the pressure control valve. Further, the temperature of the reaction tank 11 during the reaction was cooled to 30 to 60 ° C., and the reaction was performed for 60 minutes.
圧力調整弁から排出されるフッ素ガスの濃度は、分光光度計UV−Vis(株式会社日立ハイテクサイエンス製、型番U2810)を用いた紫外・可視・近赤外分光法による分光分析の結果、約70体積%で推移し、フッ素ガスはほぼ消費されず、ヨウ素とフッ素ガスから五フッ化ヨウ素を得る反応は進行しなかった。実験開始前に仕込んだ以外の五フッ化ヨウ素の新規生成量は僅かに0.0025gであった。 The concentration of the fluorine gas discharged from the pressure regulating valve was about 70 as a result of the spectroscopic analysis by UV / visible / near infrared spectroscopy using a spectrophotometer UV-Vis (manufactured by Hitachi High-Tech Science Co., Ltd., model U2810). It remained in volume%, the fluorine gas was hardly consumed, and the reaction of obtaining iodine pentafluoride from iodine and fluorine gas did not proceed. The amount of newly produced iodine pentafluoride other than that charged before the start of the experiment was only 0.0025 g.
実施例3
実施例1で得られた五フッ化ヨウ素を用いて、七フッ化ヨウ素を合成した。具体的な製造手順は以下のとおりである。
Example 3
Using the iodine pentafluoride obtained in Example 1, iodine heptafluoride was synthesized. The specific manufacturing procedure is as follows.
金属フッ化物としてのフッ化ニッケル(NiF2)(純度99%、Apollo Sc
ientific Limited製)を加圧成型によりペレット状(大きさ、4mm×4mm×2mm)にした。反応器として用いる、電気ヒータおよび圧力計を備えたニッケル製の光輝焼鈍管(内径22.1mm、長さ0.3m)にペレット状のフッ化ニッケル48g(0.5モル)を充填した。電気ヒータにより光輝焼鈍管を加熱することにより充填物である前記ペレットの温度を270℃とした。この温度で、フッ素(F2)と五フッ化ヨウ素(IF5)の混合ガス(モル比(F2/IF5)=30.3(F2濃度96.8体積%、IF5濃度3.20体積%))を光輝焼鈍管の両端の一方(入口)から導入し、他方(出口)から排出させた。
Nickel fluoride (NiF 2 ) as a metal fluoride (purity 99%, Apollo Sc
Authentic Limited) was pressed into pellets (size: 4 mm × 4 mm × 2 mm). A bright annealing tube made of nickel (inner diameter 22.1 mm, length 0.3 m) equipped with an electric heater and a pressure gauge, which was used as a reactor, was filled with pelletized nickel fluoride (48 g, 0.5 mol). By heating the bright annealing tube with an electric heater, the temperature of the pellets as a filling material was set to 270 ° C. At this temperature, a mixed gas of fluorine (F 2 ) and iodine pentafluoride (IF 5 ) (molar ratio (F 2 / IF 5 ) = 30.3 (F 2 concentration 96.8% by volume, IF 5 concentration 3. 20% by volume)) was introduced from one side (inlet) of both ends of the bright annealing tube and discharged from the other side (outlet).
この際、光輝焼鈍管内の圧力を66.7kPa(絶対圧)とし、混合ガスの流量を1730cm3/min(滞在時間4秒)で1時間流通させた。また、混合ガスの流通時に、反応器出口からのガスを冷却捕集器に導入した。冷却捕集器の冷媒として液体アルゴン(温度:−186℃)を用いて七フッ化ヨウ素と五フッ化ヨウ素を冷却捕集した。混合ガスの流通完了後、冷却捕集器内の捕集物の質量測定およびフーリエ変換赤外分光光度計(FT−IR)(株式会社島津製作所製、品名、Prestige21)による七フッ化ヨウ素と五フッ化ヨウ素の組成を分析した。質量測定および組成分析結果に基づき、五フッ化ヨウ素IF5の供給量を基準とした七フッ化ヨウ素の理論捕集量に対する収率を算出したところ、五フッ化ヨウ素を基準とした七フッ化ヨウ素の収率は99.8%だった。 At this time, the pressure in the bright annealing tube was set to 66.7 kPa (absolute pressure), and the flow rate of the mixed gas was set to flow at 1730 cm 3 / min (residence time 4 seconds) for 1 hour. Further, the gas from the reactor outlet was introduced into the cooling collector during the flow of the mixed gas. Iodine heptafluoride and iodine pentafluoride were cooled and collected by using liquid argon (temperature: -186 ° C) as a refrigerant of the cooling collector. After the completion of the flow of the mixed gas, the mass of the collected matter in the cooling collector and the Fourier transform infrared spectrophotometer (FT-IR) (manufactured by Shimadzu Corporation, product name, Prestige 21) were used to measure iodine and pentafluoride. The composition of iodine fluoride was analyzed. Based on the results of mass measurement and composition analysis, the yield relative to the theoretical amount of iodine pentafluoride based on the amount of iodine pentafluoride IF 5 supplied was calculated. The iodine yield was 99.8%.
10 反応装置
11 反応槽(冷却器で冷却している)
12 固体ヨウ素
13 五フッ化ヨウ素(ヨウ素が溶解している)
14 気相
15 液相(五フッ化ヨウ素)
16 七フッ化ヨウ素の供給源
17 ヨウ素供給源
18 不活性ガスの供給源
19 ポンプ
20 攪拌器
10 reactor 11 reaction tank (cooled by a cooler)
12 Solid iodine 13 Iodine pentafluoride (Iodine is dissolved)
14 Gas phase 15 Liquid phase (iodine pentafluoride)
16 Source of iodine heptafluoride 17 Source of iodine 18 Source of inert gas 19 Pump 20 Stirrer
Claims (9)
ヨウ素と七フッ化ヨウ素を反応させて五フッ化ヨウ素を得る工程と、
得られた五フッ化ヨウ素にフッ素ガスを反応させて七フッ化ヨウ素を得る工程を含む、七フッ化ヨウ素の製造方法。 The method for producing iodine pentafluoride according to any one of claims 1 to 5,
A step of reacting iodine with iodine heptafluoride to obtain iodine pentafluoride,
A method for producing iodine heptafluoride, comprising the step of reacting the obtained iodine pentafluoride with fluorine gas to obtain iodine heptafluoride.
金属フッ化物を含有する充填物を内部に有する反応器に、五フッ化ヨウ素ガスとフッ素ガスを供給して反応させる、請求項6に記載の七フッ化ヨウ素の製造方法。 In the step of obtaining iodine heptafluoride,
The method for producing iodine heptafluoride according to claim 6, wherein iodine pentafluoride gas and fluorine gas are supplied and reacted in a reactor having a filler containing a metal fluoride therein.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177035930A KR102014907B1 (en) | 2015-07-23 | 2016-04-21 | How to prepare fluoride iodine |
PCT/JP2016/062607 WO2017013916A1 (en) | 2015-07-23 | 2016-04-21 | Method for producing iodine pentafluoride |
CN201680037046.8A CN107709229B (en) | 2015-07-23 | 2016-04-21 | Process for producing iodine pentafluoride |
TW108117971A TWI695813B (en) | 2015-07-23 | 2016-06-15 | Manufacturing method of iodine pentafluoride |
TW105118823A TWI683790B (en) | 2015-07-23 | 2016-06-15 | Manufacturing method of iodine heptafluoride |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145678 | 2015-07-23 | ||
JP2015145678 | 2015-07-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017024971A JP2017024971A (en) | 2017-02-02 |
JP6687843B2 true JP6687843B2 (en) | 2020-04-28 |
Family
ID=57949448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016076936A Active JP6687843B2 (en) | 2015-07-23 | 2016-04-07 | Method for producing iodine pentafluoride |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6687843B2 (en) |
KR (1) | KR102014907B1 (en) |
CN (1) | CN107709229B (en) |
TW (2) | TWI683790B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240099887A (en) | 2022-12-22 | 2024-07-01 | (주)원익머트리얼즈 | Manufacturing method of iodine pentafluoride (IF5) and apparatus therefor |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108966A (en) | 1977-10-26 | 1978-08-22 | Air Products & Chemicals, Inc. | Preparation of iodine pentafluoride by direct fluorination of molten iodine |
JPS58145602A (en) | 1982-02-22 | 1983-08-30 | Kanto Denka Kogyo Kk | Preparation of iodine pentafluoride |
CN1241984A (en) * | 1996-12-19 | 2000-01-19 | 英国核燃料公众有限公司 | Derive and method for the storage transportation and production of active fluorine |
US8057779B2 (en) | 2006-10-20 | 2011-11-15 | Daikin Industries, Ltd. | Process for production of iodine pentafluoride |
JP2008100881A (en) * | 2006-10-20 | 2008-05-01 | Daikin Ind Ltd | Method of manufacturing iodine pentafluoride |
JP4693823B2 (en) * | 2007-06-18 | 2011-06-01 | セントラル硝子株式会社 | Production method of iodine heptafluoride |
US20100239485A1 (en) * | 2007-12-27 | 2010-09-23 | Central Glass Co., Ltd. | Method of manufacturing fluorinated gas compounds and apparatus for manufacturing the same |
CN101214927B (en) * | 2008-01-17 | 2010-12-22 | 核工业理化工程研究院华核新技术开发公司 | Method for preparing iodine pentafluoride |
WO2009151723A1 (en) * | 2008-03-26 | 2009-12-17 | Matheson Tri-Gas | Purification of fluorine containing gases |
JP5470844B2 (en) * | 2008-12-26 | 2014-04-16 | ダイキン工業株式会社 | Method for producing iodine pentafluoride |
CN101920937B (en) * | 2010-08-23 | 2012-01-04 | 福建省邵武市永飞化工有限公司 | Preparation method and reaction equipment of iodine pentafluoride |
JP2013203571A (en) * | 2012-03-28 | 2013-10-07 | Central Glass Co Ltd | Method and apparatus for producing fluorine gas |
JP6201496B2 (en) * | 2013-08-02 | 2017-09-27 | セントラル硝子株式会社 | IF7-derived iodine fluoride compound recovery method and recovery device |
CN103754826B (en) * | 2013-12-17 | 2016-02-10 | 福建省邵武市永晶化工有限公司 | A kind of iodine pentafluoride production unit and production method |
-
2016
- 2016-04-07 JP JP2016076936A patent/JP6687843B2/en active Active
- 2016-04-21 KR KR1020177035930A patent/KR102014907B1/en active IP Right Grant
- 2016-04-21 CN CN201680037046.8A patent/CN107709229B/en active Active
- 2016-06-15 TW TW105118823A patent/TWI683790B/en active
- 2016-06-15 TW TW108117971A patent/TWI695813B/en active
Also Published As
Publication number | Publication date |
---|---|
CN107709229A (en) | 2018-02-16 |
TW201708098A (en) | 2017-03-01 |
KR102014907B1 (en) | 2019-08-27 |
KR20180006439A (en) | 2018-01-17 |
TWI683790B (en) | 2020-02-01 |
CN107709229B (en) | 2020-06-23 |
TW201934475A (en) | 2019-09-01 |
JP2017024971A (en) | 2017-02-02 |
TWI695813B (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229281B2 (en) | Method for producing iodine pentafluoride | |
CN108250176A (en) | A kind of quick continuous flow synthesis technology of fluorinated ethylene carbonate | |
JP4693823B2 (en) | Production method of iodine heptafluoride | |
TWI635043B (en) | Production process of aqueous sodium hypochlorite solution | |
JP3727797B2 (en) | Method for producing nitrogen trifluoride | |
JP5341425B2 (en) | Method for producing fluoride gas | |
JP6687843B2 (en) | Method for producing iodine pentafluoride | |
JP5470844B2 (en) | Method for producing iodine pentafluoride | |
JP6467955B2 (en) | Method for producing iodine pentafluoride | |
WO2018113628A1 (en) | Rapid continuous-flow synthesis process for fluoroethylene carbonate. | |
WO2017013916A1 (en) | Method for producing iodine pentafluoride | |
JP2004203739A (en) | Reactor for producing nitrogen fluoride | |
TWI510435B (en) | Production of hydrogen chloride | |
CN104703954A (en) | Method for producing difluoromethane | |
CN112533873A (en) | Method for producing tungsten hexafluoride | |
US7413722B2 (en) | Method and apparatus for manufacturing nitrogen trifluoride | |
KR101248216B1 (en) | Method for producing oxygen-containing halogenated fluoride | |
JP2008081443A (en) | Manufacturing method of dialkylaminoalkyl (meth)acrylate quaternary salt and manufacturing apparatus therefor | |
JP6372340B2 (en) | Method for producing iodine heptafluoride | |
TW200815318A (en) | Method for production of dialkylaminoalkyl (meth)acrylate quaternary salt | |
JP5439748B2 (en) | Method for producing oxygen-containing halogenated fluoride | |
JP5678762B2 (en) | Method for purifying difluoroacetic acid chloride | |
JP4122277B2 (en) | Method for producing nitrogen trifluoride | |
JP2017197390A (en) | Production method of bromine pentafluoride | |
RU2178384C1 (en) | Method of nitrogen fluoride synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190122 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6687843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |