JPH02164708A - Method for purifying gaseous nitrogen trifluoride - Google Patents

Method for purifying gaseous nitrogen trifluoride

Info

Publication number
JPH02164708A
JPH02164708A JP31938188A JP31938188A JPH02164708A JP H02164708 A JPH02164708 A JP H02164708A JP 31938188 A JP31938188 A JP 31938188A JP 31938188 A JP31938188 A JP 31938188A JP H02164708 A JPH02164708 A JP H02164708A
Authority
JP
Japan
Prior art keywords
gas
fluoride
silica gel
solid fluoride
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31938188A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishitsuji
西辻 俊彦
Tokuyuki Iwanaga
岩永 徳幸
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP31938188A priority Critical patent/JPH02164708A/en
Publication of JPH02164708A publication Critical patent/JPH02164708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To very efficiently remove N2O and CO2 in gaseous NF3 contg. N2F2, N2O and CO2 for a long time by previously heating the gaseous NF3 in a vessel lined with a solid fluoride when the gaseous NF3 is purified with silica gel. CONSTITUTION:Gaseous NF3 contg. at least N2F2, N2O and CO2 is heated to 150-600 deg.C in a vessel whose inner wall has been coated with a solid fluoride. The vessel may be packed with the solid fluoride. Since the N2F2 is efficiently decomposed into N2 and F2 but NF3 is not decomposed, the N2F2 in the gaseous NF3 can be efficiently removed. A silica gel layer is dehydrated by heating to 150-300 deg.C and the N2F2-free gaseous NF3 is passed through the layer at 0 to -125 deg.C without mixing with moisture. The N2O and CO2 in the gaseous NF3 can be efficiently removed for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三弗化窒素ガスの精製方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for purifying nitrogen trifluoride gas.

更に詳しくは、三弗化窒素ガス中に含まれる二弗化二窒
素(NJz)、亜酸化窒素(NtO)及び二酸化炭素(
C(h)の除去方法に関する。
More specifically, dinitrogen difluoride (NJz), nitrous oxide (NtO), and carbon dioxide (
This relates to a method for removing C(h).

〔従来の技術及び発明が解決しようとする課題〕三弗化
窒素(NFS)ガスは、半導体のドライエツチング剤や
CvO装置のクリーニングガスとして近年注目されてい
るが、これらの用途に使用されるNFsガスは、可及的
高純度のものが要求されている。
[Prior art and problems to be solved by the invention] Nitrogen trifluoride (NFS) gas has recently attracted attention as a dry etching agent for semiconductors and a cleaning gas for CVO equipment. The gas is required to be as pure as possible.

NF3ガスは、種々の方法で製造されるが何れの方法で
得られたガスも殆どの場合、N t F 2、N20、
Cotなどの不純物を比較的多量に含んでいるので、上
記用途としての高純度のNF、ガスを得るためには精製
が必要である。
NF3 gas is produced by various methods, but in most cases the gas obtained by any method is N t F 2, N20,
Since it contains a relatively large amount of impurities such as Cot, it is necessary to purify it in order to obtain high purity NF and gas for the above uses.

NFffガス中のこれらの不純物を除去する精製方法と
しては、モレキュラシープなどの吸着剤を用いて不純物
を吸着除去する方法が最も効率がよく簡便な方法の一つ
としてよく知られている〔ケミカル・エンジニアリング
(Cheffl、 Eng、) 84.116゜(19
77)等〕。しかしながら、この吸着による精調力法で
は、NF、ガス中にN2F2が存在するとNF3も吸着
剤に吸着され易くなり、従ってNF3ガスの損失を招く
という極めて不都合な問題があり、NF。
As a purification method for removing these impurities from NFff gas, the method of adsorbing and removing impurities using an adsorbent such as molecular sheep is well known as one of the most efficient and simple methods.・Engineering (Cheffl, Eng,) 84.116° (19
77) etc.]. However, this fine-tuning force method using adsorption has the extremely inconvenient problem that if N2F2 is present in the NF gas, NF3 is also likely to be adsorbed by the adsorbent, resulting in a loss of NF3 gas.

ガスの精製に供するには実質的でない。It is not substantial enough to be used for gas purification.

〔課題を解決する為の手段〕[Means to solve problems]

本発明者等はかかる状況に鑑み、NF、ガス中に含まれ
ているNtFl、N20及びCO2の除去方法について
種々の吸着剤を用いて鋭意検討を重ねた結果、予め特定
の温度に加熱して脱水処理したシリカゲル層へ特定の温
度でNF3ガスを通気させれば、NF、がシリカゲルに
吸着されることなく、効率よく経済的にNF3ガス中の
N、F、、N、0及びCO□を除去できることを見い出
し、昭和63年12月6日付特許願として出願した。し
かしこの方法は本発明者等のその後の研究によれば、N
Fzガス中にN2F2が存在するとN、F、、NtO及
びCO□の除去持続時間(破過時間)が短いという欠点
があることが判明した。
In view of this situation, the present inventors have conducted intensive studies on methods for removing NF, NtFl, N20, and CO2 contained in the gas using various adsorbents. If NF3 gas is passed through the dehydrated silica gel layer at a specific temperature, NF will not be adsorbed by the silica gel, and N, F, , N, 0 and CO□ in NF3 gas can be efficiently and economically removed. He discovered that it could be removed and filed a patent application dated December 6, 1988. However, according to subsequent research by the present inventors, this method
It has been found that the presence of N2F2 in the Fz gas has the disadvantage that the removal duration (breakthrough time) of N, F, , NtO and CO□ is short.

そこで本発明者等は引続き種々検討した結果、不純物と
してNJ2. N20及びCO□を含有するNF3ガス
を、予め内壁を固体弗化物でライニングされた容器中で
、または該容器に固体弗化物を充填した状態で、NF3
ガスを特定の温度に加熱して含有するNtFxを除去し
た後、該NFjガスを特定の条件で加熱処理したシリカ
ゲル層へ特定の温度で通気させれば、NF3がシリカゲ
ルに吸着されることなく、極めて効率よく経済的にNF
、ガス中のN、O及びCO□を長時間にわたって除去で
きることを見出し、本発明を完成するに至ったものであ
る。
Therefore, the present inventors continued various studies and found that NJ2. NF3 gas containing N20 and CO□ is introduced into a container whose inner wall is lined with solid fluoride, or in a state where the container is filled with solid fluoride.
After heating the gas to a specific temperature to remove the NtFx contained therein, if the NFj gas is passed through a silica gel layer that has been heat-treated under specific conditions at a specific temperature, NF3 will not be adsorbed by the silica gel. Extremely efficient and economical NF
They discovered that N, O, and CO□ in gas can be removed over a long period of time, leading to the completion of the present invention.

即ち、本発明の三弗化窒素ガスの精製方法の第1の方法
は、内壁を固体弗化物でライニングされた容器中で少な
くとも不純物として二弗化二窒素、亜酸化窒素及び二酸
化炭素を含有する三弗化窒素ガスを150〜600″C
の温度に加熱して含有する二弗化二窒素を除去した後、
引き続いて該三弗化窒素ガスを予め150〜300℃の
範囲の温度に加熱して脱水処理したシリカゲル層へ0〜
−125℃の温度でかつ実質的に水分の混入しない状態
で通気して含有する亜酸化窒素及び二酸化炭素を除去す
ることを特徴とするものであり、第2の方法は上記の内
壁を固体弗化物でライニングされた容器に固体弗化物を
充填する、上記記載の方法である。
That is, the first method of the method for purifying nitrogen trifluoride gas of the present invention is to contain at least dinitrogen difluoride, nitrous oxide, and carbon dioxide as impurities in a container whose inner wall is lined with solid fluoride. Nitrogen trifluoride gas at 150~600″C
After removing the dinitrogen difluoride contained by heating to a temperature of
Subsequently, the nitrogen trifluoride gas is heated in advance to a temperature in the range of 150 to 300°C to dehydrate the silica gel layer.
This method is characterized by removing the contained nitrous oxide and carbon dioxide by aeration at a temperature of -125°C and in a state substantially free of moisture. A method as described above, in which a container lined with fluoride is filled with solid fluoride.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明ではN2FZの除去は内壁を固体弗化物でライニ
ングされた容器中で、またはこの容器に固体弗化物を充
填し該固体弗化物の充填層中で、NP。
In the present invention, N2FZ is removed in a container whose inner wall is lined with solid fluoride, or in a bed filled with solid fluoride in which the container is filled with NP.

ガスを加熱し通気することで、含有するNzhを除去す
ることが可能である。
By heating and venting the gas, it is possible to remove the Nzh contained therein.

NF3ガス中に含まれるN、F!は、NF3ガスを特定
の温度に加熱するのみで、Nzhが窒素(N2)ガスと
弗素(F2)ガスに効率よく分解する。また、上記加熱
を内壁が固体弗化物でライニングされた容器内で行なえ
ば、200℃以上の温度に加熱しても主成分であるNF
、が分解することがないので好都合であって、これによ
り効率よく安全にしがも経済的にNF、ガス中のN2F
Zを除去することができる。また、上記の内壁が固体弗
化物でライニングされた容器に、固体弗化物を充填した
状態で加熱すれば更に効率よ< N2Fgを除去するこ
とができる。
N and F contained in NF3 gas! By simply heating NF3 gas to a specific temperature, Nzh is efficiently decomposed into nitrogen (N2) gas and fluorine (F2) gas. Furthermore, if the above heating is performed in a container whose inner wall is lined with solid fluoride, even if heated to a temperature of 200°C or higher, the main component NF
, is advantageous because it does not decompose, which makes it efficient, safe, and economical to eliminate NF and N2F in gas.
Z can be removed. Furthermore, if the container whose inner wall is lined with solid fluoride is heated while being filled with solid fluoride, N2Fg can be removed even more efficiently.

本発明の前段の工程であるNp3ガス中の82F2を除
去する工程においては、NF3ガスの入口管と出口管を
備えた、内壁を固体弗化物でライニングされた容器が必
要である。
In the step of removing 82F2 from Np3 gas, which is the first step of the present invention, a container with an inlet pipe and an outlet pipe for NF3 gas and whose inner wall is lined with solid fluoride is required.

本発明においては、上記容器は鉄やステンレス鋼などの
金属製のものが使用される。容器の形状については特に
限定はないが、容器そのものの制作及び固体弗化物のラ
イニング加工が容易である点と、該ライニング層の強度
、使用中におけるライニング層の亀裂の発生の防止など
の点で円筒形が好ましい。
In the present invention, the container is made of metal such as iron or stainless steel. There are no particular limitations on the shape of the container, but the shape of the container is easy to manufacture and is lined with solid fluoride, the strength of the lining layer, and the prevention of cracks in the lining layer during use. A cylindrical shape is preferred.

ライニング層の厚みも特に限定はないが、あまり薄いと
うイニング加工が技術的に困難であり、また、容器の内
壁が完全にライニングされずに一部容器の金属面が露出
する惧れがある。逆に厚くなり過ぎると、本発明では容
器の加熱を該容器の外部からヒーター等で加熱する方法
で行なうので、該加熱の際の伝熱効率が低下し、熱エネ
ルギーの損失となるので好ましくなく、従って、ライニ
ング層のの厚みは1〜5IIII11程度で実施される
There is no particular limit to the thickness of the lining layer, but it is technically difficult to process a lining that is too thin, and there is a risk that the inner wall of the container will not be completely lined and a portion of the metal surface of the container will be exposed. On the other hand, if it becomes too thick, the container is heated from outside the container using a heater or the like in the present invention, so the heat transfer efficiency during heating decreases, resulting in a loss of thermal energy, which is not preferable. Therefore, the thickness of the lining layer is approximately 1 to 5III11.

本発明においては、NF、ガスは上記容器内で最高60
0℃まで加熱されるので、上記のライニングに使用する
固体弗化物は融点が600℃以上のものが望ましいが、
融点が600℃未満のものであっても、NFsを加熱す
る温度において固体であれば本発明の実施には何ら差支
えない。また、この固体弗化物はNFsと反応しない弗
化物でもある。この様な固体弗化物を例示すると、弗化
リチウム(LiF)、弗化ナトリウム(NaF) 、弗
化カリウム(KF)、弗化ルビジウム(RbF) 、弗
化セシウム(CsF) 等のIA属の金属弗化物;弗化
ヘリリウム(BeFz) 、弗化マグネシウム(Mgh
)、弗化カルシウム(CaF2)、弗化ストロンチウム
(SrFz)、弗化バリウム(BaFz)等のIIAI
ffEの金属弗化物;弗化アルミニウム(AI!、h)
 、弗化ガリウム(GaFs)、弗化インジウム(In
Fz)等のH1A属の金属弗化物;弗化アルミニウムナ
トリウム(NasA 12 F&)の如き複塩が挙げら
れる。尚、これらの混合物でも差支えない。
In the present invention, the NF, gas is stored in the container at a maximum of 60%
Since it is heated to 0°C, it is desirable that the solid fluoride used for the above-mentioned lining has a melting point of 600°C or higher.
Even if the melting point is less than 600°C, there is no problem in implementing the present invention as long as it is solid at the temperature at which the NFs is heated. Moreover, this solid fluoride is also a fluoride that does not react with NFs. Examples of such solid fluorides include metals of group IA such as lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), rubidium fluoride (RbF), and cesium fluoride (CsF). Fluoride; helium fluoride (BeFz), magnesium fluoride (Mgh
), calcium fluoride (CaF2), strontium fluoride (SrFz), barium fluoride (BaFz), etc.
ffE metal fluoride; aluminum fluoride (AI!, h)
, gallium fluoride (GaFs), indium fluoride (In
Metal fluorides of the H1A group such as Fz); and double salts such as sodium aluminum fluoride (NasA 12 F&). Note that a mixture of these may also be used.

また、これらの固体弗化物は粉末状のものが容器の内壁
にライニングし易いので好ましい。
Further, these solid fluorides are preferable because powdered ones tend to line the inner wall of the container.

容器の内壁に固体弗化物をライニングする方法について
、円筒容器を例として述べると以下の通りである。
A method for lining the inner wall of a container with solid fluoride will be described below using a cylindrical container as an example.

上記に例示した固体弗化物の内、比較的融点が低い、例
えばIA属の金属弗化物を使用する場合は焼結法を採用
することができる。
Among the solid fluorides exemplified above, when using a metal fluoride having a relatively low melting point, for example, a group IA metal fluoride, a sintering method can be employed.

即ち、第1図に示す如く、円筒容器1の内径寄りやや小
さい外径の内筒3を、円筒容器1内に同芯になるように
挿入する。次に、上記円筒容器1と内筒3の間隙に粉末
状の固体弗化物4を充填した後、圧入管5に荷重を加え
て固体弗化物4を圧縮成形する。この固体弗化物4の充
填及び圧縮成形を繰り返し行ない、円筒容器lの内壁全
面に固体弗化物4の圧縮成形層を形成する。しかる後内
筒3をゆっくりと引き抜き、この円筒容器lを窒素(N
2)、ヘリウム(He)等の不活性ガス雰囲気下で徐々
に固体弗化物4の軟化点まで昇温したのち徐冷すること
により、容易に円筒容器1の内壁に固体弗化物4をライ
ニングすることができる。
That is, as shown in FIG. 1, an inner cylinder 3 having a slightly smaller outer diameter toward the inner diameter of the cylindrical container 1 is inserted into the cylindrical container 1 so as to be concentric. Next, after filling the gap between the cylindrical container 1 and the inner tube 3 with powdered solid fluoride 4, a load is applied to the press-fit tube 5 to compress and mold the solid fluoride 4. This filling and compression molding of the solid fluoride 4 is repeated to form a compression molded layer of the solid fluoride 4 on the entire inner wall of the cylindrical container l. After that, the inner cylinder 3 is slowly pulled out, and this cylindrical container l is filled with nitrogen (N
2) Easily line the inner wall of the cylindrical container 1 with the solid fluoride 4 by gradually raising the temperature to the softening point of the solid fluoride 4 in an atmosphere of an inert gas such as helium (He) and then slowly cooling it. be able to.

この場合、固体弗化物は水分を2〜3重世%含有させて
おくと、上記の圧縮成形がより容易であるので好ましい
、このことは後記する高圧プレス法によるライニングの
場合も同様である。
In this case, it is preferable for the solid fluoride to contain 2 to 3 weight percent water, since the above-mentioned compression molding is easier. This also applies to the case of lining by the high-pressure pressing method described later.

尚、内筒3の表面に予め潤滑剤を塗布しておくと円筒容
器1の内壁に固体弗化物4の圧縮成形層形成後の、内筒
3の引き抜きが容易であるので好ましい。
Incidentally, it is preferable to apply a lubricant to the surface of the inner cylinder 3 in advance, since this makes it easier to pull out the inner cylinder 3 after the compression-molded layer of the solid fluoride 4 is formed on the inner wall of the cylindrical container 1.

融点が比較的高い固体弗化物を円筒容器の内壁にライニ
ングする場合には、高圧プレス法が適当である。即ち、
焼結法の場合と同様に、第1図に示す円筒容器1と内筒
3の間隙に固体弗化物4を充填した後、圧入管5に荷重
を加えて固体弗化物4の圧縮成形を繰り返すことにより
、円筒容器1の内壁全面に固体弗化物4のライニング層
を形成した後、内筒3をゆっくり引き抜くことにより実
施することができる。
When lining the inner wall of a cylindrical container with a solid fluoride having a relatively high melting point, a high-pressure press method is suitable. That is,
As in the case of the sintering method, after filling the gap between the cylindrical container 1 and the inner tube 3 shown in FIG. 1 with the solid fluoride 4, a load is applied to the press-fit tube 5 and compression molding of the solid fluoride 4 is repeated. This can be carried out by forming a lining layer of solid fluoride 4 on the entire inner wall of cylindrical container 1 and then slowly pulling out inner cylinder 3.

尚、この場合強固なライニング層を形成するためには、
上記の圧縮成形時の荷重は2t/cJ以上が必要である
。また、内筒3の表面には焼結法の場合と同様に、予め
潤滑剤を塗布しておけば、円筒容器lの内壁に固体弗化
物4のライニング層形成後における内筒3の引き抜きが
容易であるので好ましい。ただしこの場合、潤滑剤は固
体弗化物のライニング層形成後に、加熱等により蒸発除
去する必要がある。
In this case, in order to form a strong lining layer,
The load during the compression molding described above must be 2 t/cJ or more. In addition, if a lubricant is applied to the surface of the inner cylinder 3 in advance as in the case of the sintering method, the inner cylinder 3 can be prevented from being pulled out after the lining layer of the solid fluoride 4 is formed on the inner wall of the cylindrical container l. This is preferred because it is easy. However, in this case, the lubricant must be removed by evaporation by heating or the like after the solid fluoride lining layer is formed.

更に本発明においては、円筒容器の内壁に固体弗化物を
ライニングする方法として、上記方法の他に、第1図の
円筒容器1と内筒3の間隙に溶融した固体弗化物を流入
した後、冷却固化させるなどの方法@採用することもで
きる。
Furthermore, in the present invention, as a method for lining the inner wall of a cylindrical container with a solid fluoride, in addition to the above method, after flowing a molten solid fluoride into the gap between the cylindrical container 1 and the inner tube 3 shown in FIG. Methods such as cooling and solidifying can also be adopted.

次に容器に固体弗化物を充填する場合の該固体弗化物に
ついて述べる。
Next, the solid fluoride in the case of filling the container with the solid fluoride will be described.

この充填に使用する固体弗化物は、前述のライニングに
使用した固体弗化物と全く同一のものが使用される。
The solid fluoride used for this filling is exactly the same as the solid fluoride used for the lining described above.

ただし、この充填に使用される固体弗化物は粒状のもの
が好ましいが、大きさには特に限定はなく、反応器の大
きさや取扱い易さなどによって決められる。また、固体
弗化物が粉状であっても、打錠機などで錠剤化すること
により好適に使用可能である。
However, the solid fluoride used for this filling is preferably in the form of particles, but the size is not particularly limited and is determined depending on the size of the reactor, ease of handling, etc. Furthermore, even if the solid fluoride is in powder form, it can be suitably used by forming it into tablets using a tablet machine or the like.

尚、上記固体弗化物は水分を含有していると、NF3ガ
スと接触した際にNF、と該水分が反応して一酸化窒素
(NO)を生成するので、従って固体弗化物は前もって
乾燥し水分を十分除去してお(ことが望ましい。
Note that if the solid fluoride contains moisture, the moisture reacts with NF when it comes into contact with NF3 gas, producing nitrogen monoxide (NO). Therefore, the solid fluoride must be dried beforehand. It is desirable to thoroughly remove moisture.

本発明ではN17.ガスの加熱は、上記の如き内壁を固
体弗化物でライニングされた容器を加熱した状態でNt
Ft、 NzO及びCO□を含有するNhガスを該容器
に通気する方法が好ましい。尚、上記容器に予め固体弗
化物を充填しておくと、Nzhの除去率が更に向上する
ので一層好ましい方法である。
In the present invention, N17. The gas is heated in a heated container whose inner wall is lined with solid fluoride as described above.
A method in which Nh gas containing Ft, NzO and CO□ is vented into the container is preferred. Note that it is a more preferable method to fill the container with solid fluoride in advance, since this further improves the Nzh removal rate.

上記容器の加熱は、該容器の外部をヒーター等で加熱す
る方法で簡単に実施することができる。
The container can be easily heated by heating the outside of the container using a heater or the like.

本発明ではNzF2、NJ及びCO□を含むNF3ガス
の加熱温度は、150〜600℃、好ましくは250〜
350 ’Cで実施される。通気温度が150”C未満
ではN2Fzを殆ど分解除去できない。逆に600℃を
越える温度ではN、F2はほぼ完全に除去できるものの
、容器のライニング層が熱膨張率の差によって亀裂が生
ずる惧れがあるので不都合である。また熱エネルギーの
損失にもつながる。尚、上記加熱温度において、NzF
tの分解速度は非常に速いので、通気させるNhガスの
容器内での滞留時間は短くてかまわないが、通常5〜1
000秒程度の範囲で実施される。
In the present invention, the heating temperature of the NF3 gas containing NzF2, NJ and CO□ is 150 to 600°C, preferably 250 to 600°C.
Performed at 350'C. If the ventilation temperature is less than 150"C, it is almost impossible to decompose and remove N2Fz. On the other hand, if the temperature exceeds 600"C, N and F2 can be almost completely removed, but there is a risk that the lining layer of the container may crack due to the difference in thermal expansion coefficient. This is inconvenient because it causes a loss of thermal energy.It should be noted that at the above heating temperature, NzF
Since the decomposition rate of t is very fast, the residence time of the aerated Nh gas in the container may be short, but it is usually 5 to 1
It is carried out in a range of about 000 seconds.

本発明においては、上記容器に通気するNFffガスは
単独で供給してもかまわないが、N!、 lle等の不
活性ガス等で希釈したものでも差支えない。また、通気
ガスの圧力については特に制限はないが、通常、0〜5
 kg/cm”−Gの圧力が操作し易いので好ましい。
In the present invention, the NFff gas to be vented into the container may be supplied alone, but N! It may be diluted with an inert gas such as , lle, etc. There are no particular restrictions on the pressure of the ventilation gas, but it is usually 0 to 5.
A pressure of kg/cm''-G is preferred because it is easy to operate.

以上において述べた本発明の前段の工程であるNF3ガ
ス中のNzhを除去する方法は、本出願人が先に出願し
た、特願昭63−87208号及び特願昭638721
0号にて詳述した方法をそのまま適用することができる
The method for removing Nzh from NF3 gas, which is the first step of the present invention described above, is described in Japanese Patent Application No. 63-87208 and Japanese Patent Application No. 638721 previously filed by the present applicant.
The method detailed in No. 0 can be applied as is.

次に本発明の後段の工程である、NF+ガス中のN、O
及びCO□を除去する工程について述べる。
Next, in the latter step of the present invention, N and O in the NF+ gas are
The process of removing CO□ and CO□ will be described.

本発明で使用するシリカゲルは、特に限定はなく通常重
版のものが何れも使用可能であるが、粒状かつ高表面積
のものがより好ましい。
The silica gel used in the present invention is not particularly limited, and any reprinted silica gel can be used, but granular silica gel with a high surface area is more preferable.

シリカゲルの脱水処理は150〜300 ’C1好まし
くは150〜200℃の温度に加熱することで実施され
る。
The dehydration treatment of silica gel is carried out by heating to a temperature of 150 to 300'C1, preferably 150 to 200C.

加熱温度が150 ’C未満ではシリカゲル中に水分が
残存し、該シリカゲル層へNF、ガスを通気した際にN
、O及びCOzの除去能力が低下する。逆に、必要以上
の高温はエネルギーの損失のみならず、高温で加熱処理
するとシリカゲルの吸着能力が著るしく低下するので不
都合である。
If the heating temperature is less than 150'C, water will remain in the silica gel, and when NF or gas is passed through the silica gel layer, N
, O and COz removal ability decreases. On the other hand, a higher temperature than necessary not only causes a loss of energy but also is disadvantageous because heat treatment at a high temperature significantly reduces the adsorption ability of silica gel.

シリカゲルの加熱による脱水処理は空気中で行なっても
よいが、該加熱はシリカゲル中に含有する水分を気化逸
散させるために行なうので、例えばN2ガスのように水
分を含有しない不活性ガスの気流中で行なうのがよく、
またガスを吸引しながら減圧下で行なうことも好ましい
Dehydration treatment by heating silica gel may be performed in air, but since the heating is performed to vaporize and dissipate the moisture contained in the silica gel, for example, an air stream of an inert gas that does not contain moisture such as N2 gas is used. It is best to do it inside.
It is also preferable to conduct the reaction under reduced pressure while sucking gas.

加熱時間は上記の加熱温度及び雰囲気において30分以
上であればよいが、念のために通常1〜2時間行なわれ
る。
The heating time may be 30 minutes or more at the above-mentioned heating temperature and atmosphere, but it is usually carried out for 1 to 2 hours just to be sure.

かくして加熱により脱水処理されたシリカゲルは、放冷
または強制冷却によって常温以下に冷却されるが、この
場合には水分の混入を回避しなければならない。従って
、その方法としてシリカゲルの加熱による脱水処理を、
例えばカラム等にシリカゲルを充填した状態で行ない、
脱水処理後これを冷却し、しかるのち引続きこのシリカ
ゲル層へNFtガスを通気する方法が好ましい。
The silica gel that has been dehydrated by heating is cooled down to room temperature or below by standing or forced cooling, but in this case, it is necessary to avoid contamination with moisture. Therefore, the method is to dehydrate silica gel by heating.
For example, by filling a column with silica gel,
A preferred method is to cool the silica gel layer after the dehydration treatment and then subsequently pass NFt gas through the silica gel layer.

NF、ガスの精製は、上記の通りカラム等に充填された
シリカゲル層に通気する方法で実施されるが、この際の
通気温度は重要でO′C以下の温度でなければならず、
低温はど好ましい。しかし、NF、の沸点は一129℃
であるので、この温度以下ではは作が事実上困難である
。従ってNhガスの通気温度は本発明では、0〜−12
5℃の範囲で実施される。
Purification of NF and gas is carried out by a method of venting through a silica gel layer packed in a column etc. as described above, but the venting temperature at this time is important and must be below O'C.
Low temperatures are preferred. However, the boiling point of NF is -129℃
Therefore, it is virtually difficult to grow at temperatures below this temperature. Therefore, in the present invention, the ventilation temperature of Nh gas is 0 to -12
It is carried out at a temperature of 5°C.

通気時のNF、ガスの圧力はこれまた特に限定はないが
、例えば0〜5 kg/cJ−G程度の圧力が操作しや
すいので好ましい。
The pressure of NF and gas during ventilation is also not particularly limited, but for example, a pressure of about 0 to 5 kg/cJ-G is preferred because it is easy to operate.

本発明の方法において、N!F、を除去する前段の工程
を省略すると、前述の通りNF、lガスをシリカゲル層
に通気する後段の工程において、Nzh、Neo及びC
Ooの除去持続時間即ち破過時間が短くなる。これを具
体的に説明すると、N2Ft、 N、O及びCO□を含
有するガスをシリカゲル層に通気して得たガスは、当初
はNth、NzO及びCO,の含有量は極めて少量で検
出限界以下であるが、ある時間を経過すると短時間の間
に急激に増加する。この象、激に増加するまでの時間を
破過時間という、尚、上記Nth、N20及びC(hの
分析はガスクロマトグラフィーで行なうが、その検出限
界はそれぞれtoppleである0本発明では前段の工
程で予め)hhが除去しであるので、N20 、Co、
の含有量のいずれかがこの検出限界を越えた時の時間を
破過時間とした。
In the method of the invention, N! If the earlier step of removing F is omitted, Nzh, Neo and C will be removed in the later step of aerating NF and l gas through the silica gel layer as described above.
The removal duration or breakthrough time of Oo becomes shorter. To explain this specifically, the gas obtained by blowing a gas containing N2Ft, N, O, and CO□ through a silica gel layer initially contained extremely small amounts of Nth, NzO, and CO, which were below the detection limit. However, after a certain period of time, it rapidly increases in a short period of time. The time taken for this phenomenon to increase dramatically is called the breakthrough time.The analysis of Nth, N20, and C(h) mentioned above is carried out by gas chromatography, and the detection limit for each is topple. Since hh is removed in advance in the process, N20, Co,
The time when any of the contents exceeds this detection limit was defined as the breakthrough time.

〔実施例〕〔Example〕

以下、実施例により本発明を更に具体的に説明する。尚
、以下において%及びppmは特記しない限り容量基準
を表わす。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that in the following, % and ppm represent capacity standards unless otherwise specified.

実施例1〜4 内径10IIII11長さ300+amのステンレス鋼
製の第1図に示す円筒容器(カラム)1に、第1図に示
すように表面に潤滑剤としてステアリン酸を塗布した外
径が6m、長さ400+nmの内筒3をカラムlと同芯
に挿入した後、該カラムlと該内筒3の間隙に水分含有
量が3重量%の弗化リチウム粉末に弗化セシウム粉末を
5重量%添加混合した粉末4を少しずつ充填した後、上
記間隙に外径9.6腫、内径6.5 mの圧入管5を挿
入し、この圧入管5に1t/cjの荷重を加えて混合粉
末4を圧縮成形した。
Examples 1 to 4 A cylindrical container (column) 1 shown in FIG. 1 made of stainless steel with an inner diameter of 10III11 and a length of 300+ am was coated with stearic acid as a lubricant on the surface as shown in FIG. 1, and the outer diameter was 6 m. After inserting the inner tube 3 having a length of 400+ nm concentrically with the column L, 5 weight percent of the cesium fluoride powder is added to the lithium fluoride powder with a water content of 3 weight percent in the gap between the column L and the inner tube 3. After filling the added and mixed powder 4 little by little, a press-fit tube 5 with an outer diameter of 9.6 m and an inner diameter of 6.5 m is inserted into the above-mentioned gap, and a load of 1 t/cj is applied to this press-fit tube 5 to fill the mixed powder. 4 was compression molded.

この混合粉末4の挿入、圧縮成形の操作を繰り返し行な
いカラム1の内壁全面に混合粉末4の圧縮成形体を形成
し、しかる後内筒3をゆっくり抜き出した。
The operations of inserting the mixed powder 4 and compression molding were repeated to form a compression molded body of the mixed powder 4 on the entire inner wall of the column 1, and then the inner cylinder 3 was slowly pulled out.

次に、このカラムlをN2ガス雰囲気下の電気炉内にて
200℃/hの昇温速度で850℃まで昇温し、この温
度に1時間保持した後電気炉内で自然放冷により常温ま
で冷却して、厚さ2III+1の固体弗化物層で内壁を
全面にライニングされたカラムlを得た。尚、上記加熱
により弗化リチウム、弗化セシウム中に含まれていた水
分及びライニング層形成の際使用したステアリン酸も蒸
発除去された。
Next, this column 1 was heated to 850°C at a rate of 200°C/h in an electric furnace under a N2 gas atmosphere, kept at this temperature for 1 hour, and then allowed to cool naturally in the electric furnace to room temperature. A column 1 was obtained whose inner wall was entirely lined with a layer of solid fluoride having a thickness of 2III+1. In addition, the water contained in the lithium fluoride and cesium fluoride and the stearic acid used in forming the lining layer were also evaporated and removed by the above heating.

しかる後このカラムlに、はぼ同容積のlieガスで希
釈された各成分の含有量がHe 48.5%、NFi4
8.2%、NzFz 2.0%、NZ 0.4%、Ne
o O,3%、C0,0,6%の組成のガス(NF3純
分!ft80.4g)を、通気温度300℃、ガスの流
fit60 NId/min、 、通気圧カフ60 T
orrの条件で通気した0通気後のガスは濃度1重量%
のヨウ化カリウム(Kl)水溶液中にバブリングさせた
後、液体窒素で冷却された捕集ボンへに導き NF、を
液化させ捕集した。IIF、ガスの通気停止後は上記の
NF3の捕集ボンベ内を真空排気しlleガスを除去し
た。
Thereafter, in this column 1, the contents of each component diluted with approximately the same volume of LIE gas were He 48.5%, NFi4
8.2%, NzFz 2.0%, NZ 0.4%, Ne
o A gas with a composition of O, 3%, CO, 0,6% (NF3 purity! ft 80.4 g) was heated at a ventilation temperature of 300°C, a gas flow of fit 60 NId/min, and a ventilation pressure cuff of 60 T.
The concentration of gas after 0 aeration, which was aerated under the conditions of orr, was 1% by weight.
After bubbling into an aqueous solution of potassium iodide (Kl), the NF was introduced into a collection bomb cooled with liquid nitrogen to liquefy and collect the NF. After stopping the IIF and gas ventilation, the inside of the NF3 collection cylinder was evacuated to remove the lle gas.

通気後の捕集ボンベ内のNF、の組成を、ガスクロマト
グラフィーにより分析した。その結果は、Nzh含有量
は10pp鋼以下で非常に高い除去率であった。またN
F3の損失量も1.3%であり非常に少なかった。
The composition of NF in the collection cylinder after ventilation was analyzed by gas chromatography. The results showed that the Nzh content was 10 pp or less for steel and the removal rate was very high. Also N
The loss amount of F3 was also very small at 1.3%.

尚、NFffガス中のN2の含有量は通気後の方が多か
ったが、これは加熱によりNzFzがN2とF2に分解
したものと考えられる。
Note that the content of N2 in the NFff gas was higher after ventilation, but this is considered to be because NzFz was decomposed into N2 and F2 due to heating.

次に、内径15IIlllのステンレス製カラムに粒度
が24〜48メツシユの粒状シリカゲルを充填(充填高
さ300vw) シた後、該シリカゲルの加熱による脱
水処理を第1表に示す条件で行ない、しかる後、該シリ
カゲル層へ上記によりNJ*を除去したNF)ガスを第
1表に示す条件で各々通気した。
Next, after filling a stainless steel column with an inner diameter of 15 IIll with granular silica gel having a particle size of 24 to 48 mesh (filling height: 300 vw), the silica gel was dehydrated by heating under the conditions shown in Table 1. , NF) gas from which NJ* was removed as described above was bubbled into the silica gel layer under the conditions shown in Table 1.

Nhガスのシリカゲル層への通気後のNF3ガス中のN
20及びCO□の含有量をガスクロマトグラフィーにて
分析し、破過時間を測定した。尚、破過時間は、シリカ
ゲル層への通気後のガス中のN、0、CO□のいずれか
の含有量が10ppmを越えた時の時間とした。
N in NF3 gas after aeration of Nh gas into the silica gel layer
The contents of 20 and CO□ were analyzed by gas chromatography, and the breakthrough time was measured. The breakthrough time was defined as the time when the content of any one of N, 0, and CO□ in the gas after aeration into the silica gel layer exceeded 10 ppm.

その結果は第1表に示す通りであり、本発明の方法で精
製すればNF3ガス中の!bO、COz 、N2F!は
極めて良好に除去され、しかも破過時間も長いことが分
かる。
The results are shown in Table 1, and if purified by the method of the present invention, ! bO, COz, N2F! It can be seen that it is removed extremely well and the breakthrough time is also long.

第 ■ 表 実施例5〜8 実施例1〜4で使用した内壁を固体弗化物でライニング
したカラムを用い、これに固体弗化物として粒径が24
〜32メツシユの弗化カルシウム(CaFz) (実施
例5)、弗化アルミニウム(Aj2F+)(実施例6)
、弗化カリウム(KF) (実施例7)、弗化ナトリウ
ム(Nap) (実施例8)をそれぞれ充填(充填高さ
250mm) L、200’Cの温度に加熱した状態で
N、ガスを100 ml/min、の流量で1時間通気
して固体弗化物中の水分を除去した。
Table ■ Examples 5 to 8 Using the column whose inner wall was lined with solid fluoride as used in Examples 1 to 4, a column with a particle size of 24 mm as solid fluoride was used.
~32 meshes of calcium fluoride (CaFz) (Example 5), aluminum fluoride (Aj2F+) (Example 6)
, potassium fluoride (KF) (Example 7), and sodium fluoride (Nap) (Example 8) (filling height 250 mm) L, heated to a temperature of 200'C, filled with N gas at 100% The water in the solid fluoride was removed by aeration for 1 hour at a flow rate of ml/min.

次いでこの固体弗化物を充填したカラムに、はぼ同容積
のIleガスで希釈された実施例1〜4で使用したもの
と同一の組成のNF、ガスを、通気温度300℃1ガス
の?A 量60 N ml / m i n 、 、通
気圧カフ60Torrの条件で通気した。通気後のガス
は実施例1〜4と同様にしてヨウ化カリウム(Kl)水
溶液中にバブリングさせた後、NF、を液化させ捕集し
た後l(eガスを除去した。
Next, NF gas having the same composition as that used in Examples 1 to 4, diluted with approximately the same volume of He gas, was added to the column filled with this solid fluoride at a ventilation temperature of 300° C. and 1 gas per 1 gas. Ventilation was carried out under the following conditions: A volume: 60 N ml/min, vent pressure: 60 Torr. The gas after ventilation was bubbled into a potassium iodide (Kl) aqueous solution in the same manner as in Examples 1 to 4, and then NF was liquefied and collected, and then l(e gas was removed).

このNFiの組成をガスクロマトグラフィーにより分析
したところ、その結果はNzFzの含有量は10ρpm
以下と非常に高い除去率であった。またNhの損失量も
1.0と非常に少なかった。
When the composition of this NFi was analyzed by gas chromatography, the result was that the content of NzFz was 10ρpm.
The removal rate was extremely high. Furthermore, the loss amount of Nh was very small at 1.0.

尚、NPjガス中のN2の含有量が通気後の方が多かっ
たが、これは実施例1〜4と同様に加熱によりNzFz
がNtとF2に分解したものと考えられる。
It should be noted that the content of N2 in the NPj gas was higher after ventilation, but this is because NzFz was increased by heating as in Examples 1-4.
is considered to be decomposed into Nt and F2.

次に、実施例1〜4と全く同様にしてステンレス製カラ
ムに充填された粒状シリカゲルの加熱による脱水処理を
第2表に示す条件で行なった後、該シリカゲル層へ上記
によりNthを除去したNFffガスを′5S2表に示
す条件で通気した。
Next, in exactly the same manner as in Examples 1 to 4, the granular silica gel packed in a stainless steel column was dehydrated by heating under the conditions shown in Table 2, and then NFff from which Nth had been removed as described above was applied to the silica gel layer. Gas was passed under the conditions shown in Table '5S2.

NF、ガスのシリカゲル層への通気後のNhガス中のN
、0及びCO□の含有量を実施例1〜4と同様にしてガ
スクロマトグラフィーにて分析し、破過時間を測定した
NF, N in Nh gas after gas ventilation into the silica gel layer
, 0 and CO□ were analyzed by gas chromatography in the same manner as in Examples 1 to 4, and the breakthrough time was measured.

その結果は第2表に示す通りであり、本発明の方法で精
製すればNFtガス中のNJ 、COz 、 N2FZ
は極めて良好に除去され、しかも破過時間も長いことが
分かる。
The results are shown in Table 2, and when purified by the method of the present invention, NJ, COz, and N2FZ in NFt gas can be purified.
It can be seen that it is removed extremely well and the breakthrough time is also long.

第 表 比較例1 実施例1と全く同様にステンレス製カラムに粒状シリカ
ゲルを充填した後、該粒状シリカゲルの加熱による脱水
処理を行なった。
Comparative Example 1 in Table 1 In exactly the same manner as in Example 1, a stainless steel column was filled with granular silica gel, and then the granular silica gel was dehydrated by heating.

しかるのち実施例1〜4で使用したIleガスで稀釈さ
れる前の、NF3ガス(各成分の含有量はNh93.6
%、NiF23.9%、Nオ0.8%、Neo O,6
%、cot 1.2%)を前取ってNzPzを除去する
ことなく、上記の脱水処理した粒状シリカゲル層へ実施
例1と同一時条件で通気して破過時間を測定した。
After that, NF3 gas (the content of each component is Nh93.6) before being diluted with the He gas used in Examples 1 to 4.
%, NiF23.9%, NO0.8%, Neo O,6
%, cot 1.2%) and without removing NzPz, the dehydrated granular silica gel layer was aerated under the same conditions as in Example 1 to measure the breakthrough time.

その結果は破過時間は4.0時間であり、実施例1〜4
に比べて大幅に短時間であった。
As a result, the breakthrough time was 4.0 hours, and Examples 1 to 4
The time was significantly shorter than that of

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳細に説明した如く、内壁を固体弗化物で
ライニングされた容器中で、または該容器に固体弗化物
を充填した状態で、NFtガスを特定の温度に加熱して
NF3ガス中に含まれるNzF2を予め除去した後、こ
のNF、ガスを、予め特定の温度に加熱して脱水処理し
たシリカゲル層へ特定の温度でかつ実質的に水分の混入
しない状態で、通気するという極めて簡単な方法であり
、本発明の実施により、NFffガス中のNJz、N2
0及びCO□が効率よく除去できるのである。
As explained in detail above, the present invention is carried out by heating NFt gas to a specific temperature in a container whose inner wall is lined with a solid fluoride, or in a state where the container is filled with a solid fluoride. After removing the NzF2 contained in it in advance, this NF and gas are passed through a silica gel layer that has been heated to a specific temperature and dehydrated in advance at a specific temperature and in a state where substantially no moisture is mixed. method, by implementing the present invention, NJz, N2 in NFff gas
0 and CO□ can be removed efficiently.

また、本発明では前段の工程で予めNF3ガス中のNz
hが除去しであるので、後段の工程であるシリカゲルで
のNZO及びCO2の除去を、実施例及び比較例が示す
如く長時間行なうことができるのである。
In addition, in the present invention, Nz in NF3 gas is
Since h is removal, the subsequent step of removing NZO and CO2 using silica gel can be carried out for a long time as shown in Examples and Comparative Examples.

更に本発明では、前段の工程で内壁を固体弗化物でライ
ニングされた容器、または該ライニングされた容器と固
体弗化物を使用し、後段の工程ではシリカゲルを使用す
るというものであり、これらは何れも廉価であるので、
経済的な方法でもある。更にまた、本発明の方法は吸着
剤であるシリカゲルへのNF3の吸着もない。
Furthermore, in the present invention, a container whose inner wall is lined with a solid fluoride is used in the first step, or a container lined with the solid fluoride and a solid fluoride are used, and silica gel is used in the second step. Since it is also inexpensive,
It is also an economical method. Furthermore, the method of the present invention does not involve adsorption of NF3 to silica gel, which is an adsorbent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において円筒容器(カラム)の内壁に
、固体弗化物をライニングする状態を示す図である。 図において、 1−・−円筒容器(カラム) 2・−一−−−N F、ガス出口管、 4−−−一固体弗化物、 6−・−・・補助円筒管、 を示す。 3−・−内筒、 5−・・・−・・圧入管、 7・−・一定盤、 第1図
FIG. 1 is a diagram showing a state in which the inner wall of a cylindrical container (column) is lined with solid fluoride in an example. In the figure, 1-- cylindrical container (column), 2-- NF, gas outlet pipe, 4-- solid fluoride, 6-- auxiliary cylindrical tube, are shown. 3--Inner cylinder, 5--Press-fit pipe, 7-- Fixed plate, Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)内壁を固体弗化物でライニングされた容器中で少
なくとも不純物として二弗化二窒素、亜酸化窒素及び二
酸化炭素を含有する三弗化窒素ガスを150〜600℃
の温度に加熱して含有する二弗化二窒素を除去した後、
引き続いて該三弗化窒素ガスを予め150〜300℃の
範囲の温度に加熱して脱水処理したシリカゲル層へ0〜
−125℃の温度でかつ実質的に水分の混入しない状態
で通気して含有する亜酸化窒素及び二酸化炭素を除去す
ることを特徴とする三弗化窒素ガスの精製方法。
(1) In a container whose inner wall is lined with solid fluoride, nitrogen trifluoride gas containing at least dinitrogen difluoride, nitrous oxide, and carbon dioxide as impurities is heated at 150 to 600°C.
After removing the dinitrogen difluoride contained by heating to a temperature of
Subsequently, the nitrogen trifluoride gas is heated in advance to a temperature in the range of 150 to 300°C to dehydrate the silica gel layer.
A method for purifying nitrogen trifluoride gas, which comprises removing nitrous oxide and carbon dioxide by aeration at a temperature of -125°C and in a state substantially free of moisture.
(2)内壁を固体弗化物でライニングされた容器に固体
弗化物を充填する請求項1項記載の三弗化窒素ガスの精
製方法。
(2) The method for purifying nitrogen trifluoride gas according to claim 1, wherein a container whose inner wall is lined with solid fluoride is filled with solid fluoride.
JP31938188A 1988-12-20 1988-12-20 Method for purifying gaseous nitrogen trifluoride Pending JPH02164708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31938188A JPH02164708A (en) 1988-12-20 1988-12-20 Method for purifying gaseous nitrogen trifluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31938188A JPH02164708A (en) 1988-12-20 1988-12-20 Method for purifying gaseous nitrogen trifluoride

Publications (1)

Publication Number Publication Date
JPH02164708A true JPH02164708A (en) 1990-06-25

Family

ID=18109521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31938188A Pending JPH02164708A (en) 1988-12-20 1988-12-20 Method for purifying gaseous nitrogen trifluoride

Country Status (1)

Country Link
JP (1) JPH02164708A (en)

Similar Documents

Publication Publication Date Title
EP0543009B1 (en) Process for purifying nitrogen trifluoride gas
KR910004831B1 (en) Method for purifying nitrogen trifluoride gas
JPH02188414A (en) Method for purifying gaseous nitrogen trifluoride
JP2008505750A (en) Purification method of nitrogen trifluoride gas using zeolite ion exchanged with alkaline earth metal
JPH02164708A (en) Method for purifying gaseous nitrogen trifluoride
JPH0222111A (en) Purification of nitrogen trifluoride gas
JPH0230609A (en) Purification of nitrogen trifluoride gas
JPH02164707A (en) Method for purifying gaseous nitrogen trifluoride
JPH01261210A (en) Method for purifying nitrogen trifluoride gas
JPH01261207A (en) Method for purifying nitrogen trifluoride gas
JPH0234506A (en) Method for purifying gaseous nitrogen trifluoride
JPH0218309A (en) Purification of gaseous nitrogen trifluoride
JPH0412010A (en) Purification of nitrogen trifluoride gas
JP3090966B2 (en) Purification method of nitrogen trifluoride gas
JP2848948B2 (en) Purification method of nitrogen trifluoride gas
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JPS59162122A (en) Purification of silicon tetrafluoride
JPH02124723A (en) Method for purifying tungsten hexafluoride
JPH0329726B2 (en)
JPH01261209A (en) Method for purifying nitrogen trifluoride gas
JPH03275507A (en) Method of purifying nitrogen trifluoride
JPH0471842B2 (en)
JP2931662B2 (en) Purification method of nitrogen trifluoride gas
JP3051185B2 (en) Purification method of nitrogen trifluoride gas
KR100577956B1 (en) Process for refining nitrogen trifluoride gas using alkali earth metal exchanged zeolite 4A