JPH01261210A - Method for purifying nitrogen trifluoride gas - Google Patents

Method for purifying nitrogen trifluoride gas

Info

Publication number
JPH01261210A
JPH01261210A JP63090032A JP9003288A JPH01261210A JP H01261210 A JPH01261210 A JP H01261210A JP 63090032 A JP63090032 A JP 63090032A JP 9003288 A JP9003288 A JP 9003288A JP H01261210 A JPH01261210 A JP H01261210A
Authority
JP
Japan
Prior art keywords
solid fluoride
fluoride
gas
solid
cylindrical container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63090032A
Other languages
Japanese (ja)
Other versions
JPH0474284B2 (en
Inventor
Isao Harada
功 原田
Hisashi Hokonohara
鉾之原 久
Toshiaki Yamaguchi
俊明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63090032A priority Critical patent/JPH01261210A/en
Priority to CA000595889A priority patent/CA1318108C/en
Priority to EP89106050A priority patent/EP0337294B1/en
Priority to DE89106050T priority patent/DE68907366T2/en
Priority to US07/334,529 priority patent/US4948571A/en
Priority to KR1019890004776A priority patent/KR910004831B1/en
Publication of JPH01261210A publication Critical patent/JPH01261210A/en
Publication of JPH0474284B2 publication Critical patent/JPH0474284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently, safely and economically remove dinitrogen difluoride which is an impurity contained in nitrogen trifluoride gas, by filling a solid fluoride in a metallic vessel having the inner wall lined with the solid fluoride and heating the nitrogen trifluoride gas at a specific temperature in the packed layer of the solid fluoride. CONSTITUTION:A solid fluoride is filled in a metallic vessel having the inner wall lined with a solid fluoride and nitrogen trifluoride gas containing dinitrogen difluoride as at least an impurity is heated at 150-600 deg.C temperature in the packed layer of the solid fluoride. The above-mentioned metallic vessel is preferably a cylindrical shape. A solid fluoride having >=600 deg.C melting point is preferred as the solid fluoride for lining and, e.g., fluorides (e.g., LiF or NaF) of group IA metals, fluorides (e.g., BeF2 or MgF2) of group IIA metals and fluorides (e.g., AlF3 or GaF3) of group IIIA metals of the periodic table, are cited. The same solid fluoride as that for lining can be suitably used as the solid fluoride filled in the cylindrical vessel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三弗化窒素ガスの精製方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for purifying nitrogen trifluoride gas.

更に詳しくは、三弗化窒素ガス中の特に二弗化二窒素の
除去方法に関する。
More specifically, the present invention relates to a method for removing dinitrogen difluoride from nitrogen trifluoride gas.

〔従来技術及び発明が解決しようとする課題〕三弗化窒
素(NFs)ガスは、半導体のドライエツチング剤やC
vD装置のクリーニングガスとして近年注目されている
が、これらの用途に使用される三弗化窒素ガスは、可及
的高純度のものが要求されている。
[Prior art and problems to be solved by the invention] Nitrogen trifluoride (NFs) gas is used as a dry etching agent for semiconductors and carbon dioxide.
Nitrogen trifluoride gas, which has recently attracted attention as a cleaning gas for vD devices, is required to be as pure as possible for use in these applications.

三弗化窒素(NF、)ガスは、種々の方決で製造される
が何れの方法で得られたガスも殆どの場合、亜酸化窒素
(Neo) 、二酸化炭素(COz) 、二弗化二窒素
(NJz)などの不純物を比較的多量に含んでいるので
、上記用途としての高純度のNF、ガスを得るためには
精製が必要である。
Nitrogen trifluoride (NF) gas is produced by various methods, but in most cases the gas obtained by any of these methods contains nitrous oxide (Neo), carbon dioxide (COz), and difluoride. Since it contains a relatively large amount of impurities such as nitrogen (NJz), purification is required to obtain high purity NF and gas for the above-mentioned uses.

NF、ガス中のこれらの不純物を除去する精製方法とし
ては、ゼオライトなどの吸着剤を用いて不純物を吸着除
去する方法が、最も効率がよ(簡便な方法の一つとして
よく知られている〔ケミカル・エンジニアング(Che
+a、 Eng、) 84.116. (1977)等
〕。しかしながら、この吸着による精製方法では、NF
、ガス中にNzFzが存在すると次のような弊害が生じ
る。すなわち、 1)N!F、が存在すると、他の不純物であるCotや
Neoなどの吸着能力が極端に小さくなる。
As a purification method for removing these impurities from NF and gas, the method of adsorbing and removing impurities using an adsorbent such as zeolite is the most efficient (well-known as one of the simple methods). Chemical Engineering (Che
+a, Eng,) 84.116. (1977) etc.]. However, in this adsorption purification method, NF
, the presence of NzFz in the gas causes the following problems. That is, 1) N! When F exists, the ability to adsorb other impurities such as Cot and Neo becomes extremely small.

2)N2F2が存在すると、NF3 も吸着剤に吸着さ
れ易くなり、従ってNF、ガスの損失を招く。
2) When N2F2 is present, NF3 is also likely to be adsorbed by the adsorbent, thus causing loss of NF and gas.

3)吸着剤に吸着し濃縮されたN、Ftは、分解して熱
を発し易く、著しい場合には爆発を引き起こす。
3) N and Ft adsorbed and concentrated on the adsorbent tend to decompose and generate heat, causing an explosion in severe cases.

従って、ゼオライト等の吸着剤を使用してNFaガス中
の不純物を吸着除去する方法を採用する場合には、それ
に先立って予めNzhを除去しておく必要がある。
Therefore, when adopting a method of adsorbing and removing impurities in NFa gas using an adsorbent such as zeolite, it is necessary to remove Nzh in advance.

NF3ガス中のNIFgの除去方法としては、Kl、旧
、NazS、  NazSzOn、Na、SO,等の水
溶液とNJzとを反応槽において反応させて除去する方
法が従来知られている(J、Massonne、ケミ−
・インジエニニール・テヒニーク(Chem、 Ing
、 Techn、) 41. (12)、 695. 
(1969) ) 、 Lかしながら、この方法ではN
Jzを完全に除去するためには比較的長時間を要するの
で、従って反応槽がかなり大きくなるだけではなく大量
の薬剤も必要とする。
As a method for removing NIFg from NF3 gas, a method is conventionally known in which an aqueous solution of Kl, NazS, NazSzOn, Na, SO, etc. is reacted with NJz in a reaction tank (J. Massonne, et al. chemistry
・Chem, Ing
, Techn, ) 41. (12), 695.
(1969) ), while this method reduces N
Complete removal of Jz requires a relatively long time and thus requires not only a fairly large reaction vessel but also a large amount of chemical.

また、N2F2を除去する別の方法として、NJzを含
有するNF、ガスを、加熱したステンレススチール、カ
ーボンスチール、銅、アルミニュム、亜鉛、鉛、ニッケ
ル、鉄等の金属片やネ7)を反応容器内に充填して触媒
充填層を形成し、NF、ガスを該充填層を通気せしめて
接触させ、該金属片やネットを触媒として、その金属片
やネット表面で反応分解せしめる方法も知られている(
特公昭59−15081号公報)。しかしながら、この
方法は、我々の検討によると、金属片とNJzが反応し
て金属片のやネットの表面に金属弗化物を形成し易い。
In addition, as another method for removing N2F2, NF and gas containing NJz are heated and metal pieces such as stainless steel, carbon steel, copper, aluminum, zinc, lead, nickel, iron, etc.7) are placed in a reaction vessel. There is also a known method in which NF and gas are brought into contact with each other by aeration of the packed bed, and the metal pieces or net are used as catalysts to react and decompose on the surface of the metal pieces or net. There is (
(Special Publication No. 59-15081). However, according to our study, in this method, the metal pieces and NJz tend to react and form metal fluorides on the surfaces of the metal pieces and the net.

そして、この生成した金属弗化物は多くの場合、金属片
の表面から剥離して粉化し、充填層内部や積   ・調
装置の配管等を閉塞するという問題がある。
In many cases, the generated metal fluoride peels off from the surface of the metal piece and turns into powder, causing a problem of clogging the inside of the packed bed and the pipes of the stacking and conditioning equipment.

しかして、我々の検討によると、金属片にニッケルを使
用した場合は、ニッケル片はその表面に弗化物の皮膜を
形成するのみであり、該皮膜は比較的剥離し難いので、
配管の閉塞と云う上記問題は一応防止できるが、表面を
弗化物で覆われたニッケル片はもはN2Fzと反応せず
、当然のことながら触媒としての活性は失われるので、
定期的に操作をストップして新しいニッケル片と取り替
え、触媒層を充填しなおす必要があり、極めて煩雑であ
るのみならず、ニッケルが高値であることと相まって相
当のコストアップを招くという問題がある。
However, according to our study, when nickel is used as a metal piece, the nickel piece only forms a fluoride film on its surface, and this film is relatively difficult to peel off.
Although the above-mentioned problem of pipe blockage can be prevented, the nickel piece whose surface is covered with fluoride no longer reacts with N2Fz and naturally loses its activity as a catalyst.
It is necessary to periodically stop the operation, replace it with a new nickel piece, and refill the catalyst layer, which is not only extremely complicated, but also causes a considerable cost increase due to the high price of nickel. .

更には、N2FZの除去効率を上げるために、該金属片
の充填層の加熱温度を上昇させると、200℃以上の温
度においては主成分であるNF3も該金属片とかなり反
応して分解が起こり、その分NF、の収率が低下すると
いう問題もあるのである。
Furthermore, in order to increase the removal efficiency of N2FZ, when the heating temperature of the packed bed of metal pieces is increased, the main component NF3 also reacts considerably with the metal pieces at temperatures of 200°C or higher, causing decomposition. There is also the problem that the yield of NF decreases accordingly.

(問題を解決する為の手段) 本発明者等はNFzガス中に含まれる82F、の除去方
法について鋭意検討を重ねた結果、意外なことに、N=
Fzを含むNF、ガスを特定の温度に加熱するのみで、
N2F2が窒素(N2)ガスと弗素(F2)ガスに効率
よく分解するという知見を得た。また上記加熱を特定の
容器内で行なえば、200℃以上の温度に加熱しても主
成分であるNF、が分解することがないので好都合であ
り、また、上記容器中に固体弗化物を充填しておくと、
さらに効率よ< NzFzが分解し、しかも安全かつ経
済的にNhガス中のNJzを除去し得ると云う知見をも
併せて得た。本発明は、かかる我々が見出した新規な知
見に基づいてなされるに到ったものである。
(Means for Solving the Problem) As a result of intensive studies by the present inventors on a method for removing 82F contained in NFz gas, surprisingly, N=
By simply heating NF and gas containing Fz to a specific temperature,
We have obtained the knowledge that N2F2 is efficiently decomposed into nitrogen (N2) gas and fluorine (F2) gas. In addition, it is convenient to carry out the above heating in a specific container because the main component, NF, does not decompose even if heated to a temperature of 200°C or higher. If you keep it,
Furthermore, we also obtained the knowledge that NJz can be decomposed efficiently and that NJz in Nh gas can be removed safely and economically. The present invention has been made based on the novel knowledge discovered by us.

即ち、本発明は、内壁を固体弗化物でライニングされた
金属製の容器、好ましくは円筒容器に固体弗化物を充填
し、該固体弗化物の充填層中で、少なくとも不純物とし
て二弗化二窒素を含有する三弗化窒素ガスを150〜6
00℃の温度に加熱することを特徴とする三弗化窒素ガ
スの精製方法、である。
That is, in the present invention, a metal container, preferably a cylindrical container, whose inner wall is lined with a solid fluoride is filled with a solid fluoride, and at least dinitrogen difluoride is contained as an impurity in the packed bed of the solid fluoride. Nitrogen trifluoride gas containing 150 to 6
This is a method for purifying nitrogen trifluoride gas, which is characterized by heating to a temperature of 00°C.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、本発明で使用する容器等の設備について説明する
に、NF、ガスは高圧ガス取締法の通用を受ける。従っ
て、その製造設備は高圧ガス製造設備でなければならず
、製造設備は一最的に外部を金属製とする必要がある。
First, to explain the equipment such as containers used in the present invention, NF and gas are subject to the High Pressure Gas Control Law. Therefore, the manufacturing equipment must be a high-pressure gas manufacturing equipment, and the outside of the manufacturing equipment must be made of metal.

以上の理由により、本発明で使用する容器好ましくは円
筒容器は材質が鉄、ステンレス等の金属製でなければな
らない。
For the above reasons, the container used in the present invention, preferably a cylindrical container, must be made of metal such as iron or stainless steel.

なお、以下の説明において、容器形状としてはもっとも
製作が容易な円筒容器に代表させて説明するが、これは
第1請求項の記載からも明らかなごとく、特許法第70
条で規定する本発明の技術的範囲から円筒容器以外の、
例えば角形、箱形、円錐形、二重管等の容器形状を排除
する趣旨ではないことは、明確に理解されるべきである
In the following explanation, a cylindrical container, which is the easiest to manufacture, will be used as a representative container shape, but as is clear from the description of the first claim, this is based on Patent Law No. 70.
Other than cylindrical containers within the technical scope of the present invention as defined in Article 1.
It should be clearly understood that this is not intended to exclude container shapes such as square, box, conical, double tube, etc.

本発明において使用する該金属製の円筒容器(以下、単
に円筒容器と記す)は、好ましくはNFIガスの入口管
と出口管を備えており、内壁を固体弗化物でライニング
された容器であることが望ましい。
The metal cylindrical container used in the present invention (hereinafter simply referred to as cylindrical container) is preferably equipped with an inlet pipe and an outlet pipe for NFI gas, and whose inner wall is lined with solid fluoride. is desirable.

本発明ではNFffガスは上記の円筒容器内でJfft
i600℃程度まで加熱されるので、その内壁をライニ
ングする固体弗化物は融点が600℃を越えるものであ
ることが好ましい。このような固体弗化物を例示すると
、弗化リチウム(TiF) 、弗化ナトリウム(NaF
) 、フッ化カリウム(KF)、弗化ルビジウム(Rb
F) 、弗化セシウム(CsF)等の周期律表IA属の
金属弗化物;弗化ベリリウム(BeFz)、弗化マグネ
シウム(MgFz)、弗化カルシウム(CaFi)、弗
化ストロンチウム(SrF2)、弗化バリウム(BaF
z)等のHA属の金属弗化物;弗化アルミニウム、(A
IF、)、弗化ガリウム(GaF3)、弗化インシジウ
ム(InF3)等のll1A属の金属弗化物;弗化アル
ミニウムナトリウム(Na sA I F &)の如き
複塩が挙げられる。またこれらの混合物でも差支えない
In the present invention, the NFff gas is Jfft in the above-mentioned cylindrical container.
Since it is heated to about 600°C, it is preferable that the solid fluoride lining the inner wall has a melting point of over 600°C. Examples of such solid fluorides include lithium fluoride (TiF) and sodium fluoride (NaF).
), potassium fluoride (KF), rubidium fluoride (Rb
F) Metal fluorides in Group IA of the periodic table such as cesium fluoride (CsF); beryllium fluoride (BeFz), magnesium fluoride (MgFz), calcium fluoride (CaFi), strontium fluoride (SrF2), fluoride Barium chloride (BaF
Metal fluorides of the HA group such as aluminum fluoride, (A
Metal fluorides of the 11A group such as IF, ), gallium fluoride (GaF3), and insidium fluoride (InF3); and double salts such as sodium aluminum fluoride (Na sA I F &). A mixture of these may also be used.

尚、上記以外の例えば融点が600℃以下の固体弗化物
であっても、350’C程度以上の融点のものであれば
その融点未満の温度で本発明を差支えな〈実施し得るこ
とは云うまでもない。
In addition, even if there is a solid fluoride other than the above, for example, with a melting point of 600° C. or lower, as long as it has a melting point of about 350° C. or higher, the present invention can be carried out at a temperature below that melting point. Not even.

本発明においては、NF、を加熱する上記容器の形状は
必ずしも円筒形である必要はないが、容器そのものの制
作及び固体弗化物のライニング加工が容易である点と、
該ライニング層の強度、使用中におけるライニング層へ
の亀裂の発生の防止などの面で円筒形であることが好ま
しい、ライニング層の厚みは特に限定はないが、あまり
薄いとライニング加工が技術的に困難であり、また、円
筒容器の内壁に完全にライニングされず一部円筒容器の
金属面が露出する慣れがある。逆に厚くなり過ぎると、
本発明では円筒容器の加熱を該円筒容器の外部からヒー
ター等で加熱する方法で行うので、該加熱の際の伝熱効
率が低下し、熱エネルギーの填失となるので好ましくな
く、従ってライニング層の厚みは1〜5IIIn程度で
実施される。
In the present invention, the shape of the container for heating NF does not necessarily have to be cylindrical, but the container itself is easy to manufacture and the solid fluoride lining process is easy.
A cylindrical shape is preferable in terms of the strength of the lining layer and the prevention of cracks in the lining layer during use.There is no particular limitation on the thickness of the lining layer, but if it is too thin, the lining processing may be difficult. This is difficult, and it is common for the inner wall of the cylindrical container to not be completely lined, leaving a portion of the metal surface of the cylindrical container exposed. On the other hand, if it becomes too thick,
In the present invention, the cylindrical container is heated from outside the cylindrical container using a heater or the like, which is not preferable because the heat transfer efficiency during heating decreases and thermal energy is lost. The thickness is approximately 1 to 5 IIIn.

円筒容器の内壁に固体弗化物をライニングする方法とし
ては、前記に例示した固体弗化物の内、比較的融点の低
い、例えばIA属の元素の弗化物を使用する場合には、
焼結法を採用することができる。
As a method for lining the inner wall of a cylindrical container with a solid fluoride, when using a fluoride of an element of the IA group, which has a relatively low melting point among the solid fluorides exemplified above, for example,
A sintering method can be adopted.

即ち、第1図に示す如く、円筒容器1の内径よりやや小
さい外径の内筒3を、円筒容器1内に同君になるように
挿入する。次に、上記円筒容器1と内筒3の間隙に粉状
の固体弗化物4を充填した後、圧入管5に荷重を加えて
固体弗化物4を圧縮成形する。この固体弗化物4の充填
及び圧縮成形を繰り返し行い、円筒容器1の内壁全面に
固体弗化物4の圧縮成形層を形成する。しかる後内筒1
をゆっくりと引き抜き、この円筒容器1を窒素(N2)
、ヘリウム(He)等の不活性ガス雰囲気下で徐々に固
体弗化物4の軟化点まで昇温したのち徐冷することによ
り、容易に円筒容器1の内壁に固体弗化物4をライニン
グすることができる。
That is, as shown in FIG. 1, an inner cylinder 3 having an outer diameter slightly smaller than the inner diameter of the cylindrical container 1 is inserted into the cylindrical container 1 so as to be flush with each other. Next, after filling the gap between the cylindrical container 1 and the inner tube 3 with powdered solid fluoride 4, a load is applied to the press-fit tube 5 to compress and mold the solid fluoride 4. This filling and compression molding of the solid fluoride 4 is repeated to form a compression molded layer of the solid fluoride 4 on the entire inner wall of the cylindrical container 1. After that, inner cylinder 1
Slowly pull out the cylindrical container 1 and fill it with nitrogen (N2).
The inner wall of the cylindrical container 1 can be easily lined with the solid fluoride 4 by gradually raising the temperature to the softening point of the solid fluoride 4 under an inert gas atmosphere such as helium (He), and then slowly cooling it. can.

この場合、固体弗化物は水分を2〜3重景%含有させて
おくと、上記の圧縮成形がより容易であるので好ましい
、このことは後記する高圧プレス法によるライニングの
場合も同様である。
In this case, it is preferable for the solid fluoride to contain 2 to 3% water, since the above-mentioned compression molding is easier. This also applies to the case of lining by the high-pressure pressing method described later.

また、円筒容器3には予めその表面に潤滑剤を塗布して
おくと、円筒容器1の表面に固体弗化物4の圧縮成形層
形成後の、内筒3の引き抜きが容易であるので好ましい
Further, it is preferable to apply a lubricant to the surface of the cylindrical container 3 in advance, since this makes it easier to pull out the inner cylinder 3 after the compression-molded layer of the solid fluoride 4 is formed on the surface of the cylindrical container 1.

尚、固体弗化物中に水分が含有されていると、NFユを
通気した際にNF、とこの水分が反応して酸化窒素(N
o)を生成するので好ましくない、しかしこの固体弗化
物層中に含まれる水分は、上記の該固体弗化物層の加熱
により固体弗化物層に付着した潤滑剤と共に蒸発除去さ
れる。
If water is contained in the solid fluoride, when the NF is aerated, the water reacts with the NF and forms nitrogen oxide (N2).
The water contained in this solid fluoride layer, which is undesirable because it produces o), is evaporated and removed together with the lubricant adhering to the solid fluoride layer by the heating of the solid fluoride layer.

融点が比較的高い固体弗化物を円筒容器の内壁にライニ
ングする場合には、高圧プレス法が適当である。即ち、
焼結法の場合と同様に、第1図に示す円筒容器1と内筒
3の間隙に固体弗化物4を充填した後、圧入管5に荷重
を加えて固体弗化物4の圧縮成形を繰り返すことにより
、円筒容器1内の内壁全面に固体弗化物4のライニング
層を形成した後、内筒3をゆっくり引き抜くことにより
実施することができる。
When lining the inner wall of a cylindrical container with a solid fluoride having a relatively high melting point, a high-pressure press method is suitable. That is,
As in the case of the sintering method, after filling the gap between the cylindrical container 1 and the inner tube 3 shown in FIG. 1 with the solid fluoride 4, a load is applied to the press-fit tube 5 and compression molding of the solid fluoride 4 is repeated. This can be carried out by forming a lining layer of the solid fluoride 4 on the entire inner wall of the cylindrical container 1 and then slowly pulling out the inner cylinder 3.

尚、この場合強固なライニング層を形成するためには、
上記の圧縮成形時の荷重は2 t/cd以上が好ましい
、また、内筒3には焼結法の場合と同様に、予めその表
面に潤滑剤を塗布しておけば、円筒容器1の内面に固体
弗化物のライニング層形成後における内筒3の引抜きが
容易であるので望ましい。
In this case, in order to form a strong lining layer,
The load during the above compression molding is preferably 2 t/cd or more, and if the surface of the inner cylinder 3 is coated with lubricant in advance, as in the case of the sintering method, the inner surface of the cylindrical container 1 can be This is desirable because it is easy to pull out the inner cylinder 3 after forming the solid fluoride lining layer.

尚、この場合固体弗化物中に含まれる水分は、前記した
と同様の理由で固体弗化物のライニング層形成後に、加
熱等により咳うイニング店に付着した潤滑剤と共に蒸発
除去する必要がある。
In this case, the moisture contained in the solid fluoride must be removed by evaporation together with the lubricant adhering to the lining by heating or the like after the solid fluoride lining layer is formed for the same reason as described above.

更に本発明においては、円筒容器の内壁へ固体弗化物を
ライニングする方法として、上記方法の他に、第1図の
円筒容器1と内筒3の間隙に溶融した固体弗化物を流入
した後、冷却固化させるなどの方法を採用することもで
きる。
Furthermore, in the present invention, as a method for lining the inner wall of a cylindrical container with a solid fluoride, in addition to the above method, after flowing a molten solid fluoride into the gap between the cylindrical container 1 and the inner tube 3 shown in FIG. It is also possible to employ methods such as cooling and solidifying.

次に、上記円筒容器に充填する固体弗化物について説明
する。
Next, the solid fluoride to be filled into the cylindrical container will be explained.

本発明に使用する固体弗化物は円筒容器の内壁へのライ
ニングに使用する固体弗化物と同様に、600 ’C以
上の融点であるものが望ましいが、融点が600℃未満
のものであってもNFsを加熱する温度において固体で
あればよく、例えば350℃程度以上の融点を持つもの
はその融点未満の温度において本発明を差支えな(実施
することができる。
The solid fluoride used in the present invention, like the solid fluoride used for lining the inner wall of a cylindrical container, preferably has a melting point of 600'C or higher, but even if the melting point is less than 600°C, It is sufficient that the NFs is solid at the temperature at which it is heated, and for example, those having a melting point of about 350° C. or higher can be used in the present invention at temperatures below that melting point.

従って、このような固体弗化物は円筒容器への内壁のラ
イニングに使用するものとして前記例示的に列挙したも
のと同一のものが好適に使用されるのである。
Therefore, the same solid fluorides as those listed above as examples for lining the inner wall of a cylindrical container are preferably used.

円筒容器に充填する固体弗化物の形状は粒状のものが好
ましく、その大きさには特に限定はなく、反応器の大き
さや取扱いやすさなどによって決められる。また、固体
弗化物が粉状であっても、打錠機などで錠剤化すること
により好適に使用可能である。
The shape of the solid fluoride to be filled into the cylindrical container is preferably granular, and its size is not particularly limited and is determined by the size of the reactor, ease of handling, etc. Furthermore, even if the solid fluoride is in powder form, it can be suitably used by forming it into tablets using a tablet machine or the like.

尚、上記固体弗化物は水分を含有していると、Nhガス
と接触した際にNh と該水分が反応して一酸化窒素(
NO)を生成するので、従って固体弗化物は前もって乾
燥し水分を十分除去しておくことが望ましい。
In addition, if the solid fluoride mentioned above contains water, when it comes into contact with Nh gas, the water reacts with Nh and forms nitrogen monoxide (
Therefore, it is desirable to dry the solid fluoride in advance to sufficiently remove moisture.

本発明ではN2F2を含むNF3ガスの加熱は、上記の
如き内壁を固体弗化物でライニングされた円筒容器に固
体弗化物を充填し、該円筒容器を加熱した状態でN2F
2を含有するNFユガスを該円筒容器に通気する方法が
好ましい。該円筒容器の加熱は、該円筒容器の外部をヒ
ーター等で加熱する方法で簡単に実施することができる
In the present invention, heating of NF3 gas containing N2F2 is carried out by filling a cylindrical container whose inner wall is lined with solid fluoride with solid fluoride, heating the cylindrical container, and heating the NF3 gas containing N2F2.
A preferred method is to ventilate NF Yugas containing 2 into the cylindrical container. Heating of the cylindrical container can be easily carried out by heating the outside of the cylindrical container with a heater or the like.

本発明においては、精製すべきNF3ガスを、前記の如
くして内面を固体弗化物でライニングされた円筒容器中
に、上記固体弗化物を充填した充填層中で加熱し分解す
る。該NF、の加熱は、上記の如き内面を固体弗化物で
ライニングされた円筒容器を予め準備し、これに固体弗
化物を充填した後、これを加熱した状態としておき、N
zhを含有するNhガスを該円筒容器に通気する方法が
好ましい、該円筒容器の加熱は、該円筒容器の外部をヒ
ーター等で加熱する方法で簡単に実施することができる
In the present invention, the NF3 gas to be purified is heated and decomposed in a packed bed filled with the solid fluoride in a cylindrical container whose inner surface is lined with a solid fluoride as described above. To heat the NF, prepare in advance a cylindrical container whose inner surface is lined with solid fluoride as described above, fill it with solid fluoride, and then leave it in a heated state.
A method of venting Nh gas containing zh into the cylindrical container is preferred, and heating of the cylindrical container can be easily carried out by heating the outside of the cylindrical container with a heater or the like.

本発明ではN2Ftを含むNF3ガスの加熱温度は、1
50〜600℃1好ましくは250〜350℃で実施さ
れる。通気温度が150℃未満ではNtFzを殆ど分解
除去できない。逆に600℃を越える温度ではNzFz
はほぼ完全に除去できるものの、円筒容器のライニング
層が熱膨張率の差によって亀裂が生ずる慣れがあるので
不都合である。また熱エネルギーの損失にもつながる。
In the present invention, the heating temperature of NF3 gas containing N2Ft is 1
It is carried out at a temperature of 50 to 600°C, preferably 250 to 350°C. If the ventilation temperature is less than 150°C, almost no NtFz can be decomposed and removed. On the other hand, at temperatures exceeding 600℃, NzFz
Although it can be almost completely removed, it is disadvantageous because the lining layer of a cylindrical container tends to crack due to the difference in coefficient of thermal expansion. It also leads to loss of thermal energy.

尚、上記加熱温度において、NJzの分解速度は非常に
速いので通気させるNF3ガスの容器内での滞留時間(
反応器容積とガス体積速度の比)は短くてかまわないが
、通常、5〜1000秒程度の範囲で実施される。
In addition, at the above heating temperature, the decomposition rate of NJz is very fast, so the residence time (
The reaction time (ratio of reactor volume to gas volume velocity) may be short, but it is usually carried out within a range of about 5 to 1000 seconds.

本発明では、上記円筒容器に通気するNF、ガスは、単
独で供給してもかまわないが、N2、He等の不活性ガ
ス等で希釈したものでも差支えない。また、通気ガスの
圧力については特に制限はないが、通常、0〜5 kg
/cm”−Gの圧力が操作し易いので好ましい。
In the present invention, the NF and gas to be ventilated into the cylindrical container may be supplied alone, or may be diluted with an inert gas such as N2 or He. There are no particular restrictions on the pressure of ventilation gas, but it is usually 0 to 5 kg.
A pressure of /cm''-G is preferred because it is easy to operate.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳細に説明した如<、NF3ガス中のNz
Fzを除去する方法として、内壁を固体弗化物でライニ
ングされた円筒容器に固体弗化物を充填し、該固体弗化
物層中でNhガスを特定の温度に加熱するという非常に
簡単な方法であり、極めて経済的な方法である。また後
記する実施例が示す如く、NJzの除去率が優れている
ので、本発明の方法で精製したNhガスを従来公知の精
製方法、例えば前記のゼオライトなどの吸着剤を使用し
て再度精製すれば、参考例1が示す如く、半導体ドライ
エツチング剤の原料等として好適な高純度のNF、ガス
を容易に得ることができると云う、顕著な作用効果を奏
するのである。尚、本発明では上記容器中に固体弗化物
が充填しであるので、単にNF、を容器中で加熱するよ
りもNzhの除去率が更に向上するのである。更に、本
発明の方法はNFSの損失も殆どなく高収率にてNF、
ガスが得られ、かつ安全な方法でもある。
As explained in detail above, the present invention
A very simple method for removing Fz is to fill a cylindrical container whose inner wall is lined with solid fluoride with solid fluoride and heat Nh gas to a specific temperature in the solid fluoride layer. , is an extremely economical method. Furthermore, as shown in the Examples described later, the removal rate of NJz is excellent, so the Nh gas purified by the method of the present invention can be repurified using a conventionally known purification method, for example, using an adsorbent such as the above-mentioned zeolite. For example, as shown in Reference Example 1, it has a remarkable effect in that highly purified NF and gas suitable as raw materials for semiconductor dry etching agents can be easily obtained. In the present invention, since the container is filled with solid fluoride, the removal rate of Nzh is further improved than simply heating NF in the container. Furthermore, the method of the present invention produces NF, in high yield, with almost no loss of NFS.
It is a method that provides gas and is also safe.

(実施例) 以下、実施例により本発明を更に具体的に説明する。尚
、実施例、比較例及び参考例中の%及びppmは特記し
ない限り容量基準を表す。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that % and ppm in Examples, Comparative Examples, and Reference Examples represent capacity standards unless otherwise specified.

実施例1〜3 内径10mm、長さ300mmのステンレス鋼製の円筒
容器(カラム)1に、第1図に示すように表面に潤滑剤
としてステアリン酸を塗布した外径が6InI11、長
さ400a+mの内筒3をカラム1と同君に挿入した後
、該カラム1と咳内筒3の間隙に水分含有量が3重量%
の弗化リチウム粉末に弗化セシウム粉末を5重量%添力
吋昆合した粉末4を少しずつ充填した後、上記間隙に外
径9.6mm内径6.5mmの圧入管5を挿入し、この
圧入管5にLt/cfflの荷重を加えて混合粉末4を
圧縮成形した。この混合粉末4の挿入、圧縮成形の操作
を操り返し行いカラム1の内壁全面に混合粉末4の圧縮
成形体を形成し、しかる後内筒3をゆっくり抜き出した
Examples 1 to 3 A cylindrical container (column) 1 made of stainless steel with an inner diameter of 10 mm and a length of 300 mm was coated with stearic acid as a lubricant on the surface as shown in FIG. After inserting the inner tube 3 into the column 1, the water content is 3% by weight in the gap between the column 1 and the inner tube 3.
After gradually filling the lithium fluoride powder with 5% by weight of cesium fluoride powder 4, a press-fit tube 5 with an outer diameter of 9.6 mm and an inner diameter of 6.5 mm was inserted into the gap. A load of Lt/cffl was applied to the press-fit tube 5 to compression mold the mixed powder 4. The operations of inserting the mixed powder 4 and compression molding were repeated to form a compression molded body of the mixed powder 4 on the entire inner wall of the column 1, and then the inner tube 3 was slowly pulled out.

次に、このカラム1をN、ガス雰囲気下の電気炉内にて
200℃/hの昇温速度で850℃まで昇温し、850
℃の温度に1時間保持した後電気炉内で自然放冷により
常温まで冷却して、厚さ2m−の固体弗化物層で内壁を
全面にライニングされたカラム1を得た。尚、上記加熱
により弗化リチウム及び弗化セシウム中に含まれている
水分及びライニング層形成の際使用した潤滑剤も蒸発除
去された。
Next, this column 1 was heated to 850°C at a heating rate of 200°C/h in an electric furnace under a N gas atmosphere.
The column was maintained at a temperature of .degree. C. for 1 hour and then cooled to room temperature by natural cooling in an electric furnace to obtain a column 1 whose inner wall was entirely lined with a 2 m-thick solid fluoride layer. It should be noted that the above heating also evaporated and removed the water contained in the lithium fluoride and cesium fluoride and the lubricant used in forming the lining layer.

しかる後このカラム1に粒径が24〜32メツシユの粒
状の弗化カルシウム(CaFz)を充填(充填高さ25
0mm ) L、200℃の温度に加熱した状態でN、
ガスを100cc/win、の流量で1時間通気して、
CaFz中の水分を除去した。
After that, this column 1 was filled with granular calcium fluoride (CaFz) having a particle size of 24 to 32 mesh (filling height 25
0mm) L, N heated to a temperature of 200°C,
Vent gas at a flow rate of 100cc/win for 1 hour,
Water in CaFz was removed.

次にこのCaF tを充填したカラム1に、第1表に示
す条件で82Fgを含有するNhガスをほぼ同容積のH
eガスで希釈して通気した。通気後のガスは濃度1重量
%のヨウ化カリウム(H)水溶液中にバブリングさせた
後、液体窒素で冷却された捕集ボンベに導きNFjを液
化させ捕集した。  NF、ガスの通気停止後は上記の
Nhの捕集ポンベ内を真空排気しlleHeガス去した
Next, approximately the same volume of Nh gas containing 82Fg was added to column 1 filled with this CaFt under the conditions shown in Table 1.
It was diluted with e-gas and vented. The gas after the ventilation was bubbled into an aqueous solution of potassium iodide (H) having a concentration of 1% by weight, and then introduced into a collection cylinder cooled with liquid nitrogen to liquefy and collect NFj. After stopping the supply of NF and gas, the inside of the Nh collection pump was evacuated to remove the lleHe gas.

通気前のNF3ガスの組成及び通気後の捕集ポン第  
1  表 べ内のNF、の組成を、ガスクロマトグラフィーにより
分析した。その結果は第1表に示す通りNJzは高い除
去率であった。またNhの消失も殆どなかった。
Composition of NF3 gas before ventilation and collection pump number after ventilation
1 The composition of NF in the table was analyzed by gas chromatography. As shown in Table 1, NJz had a high removal rate. In addition, there was almost no disappearance of Nh.

尚、第1表においてN2ガスの含有量が通気後の方が多
いことは、加熱によりNJzがN2とF2に分解したも
のと考えられる。
The fact that the N2 gas content is higher after ventilation in Table 1 is considered to be because NJz was decomposed into N2 and F2 due to heating.

また、実、施例3において Nhガス通気後のカラム1
のライニング面の状態を観察したが、亀裂や破損等の異
状は認められなかった。
In addition, in Example 3, column 1 after Nh gas ventilation
The condition of the lining surface was observed, and no abnormalities such as cracks or damage were observed.

実施例4〜6 実施例1〜3で使用したと同一の内径10mn+、長さ
300mmのステンレス製円筒容器(カラム)l及び外
径6vs 、長さ4001の内筒3を使用して、実施例
1〜3と同様に第1図に示すカラム1と表面に潤滑剤と
してステアリン酸を塗布した内筒3の間隙に、水分含有
量が3重1%の第2表に示す種類の固体弗化物4の粉末
を少しずつ充填した後、上記間隙に外径9.8mm 、
内径6.21の圧入管5に2 t/dの荷重を加えて、
固体弗化物4の粉末を圧第  2  表 縮した。この固体弗化物4の粉末の充填・圧縮を繰り返
し行い、カラムlの内壁全面に固体弗化物粉末のライニ
ング層を形成し、しかる後内筒3をゆっくり抜き出した
Examples 4 to 6 Using the same stainless steel cylindrical container (column) 1 with an inner diameter of 10 mm+ and a length of 300 mm as used in Examples 1 to 3 and an inner cylinder 3 with an outer diameter of 6 vs. and a length of 400 mm, Examples were carried out. Similarly to 1 to 3, a solid fluoride of the type shown in Table 2 with a water content of 1% by weight was placed in the gap between the column 1 shown in Figure 1 and the inner cylinder 3 whose surface was coated with stearic acid as a lubricant. After filling the powder in Step 4 little by little, the above gap was filled with an outer diameter of 9.8 mm.
Applying a load of 2 t/d to the press-fit tube 5 with an inner diameter of 6.21 mm,
The powder of solid fluoride 4 was subjected to a second compaction. The solid fluoride powder 4 was repeatedly filled and compressed to form a lining layer of the solid fluoride powder on the entire inner wall of the column 1, and then the inner cylinder 3 was slowly extracted.

次に、このカラム1をN2ガス雰囲気の電気炉内にて2
00℃/hの昇温速度で300℃まで昇温しで、300
℃の温度に1時間保持し固体弗化物層中に含有している
水分及び該固体弗化物層に付着している上記ステアリン
酸を蒸発除去した後、電気炉内で自然放冷により常温ま
で冷却して、厚さ2IIILlの固体弗化物で内壁を全
面にライニングされたカラム1を得た。
Next, this column 1 was placed in an electric furnace in a N2 gas atmosphere for 2 hours.
By raising the temperature to 300℃ at a heating rate of 00℃/h, 300℃
℃ for 1 hour to evaporate and remove the water contained in the solid fluoride layer and the stearic acid attached to the solid fluoride layer, and then cooled to room temperature by natural cooling in an electric furnace. As a result, a column 1 whose inner wall was entirely lined with solid fluoride having a thickness of 2IIIL was obtained.

かくして得られたカラムlに第2表に示す粒径が24〜
32メツシユの固体弗化物を実施例1〜3と同容量充填
し、実施例1〜3と同一条件で固体弗化物を乾燥して水
分を除去した。
The column 1 thus obtained had a particle size of 24 to 24 as shown in Table 2.
32 meshes of solid fluoride were filled in the same volume as in Examples 1 to 3, and the solid fluoride was dried to remove water under the same conditions as in Examples 1 to 3.

このカラム1に第2表に示す条件でN*hを含有するN
F1N1ガス実施例1〜3と同様にほぼ同容積のHeガ
スで希釈して通気した0通気後のガスは実施例1〜3と
同様に濃度1重量%のKl水溶液中にバブリングさせた
後、液体窒素で冷却された捕集ポンベに導きNF、を液
化させ捕集した。 NF、ガスの通気停止後は上記のN
hの捕集ボンへ内を真空排気しHeガスを除去した。
This column 1 contains N*h under the conditions shown in Table 2.
The F1N1 gas was diluted with approximately the same volume of He gas as in Examples 1 to 3 and aerated. The gas after 0 ventilation was bubbled into a Kl aqueous solution with a concentration of 1% by weight as in Examples 1 to 3. The NF was introduced into a collection pump cooled with liquid nitrogen, where it was liquefied and collected. NF, after gas ventilation is stopped, use the above N
The inside of the collection bomb was evacuated to remove He gas.

通気前のNF、ガスの組成及び通気後の捕集ポンベ内の
NF、の組成を、ガスクロマトグラフィーにより分析し
た。その結果は第2表に示す通りNtFzは高い除去率
であった。またNhの消失も殆どなかった。
The composition of NF and gas before ventilation and the composition of NF in the collection pump after ventilation were analyzed by gas chromatography. As shown in Table 2, the results showed that NtFz had a high removal rate. In addition, there was almost no disappearance of Nh.

尚、第2表においてもN2ガスの含有量が通気後の方が
多いことは加熱によりN2F2がN2とF2に分解した
ものと考えられる。
Furthermore, in Table 2, the content of N2 gas is higher after ventilation, which is considered to be because N2F2 was decomposed into N2 and F2 due to heating.

また、Nhガス通気後のカラム1のライニング面の状態
を観察したが、何れも亀裂や破損等の異状は認められな
かった。
In addition, the condition of the lining surface of the column 1 after the Nh gas ventilation was observed, and no abnormality such as cracks or damage was observed.

比較例1〜3 第3表に示す材質の円筒容器(カラム)(寸法は内径6
IIIm、長さ300+nm )の内壁を固体弗化物で
ライニングすることなくそのまま使用し、このカラムに
粒径が24〜32メンシユの第3表に示す種類第  3
  表 の金属粒子を充填(充填高さ250mm) シ、第3表
に示す条件でN、F、を含有するNFIガスを実施例1
〜3と同様に、はぼ同容積のlleHeガス釈して通気
した。通気後のガスは実施例1〜3と同様に濃度1fi
fi%のKl水溶液中にバブリングさせた後、実施例1
〜3と同様にして液体窒素で冷却した捕集ボンベに導き
NF3を液化させ捕集した。Nhガスの通気停止後は上
記NF、の捕集ポンベ内を真空排気しHeガスを除去し
た。
Comparative Examples 1 to 3 Cylindrical containers (columns) made of the materials shown in Table 3 (dimensions are inner diameter 6
IIIm, length 300+nm) was used as it was without lining with solid fluoride, and the column was filled with type 3 shown in Table 3 having a particle size of 24 to 32 mesh.
Filled with metal particles shown in the table (filling height 250 mm) Example 1 NFI gas containing N and F was applied under the conditions shown in Table 3
As in ~3, approximately the same volume of lleHe gas was added and vented. The gas after ventilation has a concentration of 1fi as in Examples 1 to 3.
After bubbling into a Kl aqueous solution of fi%, Example 1
NF3 was liquefied and collected by introducing it into a collection cylinder cooled with liquid nitrogen in the same manner as in 3. After stopping the ventilation of Nh gas, the inside of the NF collection pump was evacuated to remove He gas.

通気前のNF、ガスの組成及び通気後の捕集ボンベ内の
NF3の組成を、ガスクロマトグラフィーにより分析し
た。その結果は第3表に示す通りであり、Nihは除去
されるもののNF2の収率が悪くなることが分かる。
The composition of NF and gas before ventilation and the composition of NF3 in the collection cylinder after ventilation were analyzed by gas chromatography. The results are shown in Table 3, and it can be seen that although Nih is removed, the yield of NF2 is poor.

参考例1 内径10慎載長さ300+nrlのステンレス製の円筒
容器(カラム)に、市販のゼオライト(細孔径5人、粒
径が24〜48メツシユの粒状品)を充填(充填層25
0mm) した後、このゼオライト層に実施例3で得た
NJzを除去したNF、ガスを通気した。通気条件とし
ては温度は常温(約20℃) 、Nhガスの流量2ON
 rd/min、 、通気圧カフ60Torrであった
Reference Example 1 A stainless steel cylindrical container (column) with an inner diameter of 10 and a loading length of 300 + nrl was filled with commercially available zeolite (a granular product with a pore size of 5 and a particle size of 24 to 48 mesh) (packed bed of 25
0 mm), then the NF obtained in Example 3 from which NJz was removed and gas were bubbled through the zeolite layer. The ventilation conditions are room temperature (approximately 20℃) and Nh gas flow rate of 2ON.
rd/min, and the ventilation pressure of the cuff was 60 Torr.

通気後のNF3ガスの組成をガスクロクロマトグラフィ
ーにより分析した。その結果は不純物の含有量はNth
 lQppm以下、N、Q loppm以下、Co、 
10ppm以下と微量であり、本発明の方法により予め
82F、を除去したNF、ガスを従来公知の吸着剤で精
製すれば、N、OやCO□等のNzFz以外の不純物が
極めて高い除去率で除去された高純度のNF、が得られ
ることが理解されるのである。
The composition of the NF3 gas after ventilation was analyzed by gas chromatography. The result is that the impurity content is Nth
1 Qppm or less, N, Q loppm or less, Co,
The amount of 82F is as small as 10 ppm or less, and if NF and gas from which 82F has been removed in advance by the method of the present invention are purified using a conventionally known adsorbent, impurities other than NzFz, such as N, O, and CO□, can be removed at an extremely high rate. It is understood that highly purified NF is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において円筒容器(カラム)の四壁に
、固体弗化物をライニングする状態を示す説明図である
。 図において、 1−・・−・・・・−金属製の円筒容器(カラム)、2
・−・・−−−NF 、ガス出口管、計−・・・・−・
・内筒、 4−・・・−・一固体弗化物、 5−・−・−・−・−圧入管、 6−〜−−−−−−−−−補助円筒管、7−・・・一定
盤、 を示す。
FIG. 1 is an explanatory diagram showing a state in which the four walls of a cylindrical container (column) are lined with solid fluoride in an example. In the figure, 1-...--metal cylindrical container (column), 2
・−・・−−NF, gas outlet pipe, total−・・・・−・
・Inner cylinder, 4-...--One solid fluoride, 5--...--Press-fit tube, 6------Auxiliary cylindrical tube, 7-... Fixed board, indicates.

Claims (2)

【特許請求の範囲】[Claims] (1)内壁を固体弗化物でライニングされた金属製の容
器に固体弗化物を充填し、該固体弗化物の充填層中で、
少なくとも不純物として二弗化二窒素を含有する三弗化
窒素ガスを150〜600℃の温度に加熱することを特
徴とする三弗化窒素ガスの精製方法。
(1) A metal container whose inner wall is lined with solid fluoride is filled with solid fluoride, and in the packed bed of solid fluoride,
A method for purifying nitrogen trifluoride gas, which comprises heating nitrogen trifluoride gas containing at least dinitrogen difluoride as an impurity to a temperature of 150 to 600°C.
(2)金属製の容器が円筒容器である請求項1記載の方
法。
(2) The method according to claim 1, wherein the metal container is a cylindrical container.
JP63090032A 1988-04-11 1988-04-12 Method for purifying nitrogen trifluoride gas Granted JPH01261210A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63090032A JPH01261210A (en) 1988-04-12 1988-04-12 Method for purifying nitrogen trifluoride gas
CA000595889A CA1318108C (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
EP89106050A EP0337294B1 (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
DE89106050T DE68907366T2 (en) 1988-04-11 1989-04-06 Process for refining nitrogen trifluoride gas.
US07/334,529 US4948571A (en) 1988-04-11 1989-04-07 Process for purifying nitrogen trifluoride gas
KR1019890004776A KR910004831B1 (en) 1988-04-11 1989-04-11 Method for purifying nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090032A JPH01261210A (en) 1988-04-12 1988-04-12 Method for purifying nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH01261210A true JPH01261210A (en) 1989-10-18
JPH0474284B2 JPH0474284B2 (en) 1992-11-25

Family

ID=13987324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090032A Granted JPH01261210A (en) 1988-04-11 1988-04-12 Method for purifying nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JPH01261210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072360A1 (en) 2007-12-03 2009-06-11 Central Glass Company, Limited METHOD FOR REMOVAL OF ClO3F

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072360A1 (en) 2007-12-03 2009-06-11 Central Glass Company, Limited METHOD FOR REMOVAL OF ClO3F

Also Published As

Publication number Publication date
JPH0474284B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
KR940007091B1 (en) Process for purifying nitrogen trifluoride gas
KR910004831B1 (en) Method for purifying nitrogen trifluoride gas
JPS6260128B2 (en)
JPH01261210A (en) Method for purifying nitrogen trifluoride gas
JPS59107910A (en) Method for purifying gaseous argon
JPH01261207A (en) Method for purifying nitrogen trifluoride gas
JPH04265213A (en) Storage method for phosphorus pentafloride
JPH0230609A (en) Purification of nitrogen trifluoride gas
JP2848947B2 (en) Purification method of nitrogen trifluoride gas
JP3090966B2 (en) Purification method of nitrogen trifluoride gas
JPH0234506A (en) Method for purifying gaseous nitrogen trifluoride
JP2848948B2 (en) Purification method of nitrogen trifluoride gas
JPS63151608A (en) Purification of nitrogen trifluoride gas
JPH0222111A (en) Purification of nitrogen trifluoride gas
JPH02164707A (en) Method for purifying gaseous nitrogen trifluoride
US6790419B1 (en) Purification of gaseous inorganic halide
JPH02164708A (en) Method for purifying gaseous nitrogen trifluoride
JPH0218309A (en) Purification of gaseous nitrogen trifluoride
JPH01234301A (en) Production of gaseous metal fluoride
JPH0471842B2 (en)
JPS59162122A (en) Purification of silicon tetrafluoride
JP2866717B2 (en) Method for producing nitrogen trifluoride gas
JPH01261209A (en) Method for purifying nitrogen trifluoride gas
JPH02124723A (en) Method for purifying tungsten hexafluoride
JPS6035172B2 (en) Hydrogen fluoride removal from gas mixtures by absorption on alkaline earth metal fluorides

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 16