JPH01232701A - Manufacture of positive characteristic semiconductor porcelain - Google Patents

Manufacture of positive characteristic semiconductor porcelain

Info

Publication number
JPH01232701A
JPH01232701A JP5967988A JP5967988A JPH01232701A JP H01232701 A JPH01232701 A JP H01232701A JP 5967988 A JP5967988 A JP 5967988A JP 5967988 A JP5967988 A JP 5967988A JP H01232701 A JPH01232701 A JP H01232701A
Authority
JP
Japan
Prior art keywords
powder
barium titanate
atmosphere
molded body
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5967988A
Other languages
Japanese (ja)
Inventor
Makoto Hori
誠 堀
Yasuhiro Oya
康裕 大矢
Hidetaka Hayashi
林 秀隆
Akio Nara
奈良 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5967988A priority Critical patent/JPH01232701A/en
Publication of JPH01232701A publication Critical patent/JPH01232701A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To manufacture a low resistance positive characteristic semiconductor porcelain at low cost by a method wherein a barium titanate calcined powder is heated up within a specific temperature range, it is then quickly cooled down at a specific cooling speed, it is pulverized, and its molded body is sintered in the atmospheric air. CONSTITUTION:A mixing process in which raw material powder is mixed, a calcination process wherein the mixed powder is calcined and a barium titanate calcined powder is mainly alloyed, a heat treatment process in which said barium titanate calcined powder is heated in the temperature range of 1000-1250 deg.C and then the calcined powder is cooled down quickly at the cooling speed of 500 deg.C/hr. or above, a molding process wherein the heat-treated barium titanate calcined powder is pulverized and formed into a molded body of the prescribed shape, and a sintering process, in which the molded body is sintered in the atmospheric air, are conducted successively. To be more precise, the oxygen defect concentration in the powder can be improved by conducting the above-mentioned heat-treatment process, and the oxygen defect can be confined in a bulk by molding the calcined powder containing high concentration of oxygen defect and obtained as above, and by sintering it in the atmospheric air.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、チタン酸バリウムを特徴とする特性半導体磁
器(PTCサーミスタ)の製造方法に関し、さらに詳し
く言えば、比抵抗が小さ〈従来に比べ小型形状にて所望
の抵抗値を得ることができ、設計の自由度が拡大し、さ
らに応用製品の小型化によるコストダウンが期待される
正特性半導体磁器の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method for manufacturing a special semiconductor porcelain (PTC thermistor) characterized by barium titanate. The present invention relates to a method for producing positive characteristic semiconductor porcelain, which allows a desired resistance value to be obtained in a compact shape, expands the degree of freedom in design, and is expected to reduce costs by downsizing applied products.

本発明は、過電流保護装置(プロワレジスタ)、モータ
起動用素子、温度センサおよび自己編度制陣発熱体等に
利用される。
INDUSTRIAL APPLICATION This invention is utilized for an overcurrent protection device (prower resistor), a motor starting element, a temperature sensor, a self-organizing system heating element, etc.

[従来の技術] 従来の一般的な正特性半導体磁器の製造方法は、第4図
に示すように、炭酸バリウム(BaCO2)、二酸化チ
タン(Ti12)を主原料とし、これにY、La、Nb
等の半導体化元素を加えて仮焼して同相反応を行なわせ
、それによって11られたチタン酸バリウム(BaTi
O3)粉体を粉砕し、それを用いて成形した後、大気中
にて焼成する方法である。
[Prior Art] As shown in Fig. 4, the conventional general method for manufacturing positive characteristic semiconductor porcelain uses barium carbonate (BaCO2) and titanium dioxide (Ti12) as main raw materials, and in addition, Y, La, and Nb.
Barium titanate (BaTi
O3) This is a method in which powder is pulverized, molded using it, and then fired in the atmosphere.

又、共沈法やアルコヤシド法によるず導体磁器の製法も
試みられている。
Also, attempts have been made to produce conductor porcelain using the coprecipitation method or the alcoyacid method.

さらに、B a ’r I O3’9の主成分に対して
過剰のBaOを0.01〜0.3モル%加え窒素又はア
ルゴン等の中性ガス雰囲気中で焼成して正特性にした半
導体磁器の製造方法が知られている(特公昭42−12
68号公報)。また、5if2を0.3〜10.0申出
%加え、前記中性ガス雰囲気中で焼成を行い、その後焼
成湯度よりも少し低い酸化性雰囲気中で土−ジンクを行
う正特性半導体磁器の製造方法も知られている(特公昭
42−1134号公報)。
Furthermore, 0.01 to 0.3 mol% of excess BaO is added to the main component of B a'r I O3'9 and fired in a neutral gas atmosphere such as nitrogen or argon to produce semiconductor porcelain with positive characteristics. The manufacturing method of
Publication No. 68). In addition, 0.3 to 10.0% of 5if2 is added, firing is performed in the above-mentioned neutral gas atmosphere, and then earth-zinc is performed in an oxidizing atmosphere slightly lower than the firing temperature to produce positive characteristic semiconductor porcelain. A method is also known (Japanese Patent Publication No. 42-1134).

〔発明が解決しようとする課題1 しかし前記のいずれの方法を用いても、この半導体磁器
の常温比抵抗は、5Ω・cmが限界である。
[Problem to be Solved by the Invention 1] However, no matter which method is used, the normal temperature specific resistance of this semiconductor ceramic is limited to 5 Ω·cm.

特に1yiri特公昭42−1268号公報および同4
2−1134号公報においては、25℃の比抵抗が10
()Ω・cm以上とざらに大きい。
In particular, 1yiri Special Publication No. 1268/1973 and No. 4
In Publication No. 2-1134, the specific resistance at 25°C is 10
( ) Ω・cm or more, which is roughly large.

従って低抵抗のPTCサーミスタを得るには、形状を大
きくしかつ素子厚さを薄クシたり、または、複数のサー
ミスタを並列に接続して用いる必要がある。そのため過
電流保護′@置やモータ起動用素子として使用する場合
には、電圧隣下による自己発熱によって誤作動を生じる
問題がある。さらに、この場合には大型形状の素子にな
らざるをIr7ず、設計時におけるスペース上の1.I
I約が大きく、さらに大幅なコスト上昇をIr4いてい
た。
Therefore, in order to obtain a PTC thermistor with low resistance, it is necessary to increase the size and reduce the element thickness, or to use a plurality of thermistors connected in parallel. Therefore, when used as an overcurrent protection device or a motor starting element, there is a problem that malfunction may occur due to self-heating caused by the voltage drop. Furthermore, in this case, the element has to be large in size, and the space required during design is 1. I
The amount of Ir was large, leading to an even greater cost increase of Ir4.

本発明は、上記問題点を克服するものであり、5Ω・C
11以十の低比抵抗化を安価に達成できる正特性半導体
磁器の製造方法を提供することを目的とりる。
The present invention overcomes the above problems, and
The object of the present invention is to provide a method for manufacturing positive characteristic semiconductor porcelain that can inexpensively achieve a specific resistance lower than 11.

[課題を解決するための手段] 本第1発明の正特性半導体ta器の製造方法は、原料粉
末を混合づる混合工Vと、前記混合工程において混合さ
れた混合粉体を仮焼して主としてチタン酸バリウム仮焼
粉体を合成する仮焼工程と、前記仮焼工程によって搏ら
れたチタン酸バリウム仮焼粉体をi ooo〜1250
℃の温度範囲において加熱し、その後500℃/時間以
上の冷却速度にて急冷づる加熱処理■程と、処理された
チタン酸バリウム仮焼粉体を粉砕し、所定形状の成形体
を成形する成形工程と、その襖前記成形体を大気中にて
焼成する焼成工程と、を順次実施することをv1徴とす
る。
[Means for Solving the Problems] The method for manufacturing a positive characteristic semiconductor TA device of the first invention includes a mixing step V for mixing raw material powders, and calcination of the mixed powder mixed in the mixing step. A calcination step for synthesizing a barium titanate calcined powder and a barium titanate calcined powder milled by the above calcination step to i ooo ~ 1250
℃ heat treatment step, followed by rapid cooling at a cooling rate of 500℃/hour or more, and molding, in which the treated barium titanate calcined powder is pulverized and molded into a predetermined shape. and a firing step of firing the molded body of the fusuma in the atmosphere, which is considered to be v1 characteristic.

また本第2発明は、原料粉末を混合する混合工程と、前
記混合工程において混合された混合粉体を仮焼して主と
してチタン酸バリウム仮焼粉体を合成する仮焼工程と、
前記チタン酸バリウム仮焼粉体を粉砕し、所定形状の成
形体を成形する成形工程と、その侵前記成形体を大気中
にて焼成する焼成工程と、からなる正特性半導体の製造
方法において、 前記仮焼工程侵で前記焼成工程前に、中性雰囲気、還元
雰囲気および酸素が5容積%以下のIII素欠乏雰囲気
のうち一つの雰囲気中にて、前記チタン酸バリウム仮焼
粉体または前記成形体を8o。
The second invention also includes a mixing step of mixing raw material powders, and a calcination step of primarily synthesizing barium titanate calcined powder by calcining the mixed powder mixed in the mixing step,
A method for producing a positive characteristic semiconductor comprising: a molding step of pulverizing the calcined barium titanate powder to form a molded body of a predetermined shape; and a firing step of firing the eroded molded body in the atmosphere. In the calcination step, before the calcination step, the barium titanate calcined powder or the molded material is heated in one of a neutral atmosphere, a reducing atmosphere, and a III element-deficient atmosphere containing 5% by volume or less of oxygen. Body 8o.

〜1250℃の温度範囲において前処yPするll!l
理工稈を実施することを特徴とする。
Pretreatment in the temperature range ~1250°C! l
It is characterized by carrying out science and engineering culm.

ところでPTC素子の導電機構については、3d電子の
ホッピング伝導等、種々の説があるが、酸素欠陥の生成
に伴う自由電子の生成による説が一般である。
By the way, there are various theories regarding the conduction mechanism of the PTC element, such as hopping conduction of 3D electrons, but the general theory is that it is based on the generation of free electrons accompanying the generation of oxygen defects.

そしてPTC素子の抵抗は、bulkとboundar
y (粒界)の抵抗の和によって表わされるが、一般に
、キjり一瀉度(Tl以下の温度においてはバルクの抵
抗が、Tc以上の温度においては粒界の抵抗が、支配的
であることが知られており、今日のPTC素子の低抵抗
化に関しては、常温抵抗を支配するバルクの制御が重要
である。
And the resistance of the PTC element is bulk and boundary
It is expressed by the sum of the resistances of y (grain boundaries), but in general, the resistance of the bulk is dominant at temperatures below Tl, and the resistance of grain boundaries is dominant at temperatures above Tc. It is known that in order to reduce the resistance of today's PTC elements, it is important to control the bulk that governs the resistance at room temperature.

このPTC素子の常温比抵抗は一般に、次の様に表わさ
れる。
The room temperature resistivity of this PTC element is generally expressed as follows.

ρ(PTC)=ρ(bulk) =1/n (D) ・e・μ (n (D)−ドナー密度、e=電子の定向、μ=易動
度) 従って、1丁C素子の抵抗は、ドナー密度、即ち、バル
ク内の酸素欠陥の′a度に依存しており、低抵抗のPT
Ci了を1!7るためにはm素欠陥の濃度を高める必要
がある。
ρ (PTC) = ρ (bulk) = 1/n (D) ・e・μ (n (D) - donor density, e = orientation of electrons, μ = mobility) Therefore, the resistance of a single C element is , depends on the donor density, i.e., the degree of oxygen vacancies in the bulk, and the low resistance PT
In order to reduce Ci to 1!7, it is necessary to increase the concentration of m-element defects.

M索欠陥の濃度は、YlLa、Nb等の半導体化元素(
ドーパント)又は、5in2、Al t。
The concentration of M-cord defects is determined by semiconductor elements such as YlLa and Nb (
dopant) or 5in2, Al t.

3等の焼結助剤(フラックス)の種類、その添加量と密
接な相関がある。さらに本発明者は第6図に示す−一う
に、同一組成に対してb焼成後の冷U」過程における徐
冷、急冷により抵抗は大きく変化することを確認した。
There is a close correlation with the type of sintering aid (flux) and the amount added. Furthermore, as shown in FIG. 6, the present inventors have confirmed that for the same composition, the resistance changes greatly due to slow cooling and rapid cooling in the cooling process after firing.

この焼成後の冷却過程における急冷により抵抗が低くな
るのは、焼成工程にお   −いて高温時に酸素の放出
によって形成された酸素欠陥(BaT 1o3−x)が
凍結された状態で冷IJ1されバルク内の酸素欠陥濃度
が増加するためであると考えられる。
The reason why the resistance decreases due to the rapid cooling in the cooling process after firing is that the oxygen defects (BaT 1o3-x) formed by the release of oxygen at high temperatures during the firing process are frozen in the cold IJ1 and inside the bulk. This is thought to be due to an increase in the oxygen defect concentration.

本発明は、この現象に基づき成されたものである。The present invention is based on this phenomenon.

即ち、本第1発明は、例えば第1図のフローチセートに
示すように、仮焼工程によって搏られたチタン酸バリウ
ム仮焼粉体を1000〜1250℃の温度で加熱し、そ
の後500℃/時間以上の冷却速度にて急冷する加熱処
理工程を実施することにより、この粉体中の酸素欠陥8
1度を向上させ、こうして搏られた高lIaの酸素欠陥
を含んだ仮焼粉体を用いて成形し通常の方法により大気
中で焼成することにより、酸素欠陥をバルク内にとじ込
めるものである。
That is, in the first invention, for example, as shown in the flowchart of FIG. 1, barium titanate calcined powder stirred by the calcining process is heated at a temperature of 1000 to 1250°C, and then heated at a temperature of 500°C/hour or more. Oxygen defects in this powder are eliminated by performing a heat treatment step of rapid cooling at a cooling rate of
The calcined powder containing high lIa oxygen defects is molded using a calcined powder containing high lIa oxygen defects, and the oxygen defects are confined in the bulk by firing in the atmosphere using a normal method. .

加熱温度について、1000℃未満の場合には殆んどそ
の効果が認められない。これは、高温状態での酸素の放
出温度と密接なつながりがあるものと推定される。又、
1250℃を超える場合には、原料の一部が半導体化す
るため、抵抗が上界し、好ましくない。
When the heating temperature is less than 1000°C, almost no effect is observed. This is presumed to be closely related to the temperature at which oxygen is released at high temperatures. or,
If the temperature exceeds 1250° C., a part of the raw material becomes a semiconductor, which causes an upper limit in resistance, which is not preferable.

尚、熱処理の雰囲気については、大気中だけでなく、窒
素、アルゴン等の中性雰囲気又は1100pp程度の水
素を含む窒素雰囲気である還元雰囲気とすることもでき
る。
Note that the atmosphere for the heat treatment is not limited to the air, but may also be a neutral atmosphere such as nitrogen or argon, or a reducing atmosphere such as a nitrogen atmosphere containing about 1100 ppm of hydrogen.

加熱時間は加熱温度にも影胃されるが0.5時間あるい
はそれ以上である。
The heating time depends on the heating temperature, but is 0.5 hours or more.

本第2発明は、仮焼工程から焼成工程叩ち仮焼から焼成
により半導体化する迄の工程において、仮焼粉体または
成形体゛を酸素が5容積%以下の酸素欠乏雰囲気、中性
雰囲気又は還元雰囲気中にて、800〜1250℃の温
jσ範囲において熱処理した後、大気中にて通常の方法
により焼成するものである。
The second invention is characterized in that in the steps from the calcination step to the calcination step, from the beating calcination to the calcination to convert it into a semiconductor, the calcination powder or molded body is heated in an oxygen-deficient atmosphere containing 5% by volume or less of oxygen, or in a neutral atmosphere. Alternatively, the material is heat treated in a reducing atmosphere at a temperature jσ of 800 to 1250° C., and then fired in the atmosphere by a normal method.

本第2発明は、あらかじめ酸素の不足または酸素の全く
ない雰囲気中で熱処理し、酸素欠陥a度の高いチタン酸
バリウム粉体またはその成形体を得、大気中にて通常の
方法で焼成することにより粒界を還元することなく、バ
ルク内の酸素欠陥濃度が高い低抵抗のPTCサーミスタ
を安価に製造するものである。
The second invention is to obtain barium titanate powder or a compact thereof with a high oxygen defect degree by heat-treating in an atmosphere lacking in oxygen or having no oxygen at all, and then firing the powder in the atmosphere by a normal method. A low-resistance PTC thermistor with a high oxygen defect concentration in the bulk can be manufactured at low cost without reducing grain boundaries.

前記M素欠乏雰囲気において酸素が5容積%を超えると
通常比抵抗が50・cm以上となるため好ましくない。
If oxygen exceeds 5% by volume in the M-depleted atmosphere, the resistivity will normally be 50 cm or more, which is not preferable.

中性雰囲気としては、アルゴン、ヘリウム等の不活性ガ
ス又は窒素等を用いることができる。還元雰囲気として
は、前記中性雰囲気に水素等の還元ガスを用いたものと
することができる。
As the neutral atmosphere, an inert gas such as argon or helium, nitrogen, or the like can be used. As the reducing atmosphere, a reducing gas such as hydrogen may be used in the neutral atmosphere.

前記熱処理温度おいて、800℃よりも低い温度(例え
ば第2表中のNo、2)では、チタン酸バリウム粉体の
還元が十分ではなく、又1250℃を超える温度(例え
ば第2表中のNo、9>では、熱処理中にこの粉体が著
しく粒成長し、いずれも常温比抵抗が大きくなってしま
うため好ましくない。
Regarding the heat treatment temperature, at a temperature lower than 800°C (for example, No. 2 in Table 2), the reduction of the barium titanate powder is not sufficient, and at a temperature exceeding 1250°C (for example, No. 2 in Table 2), the reduction of the barium titanate powder is insufficient. No. 9> is not preferable because the powder undergoes significant grain growth during heat treatment, resulting in an increase in specific resistance at room temperature.

処理時間は1時間またはそれ以上が良い。なお、加熱処
理後焼成までの間にチタン酸バリウム粉体、成形体を常
温にまで冷却する場合、前記した酸素不足または酸素の
ない雰囲気中で冷却づるのが好ましい。この場合急冷を
必要としない。空気中で冷U」する場合には500℃/
H以上の急冷を必要とする。
The treatment time is preferably 1 hour or more. In addition, when the barium titanate powder or molded body is cooled to room temperature after the heat treatment and before firing, it is preferable to cool it in the above-mentioned oxygen-deficient or oxygen-free atmosphere. In this case, rapid cooling is not required. When cooling in air, the temperature is 500℃/
Requires rapid cooling to H or higher.

尚、本発明に用いるチタン酸バリウム原料粉体の組成は
、BaTiO3に限るものではなく、TcヤR−T (
抵抗−m度)特性ヲa、II l!!l t ルtc 
メニ、Pb、Sr、 Ca、 Mn等の元素を添加して
も同様の効果を1qることができる。
The composition of the barium titanate raw material powder used in the present invention is not limited to BaTiO3, but also includes Tc and R-T (
Resistance - m degrees) Characteristics wo a, II l! ! l t le tc
A similar effect can be achieved by adding elements such as Pb, Sr, Ca, and Mn.

[実[] 以下、実施例により本発明を説明プる。[fruit[] The present invention will be explained below with reference to Examples.

(実施例1) 本実施例では、第1図に示すように、混合、乾燥、仮焼
、加熱処理(熱処理、冷n+)、粉砕、造粒、成形およ
び焼成を実施して、所定の半導体磁器を製造した。なお
原料組成即15焼結体紺成、熱処理温度、冷却速度およ
び処理雰囲気は、第1表の試験No、2〜23に示すよ
うな各条件を用いた。なおNo、1は加熱処理工程をも
たない従来例である。
(Example 1) In this example, as shown in FIG. Made porcelain. The raw material composition, sintered compact formation, heat treatment temperature, cooling rate, and treatment atmosphere were as shown in Test Nos. 2 to 23 in Table 1. Note that No. 1 is a conventional example that does not include a heat treatment process.

まずf3 a CO3を1.00モル、Ti1tを1゜
02モル、YzO3を080025モルとこれら王者の
合計1001ffi部に対して5iftを0゜5重齢部
、AlO3を0.3重陽部、さらに、Mno2を0.0
002モル調合した後、メノウ玉石を用いたボールミル
に水を加えて20時時間式混合した。
First, f3 a CO3 is 1.00 mol, Tilt is 1°02 mol, YzO3 is 080025 mol, and for a total of 1001 ffi parts of these champions, 5 ift is 0° 5 double aged part, AlO3 is 0.3 double positive part, and further, Mno2 0.0
After mixing 0.002 mol, water was added to a ball mill using agate boulders and mixed for 20 hours.

モの後150℃、24時間乾燥を行い、さらに1100
℃、4時間仮焼してチタン酸バリウム仮焼粉体を1qた
。そして、この仮焼粉体を、ロータリーキルンを用いて
第1表に示す900〜1300℃の各温度で1時間加熱
し、第1表に示す所定の手段および冷却速度で急冷する
ことにより処理粉体を得た。なおこの場合の処理雰囲気
は第1表に示すものとした。この処理粉体を、通常の方
法を用いて粉砕、成形し、さらに大気中にて1350℃
、1時間焼成を行い、焼成体を得た。
After drying, dry at 150°C for 24 hours, and then dry at 1100°C.
℃ for 4 hours to obtain 1 q of barium titanate calcined powder. Then, this calcined powder is heated for 1 hour at each temperature of 900 to 1300°C shown in Table 1 using a rotary kiln, and then rapidly cooled using the prescribed means and cooling rate shown in Table 1 to obtain a treated powder. I got it. The processing atmosphere in this case was as shown in Table 1. This treated powder is pulverized and molded using a normal method, and then heated to 1350°C in the atmosphere.
Firing was performed for 1 hour to obtain a fired body.

次にこの各焼成体の端面を研磨し、Ni無電解メツキ及
びAQペーストM極を付与して、その比抵抗(ρgo)
およびR−T特性(ΔR)の評価を行ない、その結果を
第1表に示した。なお、冷却速度と比抵抗の関係(No
、2〜No、8)を第2図に、No、1 (従来例)と
No、8 (本発明)にいてのR−T特性を第3図に示
した。また判定基準は、比抵抗(ρ20)が5Ω・cm
以下、R−T特性(ΔR)2桁以上をOとし、それ以外
はXとした。
Next, the end face of each fired body is polished, Ni electroless plating and AQ paste M pole are applied, and the specific resistance (ρgo) is
and RT characteristics (ΔR) were evaluated, and the results are shown in Table 1. In addition, the relationship between cooling rate and specific resistance (No.
, 2 to No. 8) are shown in FIG. 2, and the RT characteristics of No. 1 (conventional example) and No. 8 (invention) are shown in FIG. 3. In addition, the criterion is that the specific resistance (ρ20) is 5Ω・cm
Hereinafter, RT characteristics (ΔR) of 2 digits or more were marked as O, and the rest were marked as X.

この結果によれば、従来例である処理工程をもたないも
の(No、1>、冷却速度が200℃/時間以下のもの
(No、2〜4)、処1M+温度が900℃のもの(N
o、9.14)、それが1300℃のもの(No、13
.18)の各従来例、比較例は、いずれも、比抵抗が5
0・01以上であった。一方その他の試験例(本発明)
は、R−T特性(ΔR)においてはやや劣化するものの
、比抵抗はいずれら前記従来例および比較例と比べてい
ずれも5Ω・CI以下と小さかった。即ち、熱処理湿度
が1000〜1250℃であり、第2図に示すように冷
却速度が500℃/時間以−ヒの場合には、低抵抗なP
TC素了を1りることかできた。特に冷u1渇度が10
00℃/時間以上の気中水冷(No、7)および水中水
冷(No、8.15〜17)の場合には比抵抗は0.9
7〜1.5Ω・cmを示し、著しく小さなものであり、
そのうち処理温度が1200〜1250℃の場合(No
According to the results, conventional examples that do not have a treatment process (No. 1>), cooling rates of 200°C/hour or less (No. 2 to 4), and cases where the treatment 1M + temperature is 900°C ( N
o, 9.14), it is 1300℃ (No. 13
.. 18) Each of the conventional examples and comparative examples has a specific resistance of 5.
It was 0.01 or more. On the other hand, other test examples (the present invention)
Although the RT characteristics (ΔR) were slightly deteriorated, the specific resistances were all as small as 5Ω·CI or less compared to the conventional examples and comparative examples. That is, when the heat treatment humidity is 1000 to 1250°C and the cooling rate is 500°C/hour or more as shown in Figure 2, low resistance P
I was able to beat TC Suryo by 1. Especially the cold u1 thirst level is 10
In the case of air water cooling (No. 7) and submerged water cooling (No. 8.15 to 17) at 00°C/hour or more, the specific resistance is 0.9.
7 to 1.5 Ω・cm, which is extremely small.
If the processing temperature is 1200 to 1250℃ (No.
.

16.17)には1Ω・C−以下を示し、極めて良好で
あった。
16.17) showed a value of 1Ω·C- or less, which was extremely good.

なお、原料粉体の組成即ち焼結体相或は、8aTiOx
(7)も(1)(No、5〜8.10〜12.15〜1
7.21〜23)のみならず、Pb又はSrを配合した
もの(No、19.20)でら同様の効果を得ることが
できた。
In addition, the composition of the raw material powder, ie, the sintered body phase or 8aTiOx
(7) also (1) (No, 5~8.10~12.15~1
Similar effects could be obtained not only with 7.21 to 23) but also with those containing Pb or Sr (No. 19.20).

(実施例2) 前記実施@1のNo、8と同じ条件で、急冷溶媒として
水に代えフロンを使用した。これによってρ2oが1.
1Ω・CIa1△[<が2.5桁の正特性半導体磁器が
搏られた。
(Example 2) Under the same conditions as No. 8 of the above-mentioned Example @1, Freon was used instead of water as the quenching solvent. As a result, ρ2o becomes 1.
A positive characteristic semiconductor porcelain with a value of 1Ω·CIa1Δ[< of 2.5 digits was tested.

(以下余白) 〈実施例3〉 本実施例では、第4図に示すように、混合、乾燥、仮焼
、加熱処理、粉砕、造粒、成形および焼成を実施して、
所定の半導体磁器を製造した。なお熱処理条件は第2表
の試験N0.32〜53に示すものを用いた。なおNo
、31はこの熱処理工程をもたない従来例である。
(The following is a blank space) <Example 3> In this example, as shown in FIG.
Predetermined semiconductor porcelain was manufactured. The heat treatment conditions used were those shown in Test Nos. 32 to 53 in Table 2. Please note that No
, 31 are conventional examples that do not include this heat treatment step.

まずBaCO3、Ti1t、5ift、At t03、
Y2O2、Mn0t等の原料を所定Mal1合した後、
メノウ玉石を用いたボールミルに水を加え20時時間式
混合した。なお各試験例の組成物は実施例1の各試験例
と対応して同じらのを用いた。その後150℃、24時
間乾燥を行ない、さらに1100℃、4時間仮焼して、
ヂタン酸バリウム仮焼粉体を得た。この仮焼粉体をAl
2O2鉢に詰め、第2表に示す所定の雰囲気をもつ炉に
て、第2表に示す所定温度に所定時間保持し、その模炉
内で徐冷する熱処理を行なった。
First, BaCO3, Ti1t, 5ift, At t03,
After combining raw materials such as Y2O2 and Mn0t to a predetermined Mal1,
Water was added to a ball mill using agate boulders and mixed for 20 hours. In addition, the same composition was used for each test example corresponding to each test example of Example 1. After that, it was dried at 150℃ for 24 hours, and further calcined at 1100℃ for 4 hours.
A calcined barium ditanate powder was obtained. This calcined powder is
The mixture was packed in a 2O2 pot, kept at a predetermined temperature shown in Table 2 for a predetermined time in a furnace having a predetermined atmosphere shown in Table 2, and then subjected to heat treatment in which it was slowly cooled in the mock furnace.

しかる後にL述のボールミルを用いて20時時間式粉砕
を行ない乾燥した後、ポリビニルアルコールを約1wt
%添加し造粒を行なった。こうして搏られた造粒粉を5
00 kq/ c+aZの圧力で成形上、通常の方法を
用いて大気中1350℃、1時間焼成を行ない、円盤状
(20IiIllφ、厚さ2.511Im)の焼成体を
得た。
After that, pulverization was carried out for 20 hours using the ball mill described in L, and after drying, about 1 wt of polyvinyl alcohol was
% was added and granulation was performed. The granulated powder that has been pounded in this way is
After molding at a pressure of 00 kq/c+aZ, firing was performed in the atmosphere at 1350°C for 1 hour using a conventional method to obtain a disc-shaped fired body (20IiIllφ, thickness 2.511Im).

さらに、この焼成体の端面を研磨し、Nt無電解メツキ
及びAQペースト1mを付与して、その比抵抗(ρ10
>およびR−T特性(△R)の評価を行ない、その結果
を第2表に示した。
Furthermore, the end face of this fired body was polished, Nt electroless plating and 1 m of AQ paste were applied, and its specific resistance (ρ10
> and RT characteristics (ΔR) were evaluated, and the results are shown in Table 2.

なお、No、31 (従来例)とNo、35 (本発明
)についてのR−T特性を第5図に示した。
Incidentally, the RT characteristics for No. 31 (conventional example) and No. 35 (invention) are shown in FIG.

この結末によれば、従来例である熱処理工程をもたない
もの(No、31)、処1171温1σが700℃のも
の(No、32)、それが1300℃のも(7) (N
 o 、 39 ) 、H1liaI’lカ10%(7
)M他界[ITl気のもの(No、46)の各従来例、
比較例は、いずれら、比抵抗が5Ω・ant以上であっ
た。一方、その他の試験例(本発明)は、R−T特性(
ΔFで)は、やや劣化しているものの低抵抗かつ実用可
能なPTC*子を得ることが出来た。特に[3aTi0
3の焼結体組成であり中性又は還元雰囲気でありかつ処
理温度が1000〜1200℃の場合には(No、35
〜37.41〜45)には比抵抗が1.0Ω・cm以下
と著しく小さな蛸を示した。
According to this conclusion, there is a conventional example that does not have a heat treatment process (No. 31), a case where the temperature 1σ is 700°C (No. 32), and a case where it is 1300°C (No. 7) (N
o, 39), H1liaI'l 10% (7
) M passing away [ITl-like things (No. 46), each conventional example,
All of the comparative examples had specific resistances of 5Ω·ant or more. On the other hand, in other test examples (the present invention), the RT characteristics (
(ΔF), it was possible to obtain a PTC* element with low resistance and practical use, although it was slightly deteriorated. Especially [3aTi0
If the sintered body composition is No. 3, the atmosphere is neutral or reducing, and the processing temperature is 1000 to 1200°C, (No. 35
~37.41~45) showed a significantly small resistivity of 1.0 Ω·cm or less.

尚、No、21の如く、成形体を用いても同様の効宋が
得られ仮焼1捏から焼成時に半導体化するまでのいずれ
かの工程に於いて同様の処理をすれば有効となることは
明らかである。また原料粉体の組成即ち焼結体組成は、
3aTio3のもの(No、33〜38.40〜48.
51〜53)のみならず、Pb又はSrを配合したもの
(NO049,50)でも同様の効梁を得ることができ
た。
In addition, as in No. 21, the same effect can be obtained even if a molded body is used, and it will be effective if the same treatment is performed in any step from the first calcination to the semiconductor formation at the time of firing. is clear. In addition, the composition of the raw material powder, that is, the composition of the sintered body, is
3aTio3 (No, 33-38.40-48.
Similar beam effects could be obtained not only with 51 to 53) but also with those containing Pb or Sr (NO049, 50).

(以下余白) [発明の効果] 本第1発明の製造方法は、主としてBaTiO3粉体を
所定温度で所定時間加熱して急冷することにより、高温
時に形成される酸素欠陥を積極的に導入した仮焼粉体を
用いて正特性半導体la器を製Ti覆るものである。本
vJ造方法によればこの正特性半導体磁器の低比抵抗化
をはかることができる。
(The following is a blank space) [Effects of the Invention] The manufacturing method of the first invention mainly involves heating BaTiO3 powder at a predetermined temperature for a predetermined time and rapidly cooling it, thereby actively introducing oxygen defects that are formed at high temperatures. The sintered powder is used to cover a positive characteristic semiconductor (LA) device made of Ti. According to the present vJ manufacturing method, it is possible to reduce the specific resistance of this positive characteristic semiconductor porcelain.

本第2発明の製造方法は、BaTiO3粉体およびその
成形体を酸素の不足またはaSSのない雰囲気で所定温
度で所定時間加熱処理し、その後、通常の方法である大
気中で焼成することにより、PTC特性が発生する粒界
を還元することなく、バルク内のM1g欠陥濃度のみを
高めるものである。
The manufacturing method of the second invention includes heat-treating BaTiO3 powder and its molded body at a predetermined temperature for a predetermined time in an oxygen-deficient or aSS-free atmosphere, and then firing it in the atmosphere as a normal method. This increases only the M1g defect concentration in the bulk without reducing grain boundaries where PTC characteristics occur.

本製造方法によれば、低抵抗の正特性半導体磁器を安価
に製造することができる。
According to this manufacturing method, low resistance positive characteristic semiconductor ceramics can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の製造方法を示すフローチャート、第
2図は実施例1において冷却速度と比抵抗の関係を示す
グラフ、第3図は実施例1の抵抗−温度特性の一例を示
すグラフ、第4図は第2発明および従来の製造方法を示
すフローチャート、第5図は実施例30抵抗−温度特性
の一例を示すグラフ、第6図は冷却速度と比抵抗の一般
的関係を示すグラフである。 特許出願人   日本電装株式会社 代理人    弁理士 大川 宏 第1図 温 度(’C) 第5図 温  ff  (’C) ;争却週ff (’C/弱)
FIG. 1 is a flowchart showing the manufacturing method of the first invention, FIG. 2 is a graph showing the relationship between cooling rate and specific resistance in Example 1, and FIG. 3 is a graph showing an example of the resistance-temperature characteristics of Example 1. , FIG. 4 is a flowchart showing the second invention and the conventional manufacturing method, FIG. 5 is a graph showing an example of resistance-temperature characteristics of Example 30, and FIG. 6 is a graph showing the general relationship between cooling rate and specific resistance. It is. Patent applicant Nippondenso Co., Ltd. Agent Patent attorney Hiroshi Okawa Figure 1 Temperature ('C) Figure 5 Temperature ff ('C); Week of dispute ff ('C/weak)

Claims (2)

【特許請求の範囲】[Claims] (1)チタン酸バリウムを主成分とする正特性半導体磁
器の製造方法であって、 原料粉末を混合する混合工程と、前記混合工程において
混合された混合粉体を仮焼して主としてチタン酸バリウ
ム仮焼粉体を合成する仮焼工程と、前記仮焼工程によっ
て搏られたチタン酸バリウム仮焼粉体を1000〜12
50℃の温度範囲において加熱し、その後500℃/時
間以上の冷却速度にて急冷する加熱処理工程と、処理さ
れたチタン酸バリウム仮焼粉体を粉砕し、所定形状の成
形体を成形する成形工程と、その後前記成形体を大気中
にて焼成する焼成工程と、を順次実施することを特徴と
する正特性半導体磁器の製造方法。
(1) A method for manufacturing positive characteristic semiconductor porcelain containing barium titanate as a main component, which includes a mixing step of mixing raw material powders, and calcining the mixed powder mixed in the mixing step to produce mainly barium titanate. A calcination step for synthesizing a calcined powder, and a barium titanate calcined powder milled by the above calcination step at a temperature of 1,000 to 12
A heat treatment step of heating in a temperature range of 50°C and then rapidly cooling at a cooling rate of 500°C/hour or more, and a molding process in which the treated barium titanate calcined powder is pulverized to form a molded body of a predetermined shape. 1. A method for manufacturing positive characteristic semiconductor porcelain, characterized in that a step and a firing step of firing the molded body in the atmosphere are sequentially carried out.
(2)チタン酸バリウムを主成分とする正特性半導体磁
器の製造方法であつて、 原料粉末を混合する混合工程と、前記混合工程において
混合された混合粉体を仮焼して主としてチタン酸バリウ
ム仮焼粉体を合成する仮焼工程と、前記チタン酸バリウ
ム仮焼粉体を粉砕し、所定形状の成形体を成形する成形
工程と、その後前記成形体を大気中にて焼成する焼成工
程と、からなる正特性半導体の製造方法において、 前記仮焼工程後で前記焼成工程前に、中性雰囲気、還元
雰囲気および酸素が5容積%以下の酸素欠乏雰囲気のう
ち一つの雰囲気中にて、前記チタン酸バリウム仮焼粉体
または前記成形体を800〜1250℃の温度範囲にお
いて熱処理する処理工程を突施することを特徴とする正
特性半導体磁器の製造方法。
(2) A method for manufacturing positive characteristic semiconductor porcelain containing barium titanate as a main component, which includes a mixing step of mixing raw material powders, and calcining the mixed powder mixed in the mixing step to produce mainly barium titanate. a calcination step for synthesizing a calcined powder; a molding step for pulverizing the calcined barium titanate powder to form a molded body of a predetermined shape; and a firing step for firing the molded body in the atmosphere. In the method of manufacturing a positive characteristic semiconductor, after the calcination step and before the calcination step, in one of a neutral atmosphere, a reducing atmosphere, and an oxygen-deficient atmosphere containing 5% by volume or less of oxygen, the 1. A method for producing positive characteristic semiconductor porcelain, which comprises performing a treatment step of heat-treating the calcined barium titanate powder or the molded body in a temperature range of 800 to 1250°C.
JP5967988A 1988-03-14 1988-03-14 Manufacture of positive characteristic semiconductor porcelain Pending JPH01232701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5967988A JPH01232701A (en) 1988-03-14 1988-03-14 Manufacture of positive characteristic semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5967988A JPH01232701A (en) 1988-03-14 1988-03-14 Manufacture of positive characteristic semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH01232701A true JPH01232701A (en) 1989-09-18

Family

ID=13120125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5967988A Pending JPH01232701A (en) 1988-03-14 1988-03-14 Manufacture of positive characteristic semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH01232701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243607A (en) * 1999-02-18 2000-09-08 Meidensha Corp Manufacture of nonlinear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243607A (en) * 1999-02-18 2000-09-08 Meidensha Corp Manufacture of nonlinear resistor

Similar Documents

Publication Publication Date Title
Morrison et al. An alternative explanation for the origin of the resistivity anomaly in La‐doped BaTiO3
Wu et al. Ferroelectric and dielectric properties of strontium bismuth niobate vanadates
EP0642140B1 (en) Positive temperature coefficient thermistor and fabrication method thereof
JPH1187108A (en) Manufacture of semiconductor ceramic with positive characteristics
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
CN112279638B (en) Lead-free PTC thermistor ceramic with far infrared performance and preparation method thereof
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
JPH01232701A (en) Manufacture of positive characteristic semiconductor porcelain
US3533966A (en) Process for making current limiting devices
Kuwabara et al. Varistor characteristics in PTCR-type (Ba, Sr) TiO3 ceramics prepared by single-step firing in air
Upadhyay et al. Dielectric relaxation and conduction in the system Ba 1-x La x Sn 1-x Cr x O 3
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JPH01238101A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH0258302A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH0338803A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3624975B2 (en) PTC thermistor material and manufacturing method thereof
KR0147970B1 (en) A ceramic composite for a ptc thermister
Zhao et al. The variable thermal sensitivity of strontium-lead titanate semiconducting ceramics
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
KR0147959B1 (en) A ceramic composite for a ptc thermister
KR0147968B1 (en) A ceramic composite for a ptc thermister