JPH0474283B2 - - Google Patents

Info

Publication number
JPH0474283B2
JPH0474283B2 JP8720988A JP8720988A JPH0474283B2 JP H0474283 B2 JPH0474283 B2 JP H0474283B2 JP 8720988 A JP8720988 A JP 8720988A JP 8720988 A JP8720988 A JP 8720988A JP H0474283 B2 JPH0474283 B2 JP H0474283B2
Authority
JP
Japan
Prior art keywords
gas
fluoride
cylindrical container
solid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8720988A
Other languages
Japanese (ja)
Other versions
JPH01261207A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP63087209A priority Critical patent/JPH01261207A/en
Priority to DE89106050T priority patent/DE68907366T2/en
Priority to EP89106050A priority patent/EP0337294B1/en
Priority to CA000595889A priority patent/CA1318108C/en
Priority to US07/334,529 priority patent/US4948571A/en
Priority to KR1019890004776A priority patent/KR910004831B1/en
Publication of JPH01261207A publication Critical patent/JPH01261207A/en
Publication of JPH0474283B2 publication Critical patent/JPH0474283B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は三弗化窒素ガスの精製方法に関する。
更に詳しくは、三弗化窒素ガス中の特に二弗化二
窒素の除去方法に関する。 〔従来技術及び発明が解決しようとする課題〕 三弗化窒素(NF3)ガスは、半導体のドライエ
ツチング剤やCVD装置のクリーニングガスとし
て近年注目されているが、これらの用途に使用さ
れる三弗化窒素ガスは、可及的高純度のものが要
求されている。 三弗化窒素(NF3)ガスは、種々の方法で製造
されるが何れの方法で得られたガスも殆どの場
合、亜酸化窒素(N2O)、二酸化炭素(CO2)、二
弗化二窒素(N2F2)などの不純物を比較的多量
に含んでいるので、上記用途としての高純度の
NF3ガスを得るためには精製が必要である。 NF3ガス中のこれらの不純物を除去する精製方
法としては、ゼオライトなどの吸着剤を用いて不
純物を吸着除去する方法が、最も効率よく簡便な
方法の一つとしてよく知られている〔ケミカル・
エンジニアング(Chem.Eng.)84、116(1977)
等〕。しかしながら、この吸着による精製方法で
は、NF3ガス中にN2F2が存在すると次のような
弊害が生ずる。すなわち、 (1) N2F2が存在すると、他の不純物であるCO2
やN2Oなどの吸着能力が極端に小さくなる。 (2) N2F2が存在すると、NF3も吸着剤に吸着さ
れ易くなり、従つてNF3ガスの損失を招く。 (3) 吸着剤に吸着し濃縮されたN2F2は、分解し
て熱を発し易く、著しい場合には爆発を引き起
こす。 従つて、ゼオライト等の吸着剤を使用してNF3
ガス中の不純物を吸着除去する方法を採用する場
合には、それに先立つて予めN2F2を除去してお
く必要がある。 NF3ガス中のN2F2の除去方法としては、KI、
HI、Na2S、Na2S2O4、Na2SO3等の水溶液と
N2F2と反応槽において反応させて除去する方法
が従来知られている〔J.Massonne、ケミー・イ
ンジエニユール・テヒニーク(Chem.Ing.
Techn.)41、(12)、695、(1969)〕。しかしなが
ら、この方法ではN2F2を完全に除去するために
は比較的長時間を要するので、従つて反応槽がか
なり大きくなるだけではなく大量の薬剤も必要と
する。 また、N2F2を除去する別の方法として、N2F2
を含有するNF3ガスを、加熱したステンレススチ
ール、カーボンスチール、銅、アルミニユム、亜
鉛、鉛、ニツケル、鉄等の金属片やネツトを反応
容器内に充填して触媒充填層を形成し、NF3ガス
を該充填層を通気せしめて接触させ、該金属片や
ネツトを触媒として、その金属片やネツト表面で
反応分解せしめる方法も知られている(特公昭59
−15081号公報)。しかしながら、この方法は、
我々の検討によると、金属片とN2F2が反応して
金属片のやネツトの表面に金属弗化物を形成し易
い。そして、この生成した金属弗化物は多くの場
合、金属片の表面から剥離して粉化し、充填層内
部や精製装置の配管等を閉塞するという問題があ
る。 しかして、我々の検討によると、金属片にニツ
ケルを使用した場合は、ニツケル片はその表面に
弗化物の皮膜を形成するのみであり、該皮膜は比
較的剥離し難いので、配管の閉塞と云う上記問題
は一応防止できるが、表面を弗化物で覆われたニ
ツケル片はもはN2F2と反応せず、当然のことな
がら触媒としての活性は失われるので、定期的に
操作をストツプして新しいニツケル片と取り替
え、触媒層を充填しなおす必要があり、極めて煩
雑であるのみならず、ニツケルが高値であること
と相まつて相当のコツトアツプを招くという問題
がある。 更には、N2F2の除去効率を上げるために、該
金属片の充填層の加熱温度を上昇させると、200
℃以上の温度においては主成分であるNF3も該金
属片とかなり反応して分解が起こり、その分NF3
の収率が低下するという問題もあるのである。 (問題を解決する為の手段) 本発明者等はNF3ガス中に含まれるN2F2の除
去方法について鋭意検討を重ねた結果、意外なこ
とに、N2F2を含むNF3ガスを特定の温度に加熱
するのみで、N2F2が窒素(N2)ガスと弗素
(F2)ガスに効率よく分解するという知見を得
た。また上記加熱を特定の容器内で行なえば、
200℃以上の温度に加熱しても主成分であるNF3
が分解することがないので好都合であつて、これ
により効率よく安全にしかも経済的にNF3ガス中
のN2F2を除去することができる知見をも併せて
得た。本発明は、かかる我々が見出した新規な知
見に基づいてなされるに到つたものである。 即ち、本発明は少なくとも不純物として二弗化
二窒素を含有する三弗化窒素ガスを、内壁を固体
弗化物でライニングされた金属製の容器、好まし
くは円筒容器中で150℃〜600℃呑温度に加熱する
ことを特徴とする三弗化窒素ガスの精製方法であ
る。 〔発明の詳細な開示〕 以下本発明を詳細に説明する。 まず、本発明で使用する容器等の設備について
説明するに、NF3ガスは高圧ガス取締法の適用を
受ける。従つて、その製造設備は高圧ガス製造設
備でなければならず、製造設備は一般的に外部を
金属製とする必要がある。以上の理由により、本
発明で使用する容器好ましくは円筒容器は材質
が、鉄、ステンレス等の金属製でなければならな
い。なお、以下の説明において、容器形状として
はもつとも製作が容易な円筒容器を代表させて説
明するが、これは第1請求項の記載のものから明
らかなごとく、特許法70条で規定する本発明の技
術的範囲から円筒容器以外の、例えば角形、箱
形、円錐形、二重管等の容器形状を排除する趣旨
ではないことは、明確に理解されるべきである。 本発明において使用する該金属製の円筒容器
(以下、単に円筒容器と記す)は、好ましくは
NF3ガスの入口管と出口管を備えており、内壁を
固体弗化物でライニングされた容器であることが
望ましい。 本発明ではNF3ガスは上記の円筒容器内で最高
600℃程度まで加熱されるので、その内壁をライ
ニングする固体弗化物は融点が600℃を越えるも
のであることが好ましい。このような固体弗化物
を例示すると、弗化リチウム(TiF)、弗化ナト
リウム(NaF)、フツ化カリウム(KF)、弗化ル
ジビウム(RbF)、弗化セシウム(CsF)等の周
期律表A属の金属弗化物;弗化ベリリウム
(BeF2)、弗化マグネシウム(MgF2)、弗化カル
シウム(CaF2)、弗化ストロンチウム(SrF2)、
弗化バニウム(BaF2)等のA属の金属弗化
物;弗化アルミニウム(AlF3)、弗化ガリウム
(GaF3)、弗化インシジウム(InF3)等のA属
の金属弗化物;弗化アルミニウムナトリウム
(Na3AlF6)の如き複塩が挙げられる。またこれ
らの混合物でも差支えない。 尚、上記以外の例えば融点が600℃以下の固体
弗化物であつても、350℃程度以上の融点のもの
であればその融点未満の温度で本発明を差支えな
く実施し得ることは云うまでもない。 本発明においては、NF3を加熱する上記容器の
形状は必ずしも円筒形である必要はないが、容器
そのものの制作及び固体弗化物のライニング加工
が容易である点と、該ライニング層の強度、使用
中におけるライニング層への亀裂の発生の防止な
どの面で円筒形であることが好ましい。ライニン
グ層の厚みは特に限定はないが、あまり薄いとラ
イニング加工が技術的に困難であり、また、円筒
容器の内壁に完全にライニングされず一部円筒容
器の金属面が露出する惧れがある。逆に厚くなり
過ぎると、本発明では円筒容器の加熱を該円筒容
器の外部からヒーター等で加熱する方法で行うの
で、該加熱の際の伝熱効率が低下し、熱エネルギ
ーの損失となるので好ましくなく、従つてライニ
ング層の厚みは1〜5mm程度で実施される。 円筒容器の内壁に固体弗化物をライニングする
方法としては、前記に例示した固体弗化物の内、
比較的融点の低い、例えばA属の元素の弗化物
を使用する場合には、焼結法を採用することがで
きる。 即ち、第1図に示す如く、円筒容器1の内径よ
りやや小さい外径の内筒3を、円筒容器1内に同
芯になるように挿入する。次に、上記円筒容器1
と内筒3の間〓に粉状の固体弗化物4を充填した
後、圧入管5に荷重を加えて固体弗化物4を圧縮
成形する。この固体弗化物4の充填及び圧縮成形
を繰り返し行い、円筒容器1の内壁前面に固体弗
化物4の圧縮成形層を形成する。しかる後内筒1
をゆつくりと引き抜き、この円筒容器1を窒素
(N2)、ヘリウム(He)等の不活性ガス雰囲気下
で徐々に固体弗化物4の軟化点まで昇温したのち
徐冷することにより、容易に円筒容器1の内壁に
固体弗化物4をライニングすることができる。 この場合、固体弗化物は水分を2〜3重量%含
有させておくと、上記の圧縮成形がより容易であ
るので好ましい。このことは後記する高圧プレス
法によるライニングの場合も同様である。 尚、円筒容器3には予めその表面に潤滑剤を塗
布しておくと、円筒容器1の表面に固体弗化物4
の圧縮成形層形成後の、内筒3の引き抜きが容易
であるので好ましい。 融点が比較的高い固体弗化物を円筒容器の内壁
にライニングする場合には、高圧プレス法が適当
である。即ち、焼結法の場合と同様に、第1図に
示す円筒容器1と内筒3の間〓に固体弗化物4を
充填した後、圧入管5に荷重を加えて固体弗化物
4の圧縮成形を繰り返すことにより、円筒容器1
内の内壁全面に固体弗化物4のライニング層を形
成した後、内筒3をゆつくりと引き抜くことによ
り実施することができる。 尚、この場合強固なライニング層を形成するた
めには、上記の圧縮成形時の荷重は2t/cm2以上が
好ましい。また、内筒3には焼結法の場合と同様
に、予めその表面に潤滑剤を塗布しておけば、円
筒容器1の内面に固体弗化物のライニング層形成
後における内筒3の引抜きが容易であるので望ま
しい。ただしこの場合、潤滑剤は固体弗化物のラ
イニング層形成後に、加熱等により蒸発除去する
必要がある。 更に本発明においては、円筒容器の内壁へ固体
弗化物をライニングする方法として、上記方法の
他に、第1図の円筒容器1の内筒3の間〓に溶融
した固体弗化物を流入した後、冷却固化させるな
どの方法を採用することもできる。 本発明においては、精製すべきNF3ガスを、斯
くして内面を固体弗化物でライニングされた円筒
容器中で加熱し分解する。該NF3の加熱は、上記
の如き内面を固体弗化物でライニングされた円筒
容器を予め準備し、これを加熱した状態としてお
き、N2F2を含有するNF3ガスを該円筒容器に通
気する方法が好ましい。該円筒容器の加熱は、該
円筒容器の外部をヒーター等で加熱する方法で簡
単に実施することができる。 本発明ではN2F2を含むNF3ガスの加熱温度は、
150〜600℃、好ましくは250〜350℃で実施され
る。通気温度が150℃未満ではN2F2を殆ど分解除
去できない。逆に600℃を越える温度ではN2F2
ほぼ完全に除去できるものの、円筒容器のライニ
ング層が熱膨率の差によつて亀裂が生ずる惧れが
あるので不都合である。また熱エネルギーの損失
にもつながる。尚、上記加熱温度において、
N2F2の分解速度は非常に速いので通気させる
NF3ガスの容器内での滞留時間(反応器容積とガ
ス体積速度の比)は短くてかまわないが、通常、
5〜1000秒程度の範囲で実施される。 本発明では、上記円筒容器に通気するNF3ガス
は、単独で供給してもかまわないが、N2、He等
の不活性ガス等で希釈したものでも差支えない。
また、通気ガスの圧力については特に制限はない
が、通常、0〜5Kg/cm2−Gの圧力が操作し易い
ので好ましい。 〔発明の効果〕 本発明は以上詳細に説明した如く、NF3ガス中
のN2F2を除去する方法として、内壁を固体弗化
物でライニングされた円筒容器中でNF3ガスを特
定の温度に加熱するという非常な簡単な方法であ
るので、極めて経済的な方法である。また後記す
る実施例が示す如く、N2F2の除去率が優れてい
るので、本発明法を方法で精製したNF3ガスを従
来公知の精製方法、例えば前記ゼオライトなどの
吸着剤を使用して再度精製すれば、参考例1が示
す如く、半導体ドライエチチング剤の原料等とし
て好適な高純度のNF3ガスを容易に得ることがで
きるという、顕著な作用効果を奏するのである。
更に、本発明の方法はNF3の損失も殆どなく高収
率にてNF3ガスが得られ、かつ安全な方法であ
る。 (実施例) 以下、実施例により本発明を更に具体的に説明
する。尚、実施例、比較例及び参考例中の%及び
ppmは特記しない限り容量基準を表す。 実施例 1〜3 内径10mm、長さ300mmのステンレス製の円筒容
器(カラム)1に、第1図に示すように表面に潤
滑剤としてステアリン酸を塗布した外径が6mm、
長さ400mmの内筒3をカラム1と同芯に挿入した
後、該カラム1と該内筒3の間〓に水分含有量が
3重量%の弗化リチウム粉末に弗化セシウム粉末
を5重量%添加混合した粉末4を少しずつ充填し
た後、上記間〓に外径9.6mm内径6.5mmの圧入管5
を挿入し、この圧入管5に1t/cm2の荷重を加えて
混合粉末4を圧縮成形した。この混合粉末4の挿
入、圧縮成形の操作を繰り返し行いカラム1の内
壁全面に混合粉末4の圧縮成形体を形成し、しか
る後内筒3をゆつくり抜き出した。 次に、このカラム1をN2ガス雰囲気下の電気
炉内にて200℃/hの昇温速度で850℃まで昇温
し、850℃の温度に1時間保持した後電気炉内で
自然放冷により常温まで冷却して、厚さ2mmの固
体弗化物層で内壁を全面にラニニングされたカラ
ム1を得た。 このカラム1に第1表に示す条件で、N2F2
含有するNF3ガスをほぼ同容積のHeガスで希釈
して通気した。通気後のガスは濃度1%のヨウ化
カリウム(KI)水溶液中にバブリングさせた後、
液体窒素で冷却された捕集ボンベに導きNF3を液
化させ捕集した。NF3ガスの通気停止後は上記の
NF3の捕集ボンベ内を真空排気しHeガスを除去
した。 通気前のNF3ガスの組成及び通気後の捕集ボン
ベ内のNF3の組成を、ガスクロマトグラフイーに
より分析した。その結果は第1表に示す通り
N2F2は高い除去率であつた。またNF3の消失も
殆どなかつた。 尚、第1表においてN2ガスの含有量が通気後
の方が多いことは、加熱によりN2F2がN2とF2
分解したものと考えられる。 また、実施例3においてNF3ガス通気後のカラ
ム1のライニング面の状態を観察したが、亀裂や
破損等の異状は認められなかつた。 実施例 4〜6 実施例1〜3で使用したと同一の内径10mm、長
さ300mmのスレンレス製カラム1及び外径6mm、
長さ400mmの内筒3を使用して、実施例1〜3と
同様に第1図に示すカラム1と表面に潤滑剤とし
てステアリン酸を塗布した内筒3の間〓に、水分
[Industrial Field of Application] The present invention relates to a method for purifying nitrogen trifluoride gas.
More specifically, the present invention relates to a method for removing dinitrogen difluoride from nitrogen trifluoride gas. [Prior art and problems to be solved by the invention] Nitrogen trifluoride (NF 3 ) gas has recently attracted attention as a dry etching agent for semiconductors and a cleaning gas for CVD equipment. Nitrogen fluoride gas is required to be as pure as possible. Nitrogen trifluoride (NF 3 ) gas is produced by various methods, but in most cases, the gas obtained by any of these methods is a mixture of nitrous oxide (N 2 O), carbon dioxide (CO 2 ), and difluoride. Because it contains a relatively large amount of impurities such as dinitrogen oxide (N 2 F 2 ), it is not suitable for high-purity applications.
Purification is necessary to obtain NF3 gas. As a purification method for removing these impurities from NF3 gas, the method of adsorbing and removing impurities using an adsorbent such as zeolite is well known as one of the most efficient and simple methods [Chemical
Engineering (Chem.Eng.) 84, 116 (1977)
etc〕. However, in this adsorption-based purification method, the presence of N 2 F 2 in the NF 3 gas causes the following disadvantages. That is, (1) When N 2 F 2 is present, other impurities such as CO 2
The adsorption capacity for N 2 O, etc. becomes extremely small. (2) The presence of N 2 F 2 also makes it easier for NF 3 to be adsorbed by the adsorbent, thus leading to loss of NF 3 gas. (3) N 2 F 2 that is adsorbed and concentrated on an adsorbent is likely to decompose and generate heat, which in severe cases can cause an explosion. Therefore, using adsorbents such as zeolites to remove NF3
When adopting a method of adsorbing and removing impurities in the gas, it is necessary to remove N 2 F 2 in advance. Methods for removing N2F2 from NF3 gas include KI,
With aqueous solutions such as HI, Na 2 S, Na 2 S 2 O 4 , Na 2 SO 3 , etc.
A method of removing N 2 F 2 by reacting it in a reaction tank is conventionally known [J. Massonne, Chem. Ing.
Techn.) 41, (12), 695, (1969)]. However, this method requires a relatively long time to completely remove N 2 F 2 and thus requires not only a fairly large reaction vessel but also a large amount of chemicals. Also, as another method to remove N 2 F 2 , N 2 F 2
NF 3 gas containing NF 3 gas is filled in a reaction vessel with heated metal pieces or nets of stainless steel, carbon steel, copper, aluminum, zinc, lead, nickel, iron, etc. to form a catalyst packed layer . There is also a method known in which gas is brought into contact with the packed bed by aeration, and reaction decomposition occurs on the surface of the metal piece or net using the metal piece or net as a catalyst (Japanese Patent Publication No. 1983).
-15081). However, this method
According to our study, metal pieces and N 2 F 2 tend to react and form metal fluoride on the surface of metal pieces and nets. In many cases, the generated metal fluoride peels off from the surface of the metal piece and becomes powder, causing a problem of clogging the inside of the packed bed and the piping of the refining device. However, according to our study, when nickel is used as a metal piece, the nickel piece only forms a fluoride film on its surface, and this film is relatively difficult to peel off, so it may cause blockage of pipes. Although the above problem can be prevented, the nickel piece whose surface is covered with fluoride no longer reacts with N 2 F 2 and naturally loses its activity as a catalyst, so it is necessary to periodically stop the operation. It is necessary to replace the nickel with a new piece of nickel and refill the catalyst layer, which is not only extremely complicated, but also causes the problem of a considerable drop-out due to the high price of nickel. Furthermore, in order to increase the removal efficiency of N 2 F 2 , by increasing the heating temperature of the packed bed of metal pieces,
At temperatures above ℃, the main component NF 3 also reacts considerably with the metal pieces and decomposes, causing NF 3 to decompose.
There is also the problem that the yield of (Means for Solving the Problem) As a result of intensive studies by the present inventors on a method for removing N 2 F 2 contained in NF 3 gas, it was surprisingly found that NF 3 gas containing N 2 F 2 They found that N 2 F 2 can be efficiently decomposed into nitrogen (N 2 ) gas and fluorine (F 2 ) gas simply by heating it to a specific temperature. Also, if the above heating is performed in a specific container,
NF3 remains the main component even when heated to temperatures above 200℃
This method is advantageous because it does not decompose, and we have also obtained the knowledge that N 2 F 2 in NF 3 gas can be removed efficiently, safely, and economically. The present invention has been made based on this new knowledge discovered by us. That is, the present invention provides nitrogen trifluoride gas containing at least dinitrogen difluoride as an impurity in a metal container, preferably a cylindrical container, whose inner wall is lined with a solid fluoride at a temperature of 150°C to 600°C. This is a method for purifying nitrogen trifluoride gas, which is characterized by heating it to . [Detailed Disclosure of the Invention] The present invention will be described in detail below. First, to explain the equipment such as containers used in the present invention, NF 3 gas is subject to the High Pressure Gas Control Law. Therefore, the manufacturing equipment must be a high-pressure gas manufacturing equipment, and the outside of the manufacturing equipment generally needs to be made of metal. For the above reasons, the container used in the present invention, preferably a cylindrical container, must be made of metal such as iron or stainless steel. In the following explanation, a cylindrical container, which is easy to manufacture, will be used as a representative container shape, but as is clear from the description of the first claim, this invention does not apply to the present invention as defined in Article 70 of the Patent Law. It should be clearly understood that container shapes other than cylindrical containers, such as rectangular, box-shaped, conical, double-pipe, etc., are not excluded from the technical scope of the invention. The metal cylindrical container (hereinafter simply referred to as cylindrical container) used in the present invention is preferably
Preferably, the container is equipped with an inlet and an outlet pipe for NF 3 gas, and whose inner walls are lined with solid fluoride. In the present invention, NF3 gas is the highest in the above cylindrical container.
Since it is heated to about 600°C, the solid fluoride lining the inner wall preferably has a melting point of over 600°C. Examples of such solid fluorides include lithium fluoride (TiF), sodium fluoride (NaF), potassium fluoride (KF), rudybium fluoride (RbF), cesium fluoride (CsF), etc. Metal fluorides of the genus; beryllium fluoride (BeF 2 ), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ),
Group A metal fluorides such as vanium fluoride (BaF 2 ); Group A metal fluorides such as aluminum fluoride (AlF 3 ), gallium fluoride (GaF 3 ), and insidium fluoride (InF 3 ); fluoride Examples include double salts such as sodium aluminum (Na 3 AlF 6 ). A mixture of these may also be used. It goes without saying that even with solid fluorides other than those mentioned above, for example, having a melting point of 600°C or lower, the present invention can be carried out without any problem at a temperature below that melting point as long as it has a melting point of about 350°C or higher. do not have. In the present invention, the shape of the container for heating NF 3 does not necessarily have to be cylindrical, but it is easy to manufacture the container itself and line it with solid fluoride, and the strength of the lining layer and its use are A cylindrical shape is preferable in order to prevent cracks from forming in the lining layer inside. There is no particular limit to the thickness of the lining layer, but if it is too thin, it will be technically difficult to process the lining, and there is also a risk that the inner wall of the cylindrical container will not be completely lined and a portion of the metal surface of the cylindrical container will be exposed. . On the other hand, if it becomes too thick, the cylindrical container is heated by a heater or the like from outside the cylindrical container in the present invention, so the heat transfer efficiency during heating will decrease and thermal energy will be lost, so it is preferable. Therefore, the thickness of the lining layer is approximately 1 to 5 mm. As a method for lining the inner wall of a cylindrical container with a solid fluoride, among the solid fluorides listed above,
When using a fluoride of a group A element having a relatively low melting point, for example, a sintering method can be employed. That is, as shown in FIG. 1, an inner cylinder 3 having an outer diameter slightly smaller than the inner diameter of the cylindrical container 1 is inserted into the cylindrical container 1 so as to be concentric. Next, the cylindrical container 1
After filling the space between the inner tube 3 and the inner cylinder 3 with powdered solid fluoride 4, a load is applied to the press-fit tube 5 to compress and mold the solid fluoride 4. This filling and compression molding of the solid fluoride 4 is repeated to form a compression molded layer of the solid fluoride 4 on the front surface of the inner wall of the cylindrical container 1. After that, inner cylinder 1
The cylindrical container 1 is gradually heated to the softening point of the solid fluoride 4 under an atmosphere of an inert gas such as nitrogen (N 2 ) or helium (He), and then slowly cooled. The inner wall of the cylindrical container 1 can be lined with solid fluoride 4. In this case, it is preferable that the solid fluoride contains 2 to 3% by weight of water, since the above-mentioned compression molding is easier. This also applies to the case of lining by the high-pressure press method described later. In addition, if a lubricant is applied to the surface of the cylindrical container 3 in advance, the solid fluoride 4 will be applied to the surface of the cylindrical container 1.
This is preferable because it is easy to pull out the inner cylinder 3 after forming the compression molded layer. When lining the inner wall of a cylindrical container with a solid fluoride having a relatively high melting point, a high-pressure press method is suitable. That is, as in the case of the sintering method, after solid fluoride 4 is filled between the cylindrical container 1 and the inner tube 3 shown in FIG. By repeating molding, cylindrical container 1
This can be carried out by slowly pulling out the inner cylinder 3 after forming a lining layer of solid fluoride 4 on the entire inner wall of the inner cylinder. In this case, in order to form a strong lining layer, the load during compression molding is preferably 2 t/cm 2 or more. Furthermore, as in the case of the sintering method, if a lubricant is applied to the surface of the inner cylinder 3 in advance, the inner cylinder 3 can be easily pulled out after the solid fluoride lining layer is formed on the inner surface of the cylindrical container 1. This is desirable because it is easy. However, in this case, the lubricant must be removed by evaporation by heating or the like after the solid fluoride lining layer is formed. Furthermore, in the present invention, as a method for lining the inner wall of a cylindrical container with a solid fluoride, in addition to the above-mentioned method, after flowing a molten solid fluoride between the inner tubes 3 of the cylindrical container 1 shown in FIG. It is also possible to adopt methods such as cooling and solidifying. In the present invention, the NF 3 gas to be purified is thus heated and decomposed in a cylindrical container whose inner surface is lined with solid fluoride. The NF 3 is heated by preparing in advance a cylindrical container whose inner surface is lined with solid fluoride as described above, keeping it in a heated state, and venting NF 3 gas containing N 2 F 2 into the cylindrical container. The method of doing so is preferable. Heating of the cylindrical container can be easily carried out by heating the outside of the cylindrical container with a heater or the like. In the present invention, the heating temperature of NF 3 gas containing N 2 F 2 is
It is carried out at 150-600°C, preferably 250-350°C. If the ventilation temperature is less than 150°C, almost no N 2 F 2 can be decomposed and removed. On the other hand, at temperatures exceeding 600°C, although N 2 F 2 can be almost completely removed, there is a risk that cracks may occur in the lining layer of the cylindrical container due to the difference in coefficient of thermal expansion, which is disadvantageous. It also leads to loss of thermal energy. In addition, at the above heating temperature,
The decomposition rate of N 2 F 2 is very fast, so ventilate it.
The residence time of NF3 gas in the vessel (ratio of reactor volume to gas volume velocity) can be short, but usually
It is carried out in a range of about 5 to 1000 seconds. In the present invention, the NF 3 gas to be vented into the cylindrical container may be supplied alone, or may be diluted with an inert gas such as N 2 or He.
There is no particular restriction on the pressure of the ventilation gas, but a pressure of 0 to 5 kg/cm 2 -G is usually preferred because it is easy to operate. [Effects of the Invention] As explained in detail above, the present invention is a method for removing N 2 F 2 from NF 3 gas by heating NF 3 gas at a specific temperature in a cylindrical container whose inner wall is lined with solid fluoride. Since it is a very simple method of heating to Furthermore, as shown in the examples described later, the removal rate of N 2 F 2 is excellent, so the NF 3 gas purified by the method of the present invention can be purified using a conventionally known purification method, for example, using an adsorbent such as the zeolite mentioned above. As shown in Reference Example 1, if the NF 3 gas is re-purified, it is possible to easily obtain a highly purified NF 3 gas suitable as a raw material for a semiconductor dry etching agent, which is a remarkable effect.
Furthermore, the method of the present invention allows NF 3 gas to be obtained in high yield with almost no loss of NF 3 and is a safe method. (Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, % and in Examples, Comparative Examples and Reference Examples
ppm indicates capacity unless otherwise specified. Examples 1 to 3 A stainless steel cylindrical container (column) 1 with an inner diameter of 10 mm and a length of 300 mm is coated with stearic acid as a lubricant on the surface as shown in Fig. 1, and the outer diameter is 6 mm.
After inserting the inner cylinder 3 with a length of 400 mm concentrically with the column 1, between the column 1 and the inner cylinder 3, 5 weights of cesium fluoride powder is added to lithium fluoride powder with a water content of 3% by weight. After filling the mixed powder 4 little by little, a press-fit tube 5 with an outer diameter of 9.6 mm and an inner diameter of 6.5 mm is inserted between the above spaces.
was inserted into the press-fit tube 5, and a load of 1 t/cm 2 was applied to the press-fit tube 5 to compression mold the mixed powder 4. The insertion and compression molding operations of the mixed powder 4 were repeated to form a compression molded body of the mixed powder 4 on the entire inner wall of the column 1, and then the inner cylinder 3 was slowly pulled out. Next, this column 1 was heated to 850°C at a heating rate of 200°C/h in an electric furnace under a N2 gas atmosphere, and after being held at a temperature of 850°C for 1 hour, it was allowed to naturally air in the electric furnace. The column 1 was cooled to room temperature to obtain a column 1 whose inner wall was entirely laminated with a solid fluoride layer having a thickness of 2 mm. NF 3 gas containing N 2 F 2 diluted with approximately the same volume of He gas was passed through this column 1 under the conditions shown in Table 1. After aeration, the gas was bubbled into a potassium iodide (KI) aqueous solution with a concentration of 1%.
The NF 3 was introduced into a collection cylinder cooled with liquid nitrogen, where it was liquefied and collected. After stopping the ventilation of NF 3 gas, the above
The inside of the NF 3 collection cylinder was evacuated to remove He gas. The composition of NF 3 gas before ventilation and the composition of NF 3 in the collection cylinder after ventilation were analyzed by gas chromatography. The results are shown in Table 1.
N 2 F 2 had a high removal rate. Furthermore, there was almost no disappearance of NF 3 . Note that the reason that the N 2 gas content is higher after ventilation in Table 1 is considered to be that N 2 F 2 was decomposed into N 2 and F 2 due to heating. Furthermore, in Example 3, the condition of the lining surface of column 1 after aeration of NF 3 gas was observed, but no abnormalities such as cracks or damage were observed. Examples 4 to 6 The same stainless steel column 1 with an inner diameter of 10 mm and a length of 300 mm as used in Examples 1 to 3, and an outer diameter of 6 mm,
Using an inner cylinder 3 with a length of 400 mm, moisture was added between the column 1 shown in Fig. 1 and the inner cylinder 3 whose surface was coated with stearic acid as a lubricant, as in Examples 1 to 3.

【表】【table】

【表】 含有量が3重量%の第2表に示す種類の固体弗化
物4の粉末を少しずつ充填した後、上記間〓に外
径9.8mm、内径6.2mmの圧入管5に2t/cm2の荷重を
加えて、固体弗化物4の粉末を圧縮した。この固
体弗化物4の粉末の充填・圧縮を繰り返し行い、
カラム1の内壁全面に固体弗化物粉末のライニン
グ層を形成し、しかる後内筒3をゆつくり抜き出
した。 次に、このカラム1をN2ガス雰囲気の電気炉
内にて200℃/hの昇温速度で300℃まで昇温し
て、300℃の温度に1時間保持し上記ステアリン
酸を蒸発除去した電気炉内で自然放冷により常温
まで冷却して、厚さ2mmの固体弗化物で内壁を全
面にライニグされたカラム1を得た。 かくして得られたカラム1に第2表に示す条件
でN2F2を含有するNF3ガスを、実施例1〜3と
同様にほぼ同容積のHeガスで希釈して通気した。
通気後のガスは実施例1〜3と同様に濃度1%の
KI水溶液中にバブリングさせた後、液体窒素で
冷却された捕集ボンベに導きNF3を液化・捕集し
た。
[Table] After filling powder of solid fluoride 4 of the type shown in Table 2 with a content of 3% by weight little by little, 2t/cm was added to a press-fit tube 5 with an outer diameter of 9.8 mm and an inner diameter of 6.2 mm between the above spaces. The powder of solid fluoride 4 was compressed by applying a load of 2 . This solid fluoride 4 powder is repeatedly filled and compressed,
A lining layer of solid fluoride powder was formed on the entire inner wall of the column 1, and then the inner cylinder 3 was slowly pulled out. Next, this column 1 was heated to 300°C at a temperature increase rate of 200°C/h in an electric furnace in a N 2 gas atmosphere, and the stearic acid was evaporated off by maintaining the temperature at 300°C for 1 hour. The column was cooled to room temperature by natural cooling in an electric furnace to obtain a column 1 whose inner wall was entirely lined with solid fluoride having a thickness of 2 mm. NF 3 gas containing N 2 F 2 diluted with approximately the same volume of He gas as in Examples 1 to 3 was passed through the thus obtained column 1 under the conditions shown in Table 2.
The gas after ventilation had a concentration of 1% as in Examples 1 to 3.
After bubbling into the KI aqueous solution, the NF 3 was introduced into a collection cylinder cooled with liquid nitrogen to liquefy and collect NF 3 .

【表】 NF3ガスの通気停止後は上記のNF3の捕集ボン
ベ内を真空排気しHeガスを除去した。 通気前のNF3ガスの組成及び通気後の捕集ボン
ベ内のNF3の組成を、ガスクロマトグラフイーに
より分析した。その結果は第2表に示す通り
N2F2は高い除去率であつた。またNF3の消失も
殆どなかつた。 尚、第2表においてもN2ガスの含有量が通気
後の方が多いことは加熱によりN2F2がN2とF2
分解したものと考えられる。 また、NF3ガス通気後のカラム1のライニング
面の状態を観察したが、何れも亀裂や破損等の異
状は認められなかつた。 比較例 1〜3 第3表に示す材質の円筒容器(カラム)(寸法
は内径6mm、長さ300mm)の内壁を固体弗化物で
ライニングすることなくそのまま使用し、このカ
ラムに第3表に示す条件で、N2F2を含有する
NF3ガスを実施例1〜3と同様にほぼ同容積の
Heガスで希釈して通気した。通気後のガスは実
施例1〜3と同様に濃度1%KI水溶液中にバブ
リングさせた後、実施例1〜3と同様にして液体
窒素で冷却した捕集ボンベに導きNF3を液化させ
捕集した。NF3ガスの通気停止後は上記NF3の捕
集ボンベ内を真空排気しHeガスを除去した。 通気前のNF3ガスの組成及び通気後の捕集ボン
ベ内のNF3組成を、ガスクロマトグラフイーによ
り分析した。その結果は第3表に示す通りであ
り、N2F2は除去されるもののNF3もその収率が
悪くなることが分かる。 参考例 1 内径10mm、長さ300mmのステンレス製のカラム
に、市販のゼオライト(細孔径5Å)(24〜28メ
ツシユの粒状品)を充填(充填層250mm)した後、
このゼオライト層に実施例3で得たN2F2を除去
したNF3ガスを通気した。通気条件としては温度
は常温(約20℃)、NF3ガスの流量20Nml/min、
通気圧力760Torrであつた。 通気後のNF3ガスの組成をガスクロマトグラフ
イーにより分析した。その結果は不純物の含
[Table] After stopping the ventilation of NF 3 gas, the inside of the NF 3 collection cylinder was evacuated to remove He gas. The composition of NF 3 gas before ventilation and the composition of NF 3 in the collection cylinder after ventilation were analyzed by gas chromatography. The results are shown in Table 2.
N 2 F 2 had a high removal rate. Furthermore, there was almost no disappearance of NF 3 . Note that in Table 2, the content of N 2 gas is higher after ventilation, which is considered to be because N 2 F 2 was decomposed into N 2 and F 2 due to heating. Furthermore, the condition of the lining surface of column 1 after the NF 3 gas ventilation was observed, but no abnormality such as cracks or damage was observed. Comparative Examples 1 to 3 A cylindrical container (column) made of the material shown in Table 3 (dimensions: inner diameter 6 mm, length 300 mm) was used as it was without lining the inner wall with solid fluoride, and the column was made of the material shown in Table 3. Contains N 2 F 2 under the conditions
NF 3 gas was added in approximately the same volume as in Examples 1 to 3.
It was diluted with He gas and vented. The vented gas was bubbled into a 1% KI aqueous solution in the same manner as in Examples 1 to 3, and then introduced to a collection cylinder cooled with liquid nitrogen in the same manner as in Examples 1 to 3 to liquefy and capture NF3 . collected. After stopping the ventilation of NF 3 gas, the inside of the NF 3 collection cylinder was evacuated to remove He gas. The composition of NF 3 gas before ventilation and the NF 3 composition in the collection cylinder after ventilation were analyzed by gas chromatography. The results are shown in Table 3, and it can be seen that although N 2 F 2 is removed, the yield of NF 3 is also poor. Reference Example 1 After filling a stainless steel column with an inner diameter of 10 mm and a length of 300 mm with commercially available zeolite (pore diameter 5 Å) (granular product of 24 to 28 meshes) (packed bed 250 mm),
The NF 3 gas obtained in Example 3 from which N 2 F 2 had been removed was bubbled through this zeolite layer. Ventilation conditions include room temperature (approximately 20°C), NF3 gas flow rate of 20Nml/min,
The ventilation pressure was 760 Torr. The composition of NF3 gas after ventilation was analyzed by gas chromatography. The result contains impurities.

【表】【table】

【表】 有量はN2F220ppm以下、N2O20ppm以下、
CO220ppm以下と微量であり、本発明の方法によ
り予めN2F2を除去したNF3ガスを従来公知の吸
着剤で精製すれば、N2OやCO2等のN2F2以外の
不純物が極めて高い除去率で除去された高純度の
NF3が得られることが理解されるのである。
[Table] Amounts are N 2 F 2 20ppm or less, N 2 O 20ppm or less,
The amount of CO 2 is 20 ppm or less, and if NF 3 gas from which N 2 F 2 has been removed in advance by the method of the present invention is purified using a conventionally known adsorbent, other substances other than N 2 F 2 such as N 2 O and CO 2 can be removed. High purity with extremely high impurity removal rate.
It is understood that NF 3 can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例において円筒容器(カラム)
の内壁に、固体弗化物をライニングする状態を示
す説明図である。 図において、1……金属製の円筒容器(カラ
ム)、2……NF3ガス出口管、3……内筒、4…
…固体弗化物、5……圧入管、6……補助円筒
管、7……定盤、を示す。
Figure 1 shows a cylindrical container (column) in an example.
FIG. 3 is an explanatory diagram showing a state in which the inner wall of the fuel cell is lined with solid fluoride. In the figure, 1... Metal cylindrical container (column), 2... NF 3 gas outlet pipe, 3... Inner cylinder, 4...
... solid fluoride, 5 ... press-fit tube, 6 ... auxiliary cylindrical pipe, 7 ... surface plate.

Claims (1)

【特許請求の範囲】 1 少なくとも不純物として二弗化二窒素を含有
する三弗化窒素ガスを、内壁を弗化ニツケルを除
く固体弗化物でライニングされた金属製の容器中
で150〜600℃の温度に加熱することを特徴とする
三弗化窒素ガスの精製方法。 2 金属製の容器が円筒容器である請求項1記載
の方法。
[Claims] 1. Nitrogen trifluoride gas containing at least dinitrogen difluoride as an impurity is heated at 150 to 600°C in a metal container whose inner wall is lined with a solid fluoride excluding nickel fluoride. A method for purifying nitrogen trifluoride gas, characterized by heating it to a certain temperature. 2. The method according to claim 1, wherein the metal container is a cylindrical container.
JP63087209A 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas Granted JPH01261207A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63087209A JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas
DE89106050T DE68907366T2 (en) 1988-04-11 1989-04-06 Process for refining nitrogen trifluoride gas.
EP89106050A EP0337294B1 (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
CA000595889A CA1318108C (en) 1988-04-11 1989-04-06 Process for purifying nitrogen trifluoride gas
US07/334,529 US4948571A (en) 1988-04-11 1989-04-07 Process for purifying nitrogen trifluoride gas
KR1019890004776A KR910004831B1 (en) 1988-04-11 1989-04-11 Method for purifying nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087209A JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH01261207A JPH01261207A (en) 1989-10-18
JPH0474283B2 true JPH0474283B2 (en) 1992-11-25

Family

ID=13908556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087209A Granted JPH01261207A (en) 1988-04-11 1988-04-11 Method for purifying nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JPH01261207A (en)

Also Published As

Publication number Publication date
JPH01261207A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
JPH0471843B2 (en)
US4948571A (en) Process for purifying nitrogen trifluoride gas
JPS6260128B2 (en)
EP0004767B1 (en) Removal of dinitrogen difluoride from atmospheres containing nitrogen trifluoride
JPH0379288B2 (en)
JPH0474283B2 (en)
JPH0474284B2 (en)
JP2848947B2 (en) Purification method of nitrogen trifluoride gas
JP3090966B2 (en) Purification method of nitrogen trifluoride gas
US6790419B1 (en) Purification of gaseous inorganic halide
JPS6274430A (en) Method of purifying rare gas halide excimer laser gas
JPS63151608A (en) Purification of nitrogen trifluoride gas
JPH0230609A (en) Purification of nitrogen trifluoride gas
JPH0471842B2 (en)
JPH02164707A (en) Method for purifying gaseous nitrogen trifluoride
JPH0234506A (en) Method for purifying gaseous nitrogen trifluoride
JP2848948B2 (en) Purification method of nitrogen trifluoride gas
JPH0222111A (en) Purification of nitrogen trifluoride gas
JPH0218309A (en) Purification of gaseous nitrogen trifluoride
JPH02124723A (en) Method for purifying tungsten hexafluoride
JPH0624605B2 (en) Noble gas halide excimer laser gas purification method
JPH02164708A (en) Method for purifying gaseous nitrogen trifluoride
JPS5945913A (en) Purification of phosphine
JP2866717B2 (en) Method for producing nitrogen trifluoride gas
JPH0891812A (en) Purifying method of gaseous nitrogen trifluoride