JPH01261207A - Method for purifying nitrogen trifluoride gas - Google Patents

Method for purifying nitrogen trifluoride gas

Info

Publication number
JPH01261207A
JPH01261207A JP63087209A JP8720988A JPH01261207A JP H01261207 A JPH01261207 A JP H01261207A JP 63087209 A JP63087209 A JP 63087209A JP 8720988 A JP8720988 A JP 8720988A JP H01261207 A JPH01261207 A JP H01261207A
Authority
JP
Japan
Prior art keywords
gas
fluoride
cylindrical container
nitrogen trifluoride
solid fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63087209A
Other languages
Japanese (ja)
Other versions
JPH0474283B2 (en
Inventor
Isao Harada
功 原田
Hisashi Hokonohara
鉾之原 久
Toshiaki Yamaguchi
俊明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63087209A priority Critical patent/JPH01261207A/en
Priority to EP89106050A priority patent/EP0337294B1/en
Priority to CA000595889A priority patent/CA1318108C/en
Priority to DE89106050T priority patent/DE68907366T2/en
Priority to US07/334,529 priority patent/US4948571A/en
Priority to KR1019890004776A priority patent/KR910004831B1/en
Publication of JPH01261207A publication Critical patent/JPH01261207A/en
Publication of JPH0474283B2 publication Critical patent/JPH0474283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To efficiently, safely and economically remove dinitrogen difluoride which is an impurity contained in nitrogen trifluoride gas, by heating the nitrogen trifluoride gas in a metallic vessel having the inner wall lined with a solid fluoride at a specific temperature. CONSTITUTION:Nitrogen trifluoride gas containing dinitrogen difluoride as at least an impurity is heated at 150-600 deg.C temperature in a metallic vessel having the inner wall lined with a solid fluoride. The above-mentioned vessel is preferably a cylindrical shape. The afore-mentioned solid fluoride preferably has >600 deg.C melting point and, e.g., fluorides (e.g., LiF or NaF) of group IA metals, fluorides (e.g., BeF2 or MgF2) of group IIA metals and fluorides (e.g., AlF3 or GaF3) of group IIIA metals of the periodic table, are cited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三弗化窒素ガスの精製方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for purifying nitrogen trifluoride gas.

更に詳しくは、三弗化窒素ガス中の特に二弗化二窒素の
除去方法に関する。
More specifically, the present invention relates to a method for removing dinitrogen difluoride from nitrogen trifluoride gas.

〔従来技術及び発明が解決しようとする課題〕三弗化窒
素(Nh)ガスは、半導体のドライエツチング剤やCV
D装置のクリーニングガスとして近年注目されているが
、これらの用途に使用される三弗化窒素ガスは、可及的
高純度のものが要求されている。
[Prior art and problems to be solved by the invention] Nitrogen trifluoride (Nh) gas is used as a dry etching agent for semiconductors and CV
Nitrogen trifluoride gas, which has recently attracted attention as a cleaning gas for D equipment, is required to be as pure as possible for use in these applications.

三弗化窒素(NF、)ガスは、種々の方法で製造される
が何れの方法で得られたガスも殆どの場合、亜酸化窒素
(N、0) 、二酸化炭素(COz) 、二弗化二窒素
(N2Fz)などの不純物を比較的多量に含んでいるの
で、上記用途としての高純度のNF3ガスを得るために
は精製が必要である。
Nitrogen trifluoride (NF) gas is produced by various methods, but in most cases, the gas obtained by any of the methods is nitrous oxide (N,0), carbon dioxide (COz), or difluoride. Since it contains a relatively large amount of impurities such as dinitrogen (N2Fz), purification is required to obtain high-purity NF3 gas for the above-mentioned use.

NF3ガス中のこれらの不純物を除去する49M方法と
しては、ゼオライトなどの吸着剤を用いて不純物を吸着
除去する方法が、最も効率がよく簡便な方法の一つとし
てよく知られている〔ケミカル・エンジュアング(Ch
em、 Eng、) 84.116. (1977)等
〕、シかしながら、この吸着による精製方法では、NF
ユガス中にN、F、が存在すると次のような弊害が生じ
る。すなわち、 1)NzFzが存在すると、他の不純物であるco2や
N、Oなどの吸着能力が極端に小さくなる。
As a 49M method for removing these impurities from NF3 gas, the method of adsorbing and removing impurities using an adsorbent such as zeolite is well known as one of the most efficient and simple methods [Chemical Enjuang (Ch
em, Eng,) 84.116. (1977), etc.], however, in this adsorption purification method, NF
The presence of N and F in Yugas causes the following adverse effects. That is, 1) If NzFz exists, the ability to adsorb other impurities such as co2, N, and O becomes extremely small.

2)NzF2が存在すると、NF3も吸着剤に吸着され
易くなり、従ってNF3ガスの損失を招く。
2) The presence of NzF2 also makes it easier for NF3 to be adsorbed by the adsorbent, thus causing loss of NF3 gas.

3)吸着剤に吸着し濃縮されたN2F2は、分解して熱
を発し易く、著しい場合には爆発を引き起こす。
3) N2F2 that has been adsorbed and concentrated on the adsorbent is likely to decompose and generate heat, causing an explosion in severe cases.

従って、ゼオライト等の吸着剤を使用してNF。Therefore, NF using adsorbents such as zeolites.

ガス中の不純物を吸着除去する方法を採用する場合には
、それに先立って予めNthを除去しておく必要がある
When employing a method of adsorbing and removing impurities in the gas, it is necessary to remove Nth in advance.

NF3カス中のN2Fzの除去方法としては、Kl、旧
、Na2S、、NazSzOa、Na25O,等の水ン
容、′夜とNJzとを反応槽において反応させて除去す
る方法が従来知られている(J、Massonne+ 
ケミ−・インジェニュール・テヒニーク(CheIIl
、 Ing、 Techn、) 41. (12)、 
695. (1969) )。しかしながら、この方法
ではN2F2を完全に除去するためには比較的長時間を
要するので、従って反応槽がかなり大きくなるだけで:
よなく大量の薬剤も必要とする。
As a method for removing N2Fz from NF3 residue, a method is conventionally known in which Kl, old, Na2S, NazSzOa, Na25O, etc. are reacted with NJz in a reaction tank. J, Massone+
Chemie Ingénuelle Technique (CheIIl)
, Ing, Techn, ) 41. (12),
695. (1969)). However, this method requires a relatively long time to completely remove N2F2 and therefore only requires a considerably larger reactor:
It also requires large amounts of drugs.

また、N2ト2を除去する別の方法として、N、F2を
含有するNF、ガスを、加熱したステンレススチール、
カーボンスチール、銅、アルミニュム、亜鉛、鉛、ニッ
ケル、鉄等の金属片やネットを反応容器内に充填して触
媒充填層を形成し、NF、ガスを該充IJtFiを通気
せしめて接触させ、該金属片やネットを触媒として、そ
の金属片やネット表面で反応分解せしめる方法も知られ
ている(特公昭59−15081号公報)。しかしなが
ら、この方法は、我々の検討によると、金属片とNzF
zが反応して金属片のやネットの表面に金属弗化物を形
成し易い。そして、この生成した金属弗化物は多くの場
合、金属片の表面から剥離して粉化し、充填層内部や精
製装置の配管等を閉塞するという問題がある。
Another method for removing N2 is to use NF gas containing N and F2 on heated stainless steel,
Fill a reaction vessel with metal pieces or nets such as carbon steel, copper, aluminum, zinc, lead, nickel, iron, etc. to form a catalyst packed layer, and bring NF and gas into contact with the charged IJtFi by aerating them. A method is also known in which a metal piece or net is used as a catalyst to cause reaction and decomposition on the surface of the metal piece or net (Japanese Patent Publication No. 15081/1981). However, according to our study, this method is difficult to use when metal pieces and NzF
z tends to react and form metal fluoride on the surface of the metal piece or net. In many cases, the generated metal fluoride peels off from the surface of the metal piece and becomes powder, causing a problem of clogging the inside of the packed bed and the piping of the refining device.

しかして、我々の検討によると、金属片にニッケルを使
用した場合は、ニッケル片はその表面に弗化物の皮膜を
形成するのみであり、該皮膜は比較的剥離し難いので、
配管の閉塞と云う上記問題は一応防止できるが、表面を
弗化物で覆われたニッケル片はもはHtFzと反応せず
、当然のことながら触媒としての活性は失われるので、
定期的に操作をストップして新しいニッケル片と取り替
え、触媒層を充填しなおす必要があり、極めて煩雑であ
るのみならず、ニッケルが高値であることと相まって相
当のコストアップを招くという問題がある。
However, according to our study, when nickel is used as a metal piece, the nickel piece only forms a fluoride film on its surface, and this film is relatively difficult to peel off.
Although the above-mentioned problem of pipe blockage can be prevented for the time being, the nickel piece whose surface is covered with fluoride no longer reacts with HtFz and naturally loses its activity as a catalyst.
It is necessary to periodically stop the operation, replace it with a new nickel piece, and refill the catalyst layer, which is not only extremely complicated, but also causes a considerable cost increase due to the high price of nickel. .

更には、N、F、の除去効率を上げるために、該金属片
の充填層の加熱温度を上昇させると、200 ℃以上の
温度においては主成分であるNFffも該金属片とかな
り反応して分解が起こり、その分NF、の収率が低下す
るという問題もあるのである。
Furthermore, in order to increase the removal efficiency of N and F, when the heating temperature of the packed bed of metal pieces is increased, NFff, which is the main component, also reacts considerably with the metal pieces at temperatures of 200 °C or higher. There is also the problem that decomposition occurs and the yield of NF decreases accordingly.

(問題を解決する為の手段) 本発明者等はNF、ガス中に含まれるN、F2の除去方
法について鋭意検討を重ねた結果、意外なことに、NJ
zを含むNF、ガスを特定の温度に加熱するのみで、N
2F2が窒素(Nりガスと弗素(F2)ガスに効率よく
分解するという知見を得た。また上記加熱を特定の容器
内で行なえば、200″C以上の温度に加熱しても主成
分であるNFsが分解することがないので好都合であっ
て、これにより効率よく安全にしかも経済的にNF、ガ
ス中のNZFKを除去することができる知見をも併せて
得た。本発明は、かかる我々が見出した新規な知見に基
づいてなされるに到ったものである。
(Means for solving the problem) The inventors of the present invention have conducted intensive studies on methods for removing NF, N and F2 contained in gas, and have surprisingly found that NJ
NF containing z, just by heating the gas to a specific temperature, N
We have obtained the knowledge that 2F2 is efficiently decomposed into nitrogen (N gas) and fluorine (F2) gas.Also, if the above heating is carried out in a specific container, even if heated to a temperature of 200"C or higher, the main component will not remain. We have also obtained the knowledge that certain NFs do not decompose, which is advantageous, and that this allows us to efficiently, safely, and economically remove NF and NZFK from gas. This study was made based on new findings discovered by the authors.

即ち、本発明は少な(とも不純物として二弗化二窒素を
含有する三弗化窒素ガスを、内壁を固体弗化物でライニ
ングされた金属製の容器、好ましくは円筒容器中で15
0°C〜600°Cの温度に加熱することを特徴とする
三弗化窒素ガスのI#製方法である。
That is, the present invention allows nitrogen trifluoride gas containing dinitrogen difluoride as an impurity to be mixed in a metal container, preferably a cylindrical container, whose inner wall is lined with a solid fluoride.
This is a method for producing I# using nitrogen trifluoride gas, which is characterized by heating to a temperature of 0°C to 600°C.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、本発明で使用する容器等の設備について説明する
に、NF、ガスは高圧ガス取締法の適用を受ける。従っ
て、その製造設備は高圧ガス製造設備でなければならず
、製造設備は一般的に外部を金属製とする必要がある。
First, to explain the equipment such as containers used in the present invention, NF and gas are subject to the High Pressure Gas Control Law. Therefore, the manufacturing equipment must be a high-pressure gas manufacturing equipment, and the outside of the manufacturing equipment generally needs to be made of metal.

以上の理由により、本発明で使用する容器好ましくは円
筒容器は材質が鉄、ステンレス等の金属製でなければな
らない。
For the above reasons, the container used in the present invention, preferably a cylindrical container, must be made of metal such as iron or stainless steel.

なお、以下の説明において、容器形状としてはもっとも
製作が容易な円筒容器に代表させて説明するが、これは
第1請求項の記載からも明らかなごとく、特許法第70
条で規定する本発明の技術的範囲から円筒容器以外の、
例えば角形、箱形、円錐形、二重管等の容器形状を排除
する趣旨ではないことは、明確に理解されるべきである
In the following explanation, a cylindrical container, which is the easiest to manufacture, will be used as a representative container shape, but as is clear from the description of the first claim, this is based on Patent Law No. 70.
Other than cylindrical containers within the technical scope of the present invention as defined in Article 1.
It should be clearly understood that this is not intended to exclude container shapes such as square, box, conical, double tube, etc.

本発明において使用する該金属製の円筒容器(以下、単
に円筒容器と記す)は、好ましくはNF3ガスの入口管
と出口管を備えており、内壁を固体弗化物でライニング
された容器であることが望ましい。
The metal cylindrical container used in the present invention (hereinafter simply referred to as cylindrical container) is preferably equipped with an inlet pipe and an outlet pipe for NF3 gas, and whose inner wall is lined with solid fluoride. is desirable.

本発明ではNhガスは上記の円筒容器内で最高600°
C程度まで加熱されるので、その内壁をライニングする
固体弗化物は融点が600°Cを越えるものであること
が好ましい。このような固体弗化物を例示すると、弗化
リチウム(TiF) 、弗化ナトリウム(NaF) 、
フン化カリウム(KF)、弗化ルビジウム(RbF) 
、弗化セシウム(CsF)等の周期律表IA届の金属弗
化物;弗化ベリリウム(BeFz)、弗化マグネシウム
(MgFz)、弗化カルシウム(CaF、)、弗化スト
ロンチウム(Srh)、弗化バリウム(BaF z)等
のnA属の金属弗化物;弗化アルミニウム(AffiF
t)、弗化ガリウム(Gaps)、弗化インシジウム(
InF3)等のnlA属の金属弗化物;弗化アルミニウ
ムナトリウム(Na、A e F、)の如き復温が挙げ
られる。またこれらの混合物でも差支えない。
In the present invention, Nh gas is heated at a maximum of 600° in the above cylindrical container.
Since the solid fluoride lining the inner wall is heated to about 600°C, it is preferable that the melting point exceeds 600°C. Examples of such solid fluorides include lithium fluoride (TiF), sodium fluoride (NaF),
Potassium fluoride (KF), rubidium fluoride (RbF)
, metal fluorides listed in Periodic Table IA such as cesium fluoride (CsF); beryllium fluoride (BeFz), magnesium fluoride (MgFz), calcium fluoride (CaF), strontium fluoride (Srh), and fluoride. Metal fluorides of the nA group such as barium (BaF z); aluminum fluoride (AffiF
t), gallium fluoride (Gaps), insidium fluoride (
Examples include metal fluorides of the nlA group such as InF3); reheating materials such as sodium aluminum fluoride (Na, A e F, ). A mixture of these may also be used.

向、上記以外の例えば融点が600°C以下の固体弗化
物であっても、350°C程度以上の融点のものであれ
ばその融点未満の温度で本発明を差支えな〈実施し得る
ことは云うまでもない。
For example, even if a solid fluoride other than those mentioned above has a melting point of 600°C or less, as long as it has a melting point of about 350°C or more, the present invention can be carried out at a temperature below that melting point. Needless to say.

本発明においては、Nhを加熱する上記容器の形状は必
ずしも円筒形である必要はないが、容器そのものの制作
及び固体弗化物のライニング加工が容易である点と、該
ライニング層の強度、使用中におけるライニング層への
亀裂の発生の防止などの面で円筒形であることが好まし
い。ライニング層の厚みは特に限定はないが、あまり薄
いとライニング加工が技術的に困難であり、また、円筒
容器の内壁に完全にライニングされず一部円筒容器の金
属面が露出する惧れがある。逆に厚くなり過ぎると、本
発明では円筒容器の加熱を該円筒容器の外部からヒータ
ー等で加熱する方法で行うので、該加熱の際の伝熱効率
が低下し、熱エネルギーの損失となるので好ましくなく
、従ってライニング層の厚みは1〜5 mm程度で実施
される。
In the present invention, the shape of the container for heating Nh does not necessarily have to be cylindrical, but it is easy to manufacture the container itself and process the lining with solid fluoride, and the strength of the lining layer is maintained during use. A cylindrical shape is preferable in order to prevent cracks from forming in the lining layer. There is no particular limit to the thickness of the lining layer, but if it is too thin, it will be technically difficult to process the lining, and there is also a risk that the inner wall of the cylindrical container will not be completely lined and a portion of the metal surface of the cylindrical container will be exposed. . On the other hand, if it becomes too thick, the cylindrical container is heated by a heater or the like from outside the cylindrical container in the present invention, so the heat transfer efficiency during heating will decrease and thermal energy will be lost, so it is preferable. Therefore, the thickness of the lining layer is approximately 1 to 5 mm.

円筒容器の内壁に固体弗化物をライニングする方法とし
ては、前記に例示した固体弗化物の内、比較的融点の低
い、例えばIA属の元素の弗化物を使用する場合には、
焼結法を採用することができる。
As a method for lining the inner wall of a cylindrical container with a solid fluoride, when using a fluoride of an element of group IA, which has a relatively low melting point among the solid fluorides exemplified above, for example,
A sintering method can be adopted.

即ち、第1図に示す如く、円筒容器lの内径よりやや小
さい外径の内筒3を、円筒容器1内に同芯になるように
挿入する。次に、上記円筒容器1と内筒3の間隙に粉状
の固体弗化物4を充填した後、圧入管5に荷重を加えて
固体弗化物4を圧縮成形する。この固体弗化物4の充填
及び圧縮成形を繰り返し行い、円筒容器1の内壁全面に
固体弗化物4の圧縮成形層を形成する。しかる後内筒1
をゆっくりと引き抜き、この円筒容器1を窒素(N2)
、ヘリウム(He)等の不活性ガス雰囲気下で徐々に固
体弗化物4の軟化点まで昇温したのち徐冷することによ
り、容易に円筒容器1の内壁に固体弗化物4をライニン
グすることができる。
That is, as shown in FIG. 1, an inner tube 3 having an outer diameter slightly smaller than the inner diameter of the cylindrical container 1 is inserted into the cylindrical container 1 so as to be concentric. Next, after filling the gap between the cylindrical container 1 and the inner tube 3 with powdered solid fluoride 4, a load is applied to the press-fit tube 5 to compress and mold the solid fluoride 4. This filling and compression molding of the solid fluoride 4 is repeated to form a compression molded layer of the solid fluoride 4 on the entire inner wall of the cylindrical container 1. After that, inner cylinder 1
Slowly pull out the cylindrical container 1 and fill it with nitrogen (N2).
The inner wall of the cylindrical container 1 can be easily lined with the solid fluoride 4 by gradually raising the temperature to the softening point of the solid fluoride 4 under an inert gas atmosphere such as helium (He), and then slowly cooling it. can.

この場合、固体弗化物は水分を2〜3重量%含有させて
おくと、上記の圧縮成形がより容易であるので好ましい
。このことは後記する高圧プレス法によるライニングの
場合も同様である。
In this case, it is preferable that the solid fluoride contains 2 to 3% by weight of water, since the above-mentioned compression molding is easier. This also applies to the case of lining by the high-pressure press method described later.

尚、円筒容器3には予めその表面に潤滑剤を塗布してお
くと、円筒容器1の表面に固体弗化物4の圧縮成形層形
成後の、内筒3の引き抜きが容易であるので好ましい。
Incidentally, it is preferable to apply a lubricant to the surface of the cylindrical container 3 in advance, since this makes it easier to pull out the inner cylinder 3 after the compression-molded layer of the solid fluoride 4 is formed on the surface of the cylindrical container 1.

融点が比較的高い固体弗化物を円筒容器の内壁にライニ
ングする場合には、高圧プレス法が適当である。即ち、
焼結法の場合と同様に、第1図に示す円筒容器lと内筒
3の間隙に固体弗化物4を充填した後、圧入管5に荷重
を加えて固体弗化物4の圧縮成形を繰り返すことにより
、円筒容器1内の内壁全面に固体弗化物4のライニング
層を形成した後、内筒3をゆっくり引き抜くことにより
実施することができる。
When lining the inner wall of a cylindrical container with a solid fluoride having a relatively high melting point, a high-pressure press method is suitable. That is,
As in the case of the sintering method, after filling the gap between the cylindrical container l and the inner tube 3 shown in FIG. 1 with the solid fluoride 4, a load is applied to the press-fit tube 5 and compression molding of the solid fluoride 4 is repeated. This can be carried out by forming a lining layer of the solid fluoride 4 on the entire inner wall of the cylindrical container 1 and then slowly pulling out the inner cylinder 3.

尚、この場合強固なライニング層を形成するためには、
上記の圧縮成形時の荷重は2t/c+a以上が好ましい
。また、内筒3には焼結法の場合と同様に、予めその表
面に潤滑剤を塗布しておけば、円筒容器1の内面に固体
弗化物のライニング層形成後における内筒3の引抜きが
容易であるので望ましい。ただしこの場合、潤滑剤は固
体弗化物のライニング層形成後に、加熱等により蒸発除
去する必要がある。
In this case, in order to form a strong lining layer,
The load during compression molding is preferably 2t/c+a or more. Furthermore, as in the case of the sintering method, if a lubricant is applied to the surface of the inner cylinder 3 in advance, the inner cylinder 3 can be easily pulled out after the solid fluoride lining layer is formed on the inner surface of the cylindrical container 1. This is desirable because it is easy. However, in this case, the lubricant must be removed by evaporation by heating or the like after the solid fluoride lining layer is formed.

更に本発明においては、円筒容器の内壁へ固体弗化物を
ライニングする方法として、上記方法の他に、第1図の
円筒容器lと内筒3の間隙に溶融した固体弗化物を流入
した後、冷却固化させるなどの方法を採用することもで
きる。
Furthermore, in the present invention, as a method for lining the inner wall of a cylindrical container with a solid fluoride, in addition to the above method, after flowing a molten solid fluoride into the gap between the cylindrical container 1 and the inner tube 3 in FIG. It is also possible to employ methods such as cooling and solidifying.

本発明においては、精製すべきNF3ガスを、斯くして
内面を固体弗化物でライニングされた円筒容器中で加熱
し分解する。該NF3の加熱は、上記の如き内面を固体
弗化物でライニングされた円筒容器を予め準備し、これ
を加熱した状態としておき、N、F、を含有するNF、
ガスを該円筒容器に通気する方法が好ましい。該円筒容
器の加熱は、該円筒容器の外部をヒーター等で加熱する
方法で簡単に実施することができる。
In the present invention, the NF3 gas to be purified is thus heated and decomposed in a cylindrical container whose inner surface is lined with solid fluoride. The NF3 is heated by preparing in advance a cylindrical container whose inner surface is lined with a solid fluoride as described above, keeping it in a heated state, and heating the NF3 containing N, F,
Preferred is a method in which gas is vented into the cylindrical container. Heating of the cylindrical container can be easily carried out by heating the outside of the cylindrical container with a heater or the like.

本発明ではN2F2を含むNF、ガスの加熱温度は、1
50〜600°C1好ましくは250〜350°Cで実
施される。通気温度が150°C未満ではN2F2を殆
ど分解除去できない。逆に600″Cを越える温度では
N、F。
In the present invention, the heating temperature of NF and gas containing N2F2 is 1
It is carried out at 50-600°C, preferably 250-350°C. If the ventilation temperature is less than 150°C, almost no N2F2 can be decomposed and removed. Conversely, at temperatures exceeding 600″C, N and F are used.

はほぼ完全に除去できるものの、円筒容器のライニング
層が熱膨張率の差によって亀裂が生ずる惧れがあるので
不都合である。また熱エネルギーの損失にもつながる。
Although it can be almost completely removed, it is disadvantageous because the lining layer of the cylindrical container may crack due to the difference in coefficient of thermal expansion. It also leads to loss of thermal energy.

尚、上記加熱温度において、NzFzの分解速度は非常
に速いので通気させるNF。
Note that at the above heating temperature, the decomposition rate of NzFz is very fast, so NF is ventilated.

ガスの容器内での滞留時間(反応器容積とガス体積速度
の比)は短(てかまわないが、通常、5〜1000秒程
度の範囲で実施される。
The residence time of the gas in the container (the ratio of the reactor volume to the gas volume velocity) may be short, but it is usually carried out within a range of about 5 to 1000 seconds.

本発明では、上記円筒容器に通気するNF、ガスは、単
独で供給してもかまわないが、Nz、 He等の不活性
ガス等で希釈したものでも差支えない。また、通気ガス
の圧力については特に制限はないが、通常、O〜5 k
g/cm”−Gの圧力が操作し易いので好ましい。
In the present invention, the NF and gas to be vented into the cylindrical container may be supplied alone, but may also be diluted with an inert gas such as Nz or He. There are no particular restrictions on the pressure of the ventilation gas, but it is usually between O and 5k.
A pressure of g/cm''-G is preferred because it is easy to operate.

〔発明の効果] 本発明は以上詳細に説明した如<、NF、ガス中のN2
Fzを除去する方法として、内壁を固体弗化物でライニ
ングされた円筒容器中でNF、ガスを特定の温度に加熱
するという非常に簡単な方法であるので、極めて経済的
な方法である。また後記する実施例が示す如< 、N2
F、の除去率が優れているので、本発明の方法で精製し
たNF3ガスを従来公知の精製方法、例えば前記ゼオラ
イトなどの吸着剤を使用して再度精製すれば、参考例1
が示す如く、半導体ドライエツチング削の原料等として
好適な高純度のNF、ガスを容易に得ることができると
いう、顕著な作用効果を奏するのである。更に、本発明
の方法はNF3の損失も殆どなく高収率にてNF、ガス
が得られ、かつ安全な方法でもある。
[Effects of the Invention] As described in detail above, the present invention
The method for removing Fz is a very simple method of heating NF and gas to a specific temperature in a cylindrical container whose inner wall is lined with solid fluoride, so it is an extremely economical method. In addition, as shown in the examples to be described later, N2
Since the removal rate of F is excellent, if the NF3 gas purified by the method of the present invention is repurified using a conventionally known purification method, for example, using an adsorbent such as the above-mentioned zeolite, Reference Example 1 can be obtained.
As shown in the figure above, it has a remarkable effect in that it is possible to easily obtain high-purity NF and gas suitable as raw materials for semiconductor dry etching. Furthermore, the method of the present invention allows NF and gas to be obtained in high yield with almost no loss of NF3, and is also a safe method.

(実施例) 以下、実施例により本発明を更に具体的に説明する。尚
、実施例、比較例及び参考例中の%及びppmは特記し
ない躍り容量基準を表す。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that % and ppm in Examples, Comparative Examples, and Reference Examples represent jump capacity standards unless otherwise specified.

実施例1〜3 内径10mm、長さ300mmのステンレス製の円筒容
器(カラム)1に、第1図に示すように表面に潤滑剤と
してステアリン酸を塗布した外径が5mm。
Examples 1 to 3 A stainless steel cylindrical container (column) 1 with an inner diameter of 10 mm and a length of 300 mm was coated with stearic acid as a lubricant on the surface as shown in FIG. 1, and the outer diameter was 5 mm.

長さ400mmの内筒3をカラム1と同君に挿入した後
、該カラム1と咳内筒3の間隙に水分含有量が3重量%
の弗化リチウム粉末に弗化セシウム粉末を5重量%添加
混合した粉末4を少しずつ充填した後、上記間隙に外径
9.6mm内径6.5mmの圧入管5を挿入し、この圧
入管5にIt/c艷の荷重を加えて混合粉末4を圧縮成
形した。この混合粉末4の挿入、圧縮成形の操作を繰り
返し行いカラム1の内壁全面に混合粉末4の圧縮成形体
を形成し、しかる後内筒3をゆっくり抜き出した。
After inserting the inner tube 3 with a length of 400 mm into the column 1, the water content is 3% by weight in the gap between the column 1 and the inner tube 3.
After gradually filling powder 4, which is a mixture of 5% by weight of cesium fluoride powder into lithium fluoride powder, a press-fit tube 5 with an outer diameter of 9.6 mm and an inner diameter of 6.5 mm is inserted into the above-mentioned gap. The mixed powder 4 was compression molded by applying a load of It/c. The operations of inserting the mixed powder 4 and compression molding were repeated to form a compression molded body of the mixed powder 4 on the entire inner wall of the column 1, and then the inner tube 3 was slowly pulled out.

次に、このカラム1をN2ガス雰囲気下の電気炉内にて
200°C/hの昇温速度で850°Cまで昇温し、8
50°Cの温度に1時間保持した後電気炉内で自然放冷
により常温まで冷却して、厚さ21の固体弗化物層で内
壁を全面にライニングされたカラム1を得た。
Next, this column 1 was heated to 850°C at a heating rate of 200°C/h in an electric furnace under a N2 gas atmosphere.
After being maintained at a temperature of 50°C for 1 hour, it was cooled down to room temperature by natural cooling in an electric furnace to obtain a column 1 whose inner wall was entirely lined with a solid fluoride layer having a thickness of 21 cm.

このカラム1に第1表に示す条件で、NzFzを含有す
るNF、ガスをほぼ同容積のHeガスで希釈して通気し
た。通気後のガスは濃度1%のヨウ化カリウム(K[)
水溶液中にバブリングさせた後、液体窒素で冷却された
捕集ポンへに導きNF*を液化させ捕集した。NF、ガ
スの通気停止後は上記のNF3の捕集ポンへ内を真空排
気しIleHeガス去した。
NF gas containing NzFz was diluted with approximately the same volume of He gas and then aerated into this column 1 under the conditions shown in Table 1. The gas after ventilation is potassium iodide (K[) with a concentration of 1%.
After bubbling into the aqueous solution, it was introduced into a collection pump cooled with liquid nitrogen to liquefy and collect the NF*. After stopping the ventilation of NF and gas, the inside was evacuated to the above-mentioned NF3 collection pump to remove IleHe gas.

通気前のNF、ガスの組成及び通気後の捕集ポンベ内の
NF、の組成を、ガスクロマトグラフィーにより分析し
た。その結果は第1表に示す通りNJ2は高い除去率で
あった。またNhの消失も殆どなかった。
The composition of NF and gas before ventilation and the composition of NF in the collection pump after ventilation were analyzed by gas chromatography. As shown in Table 1, NJ2 had a high removal rate. In addition, there was almost no disappearance of Nh.

尚、第1表においてN2ガスの含有量が通気後の方が多
いことは、加熱によりN2F2がN2とF2に分解した
ものと考えられる。
The fact that the N2 gas content is higher after ventilation in Table 1 is considered to be because N2F2 was decomposed into N2 and F2 due to heating.

また、実施例3において NF3ガス通気後のカラム1
のライニング面の状態を観察したが、亀裂や破損等の異
状は認められなかった。
In addition, in Example 3, column 1 after NF3 gas ventilation
The condition of the lining surface was observed, and no abnormalities such as cracks or damage were observed.

実施例4〜6 実施例1〜3で使用したと同一の内径10mm、長さ3
00mmのステンレス製カラム1及び外径6I、長さ4
00開の内筒3を使用して、実施例1〜3と同様に第1
図に示すカラムlと表面に潤滑剤としてステアリン酸を
塗布した内筒3の間隙に、水分第  1  表 含有量が3重量%の第2表に示す種類の固体弗化物4の
粉末を少しずつ充填した後、上記間隙に外径9.8mm
 、内径6.2mmの圧入管5に2t/c+flの荷重
を加えて、固体弗化物4の粉末を圧縮した。この固体弗
化物4の粉末の充填・圧縮を繰り返し行い、カラム1の
内壁全面に固体弗化物粉末のライニング層を形成し、し
かる後内筒3をゆっくり抜き出した。
Examples 4-6 Same inner diameter 10 mm and length 3 as used in Examples 1-3
00mm stainless steel column 1 and outer diameter 6I, length 4
Using the 00-open inner cylinder 3, the first
Into the gap between the column 1 shown in the figure and the inner cylinder 3 whose surface is coated with stearic acid as a lubricant, a powder of solid fluoride 4 of the type shown in Table 2 with a moisture content of 3% by weight in Table 1 is added little by little. After filling, fill the above gap with an outer diameter of 9.8 mm.
A load of 2 t/c+fl was applied to the press-fit tube 5 having an inner diameter of 6.2 mm to compress the powder of the solid fluoride 4. This solid fluoride powder 4 was repeatedly filled and compressed to form a lining layer of solid fluoride powder on the entire inner wall of the column 1, and then the inner cylinder 3 was slowly extracted.

次に、このカラム1をN2ガス雰囲気の電気炉内にて2
00°C/hの昇温速度で300°Cまで昇温しで、3
00°Cの温度に1時間保持し上記ステアリン酸を7発
除去した後電気炉内で自然放冷により常温まで冷却して
、厚さ2mmの固体弗化物で内壁を全面にライニングさ
れたカラム1を得た。
Next, this column 1 was placed in an electric furnace in a N2 gas atmosphere for 2 hours.
By raising the temperature to 300°C at a heating rate of 00°C/h,
After holding the stearic acid at a temperature of 00°C for 1 hour to remove the stearic acid 7 times, the column 1 was cooled to room temperature by natural cooling in an electric furnace, and the inner wall was lined entirely with solid fluoride with a thickness of 2 mm. I got it.

か(して得られたカラム1に第2表に示す条件でN2F
2を含有するNFSガスを、実施例1〜3と同様にほぼ
同容積のHeガスで希釈して通気した0通気後のガスは
実施例1〜3と同様に濃度1%のKl水?8液中にバブ
リングさせた後、液体窒素で冷却された捕集ボンベに導
きNF3を液化・捕集した。
Column 1 obtained by
The NFS gas containing 2 was diluted with almost the same volume of He gas as in Examples 1 to 3, and the gas after aeration was 1% Kl water as in Examples 1 to 3. After bubbling into the liquid, the NF3 was introduced into a collection cylinder cooled with liquid nitrogen to liquefy and collect the NF3.

第  2  表 NF、ガスの通気停止後は上記のNF3の捕集ボンベ内
を真空排気しtleHeガス去した。
Table 2 After stopping the gas ventilation, the inside of the NF3 collection cylinder was evacuated to remove the tleHe gas.

通気前のNF、ガスの組成及び通気後のtili集ボン
ベ内のNF3の組成を、ガスクロマトグラフィーにより
分析した。その結果は第2表に示す通りNzFzは高い
除去率であった。またNF、の消失も殆どなかった。
The composition of NF and gas before ventilation and the composition of NF3 in the tili collection cylinder after ventilation were analyzed by gas chromatography. As shown in Table 2, the results showed that NzFz had a high removal rate. Furthermore, there was almost no disappearance of NF.

尚、第2表においてもN2ガスの含有量が通気後の方が
多いことは加熱により82F、がN2とF2に分解した
ものと考えられる。
In addition, in Table 2, the content of N2 gas is higher after ventilation, which is considered to be because 82F was decomposed into N2 and F2 by heating.

また、NF3ガス通気後のカラム1のライニング面の状
態を観察したが、何れも亀裂や破損等の異状は認められ
なかった。
Furthermore, the condition of the lining surface of the column 1 after the NF3 gas ventilation was observed, but no abnormality such as cracks or damage was observed.

比較例1〜3 第3表に示す材質の円筒容器(カラム)(寸法は内径6
m111、長さ300v++ )の内壁を固体弗化物で
ライニングすることなくそのまま使用し、このカラムに
第3表に示す条件で、N2hを含有するNF3ガスを実
施例1〜3と同様にほぼ同容積のHeガスで希釈して通
気した。通気後のガスは実施例1〜3と同様に濃度1%
に+水溶液中にバブリングさせた後、実施例1〜3と同
様にして液体窒素で冷却した捕集ポンへに導きNF3を
液化させ捕集した。
Comparative Examples 1 to 3 Cylindrical containers (columns) made of the materials shown in Table 3 (dimensions are inner diameter 6
m111, length 300v++) was used as it was without lining with solid fluoride, and approximately the same volume of NF3 gas containing N2h was added to this column under the conditions shown in Table 3 as in Examples 1 to 3. The mixture was diluted with He gas and vented. The gas after ventilation has a concentration of 1% as in Examples 1 to 3.
After bubbling into the aqueous solution, the NF3 was introduced into a collection pump cooled with liquid nitrogen to liquefy and collect the NF3 in the same manner as in Examples 1 to 3.

NF、ガスの通気停止後は上記NF、の捕集ボンベ内を
真空排気しHeガスを除去した。
After stopping the ventilation of the NF gas, the inside of the NF collection cylinder was evacuated to remove the He gas.

通気前のNF、ガスの組成及び通気後の捕集ボンベ内の
NF3の組成を、ガスクロマトグラフィーにより分析し
た。その結果は第3表に示す通りであり、82F2は除
去されるもののNF、もその収率が悪くなることが分か
る。
The composition of NF and gas before ventilation and the composition of NF3 in the collection cylinder after ventilation were analyzed by gas chromatography. The results are shown in Table 3, and it can be seen that although 82F2 is removed, the yield of NF is also poor.

参考例1 内110mm、長さ300mmのステンレス製のカラム
に、市販のゼオライト(細孔径5人)(24〜48メツ
シユの粒状品)を充填(充填層250mm) L、た後
、このゼオライト層に実施例3で得たN2F2を除去し
たNF、ガスを通気した0通気条件としては温度は常温
(約20”C) 、NF3ガスの流N 2ONrnl/
min、 、通気圧カフ60Torrであった。
Reference Example 1 A stainless steel column with an inner diameter of 110 mm and a length of 300 mm was filled with commercially available zeolite (pore size: 5) (granular product of 24 to 48 mesh) (packed bed: 250 mm). The NF obtained in Example 3 from which N2F2 was removed, the gas was aerated, the temperature was room temperature (approximately 20"C), and the NF3 gas flow was N2ONrnl/
The insufflation pressure was 60 Torr.

通気後のNF3ガスの組成をガスクロクロマトグラフィ
ーにより分析した。その結果は不純物の合筆  3  
表 有量はNJz 20ppm以下、NzO20ppm以下
、CCo220pp以下と微量であり、本発明の方法に
より予めNtF!を除去したNF3ガスを従来公知の吸
着剤で精製すれば、N20やCow等のN、F2以外の
不純物が極めて高い除去率で除去された高純度のNF、
が得られることが理解されるのである。
The composition of the NF3 gas after ventilation was analyzed by gas chromatography. The result is a combination of impurities 3
The surface amount is very small, less than 20 ppm of NJz, less than 20 ppm of NzO, and less than 220 ppm of CCo, and NtF! If the NF3 gas from which the
It is understood that this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において円筒容器(カラム)の内壁に
、固体弗化物をライニングする状態を示す説明図である
。 図において、 1・−・・−・・・・−金属製の円筒容器(カラム)、
2−・・−−−−−−N F 3ガス出口管、3・・−
・−・・・内筒、 4−−−−・・・・固体弗化物、 5−一−−−−・・・−圧入管、 6−・・−一一一一一補助円筒管、 7−−−−・・一定盤、 を示す。
FIG. 1 is an explanatory diagram showing a state in which the inner wall of a cylindrical container (column) is lined with solid fluoride in an example. In the figure, 1.--.-- Metal cylindrical container (column),
2-...------N F 3 Gas outlet pipe, 3...-
---Inner tube, 4------Solid fluoride, 5-1--Press-fit tube, 6---11111 auxiliary cylindrical tube, 7 −−−−・Indicates a fixed board.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも不純物として二弗化二窒素を含有する
三弗化窒素ガスを、内壁を固体弗化物でライニングされ
た金属製の容器中で150〜600℃の温度に加熱する
ことを特徴とする三弗化窒素ガスの精製方法。
(1) Nitrogen trifluoride gas containing at least dinitrogen difluoride as an impurity is heated to a temperature of 150 to 600°C in a metal container whose inner wall is lined with solid fluoride. A method for purifying nitrogen trifluoride gas.
(2)金属製の容器が円筒容器である請求項1記載の方
法。
(2) The method according to claim 1, wherein the metal container is a cylindrical container.
JP63087209A 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas Granted JPH01261207A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63087209A JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas
EP89106050A EP0337294B1 (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
CA000595889A CA1318108C (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
DE89106050T DE68907366T2 (en) 1988-04-11 1989-04-06 Process for refining nitrogen trifluoride gas.
US07/334,529 US4948571A (en) 1988-04-11 1989-04-07 Process for purifying nitrogen trifluoride gas
KR1019890004776A KR910004831B1 (en) 1988-04-11 1989-04-11 Method for purifying nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087209A JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH01261207A true JPH01261207A (en) 1989-10-18
JPH0474283B2 JPH0474283B2 (en) 1992-11-25

Family

ID=13908556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087209A Granted JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JPH01261207A (en)

Also Published As

Publication number Publication date
JPH0474283B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
KR940007091B1 (en) Process for purifying nitrogen trifluoride gas
EP0366078B1 (en) Method for Purifying nitrogen trifluoride gas
KR910004831B1 (en) Method for purifying nitrogen trifluoride gas
JPS6260128B2 (en)
JP2008505750A (en) Purification method of nitrogen trifluoride gas using zeolite ion exchanged with alkaline earth metal
JPH02188414A (en) Method for purifying gaseous nitrogen trifluoride
JPS59107910A (en) Method for purifying gaseous argon
JPH01261207A (en) Method for purifying nitrogen trifluoride gas
JPH01261210A (en) Method for purifying nitrogen trifluoride gas
JP2848947B2 (en) Purification method of nitrogen trifluoride gas
JPH0230609A (en) Purification of nitrogen trifluoride gas
JP3090966B2 (en) Purification method of nitrogen trifluoride gas
JP2848948B2 (en) Purification method of nitrogen trifluoride gas
JPS63151608A (en) Purification of nitrogen trifluoride gas
JPH0234506A (en) Method for purifying gaseous nitrogen trifluoride
JPH04265213A (en) Storage method for phosphorus pentafloride
JPH02164707A (en) Method for purifying gaseous nitrogen trifluoride
JPH02164708A (en) Method for purifying gaseous nitrogen trifluoride
JPH0222111A (en) Purification of nitrogen trifluoride gas
JPH0218309A (en) Purification of gaseous nitrogen trifluoride
JPH0471842B2 (en)
JPS62279824A (en) Refining method for rare gas halide excimer laser gas
JP2866717B2 (en) Method for producing nitrogen trifluoride gas
JPH0891812A (en) Purifying method of gaseous nitrogen trifluoride
JPH02124723A (en) Method for purifying tungsten hexafluoride