JPH0258302A - Manufacture of positive temperature coefficient semiconductor porcelain - Google Patents

Manufacture of positive temperature coefficient semiconductor porcelain

Info

Publication number
JPH0258302A
JPH0258302A JP20973188A JP20973188A JPH0258302A JP H0258302 A JPH0258302 A JP H0258302A JP 20973188 A JP20973188 A JP 20973188A JP 20973188 A JP20973188 A JP 20973188A JP H0258302 A JPH0258302 A JP H0258302A
Authority
JP
Japan
Prior art keywords
powder
titanium
titanium oxide
reduced
chemical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20973188A
Other languages
Japanese (ja)
Inventor
Makoto Hori
誠 堀
Yasuhiro Oya
康裕 大矢
Hidetaka Hayashi
林 秀隆
Akio Nara
奈良 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20973188A priority Critical patent/JPH0258302A/en
Publication of JPH0258302A publication Critical patent/JPH0258302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To easily perform a low specific resistance of 5OMEGA.cm or less without increasing a PTC thermistor in size by mixing raw material powder containing powder of titanium oxide raw material of a specific chemical composition, calcining the mixture of powder, molding it and firing it in the atmosphere. CONSTITUTION:A PTC element having high oxygen defective concentration in bulk and low resistance is formed of titanium oxide material powder containing reduced oxide of titanium reduced in advance by selectively reducing the bulk without reducing grain boundaries for controlling PTC characteristics. Powder having chemical composition represented by TiO2-x in which x is 0.02 or less or power having chemical composition to become TiO2-x by calcination is employed as the titanium oxide material of material powder. Thus, reduced oxide of titanium such as TiO, Ti2O3, Ti3O4, etc., are employed solely or in mixture as the titanium oxide material. TiO2 may be employed in mixture with the reduced oxide of the titanium. If the x is less than 0.03, its specific resistance cannot be reduced to 5OMEGA.cm or less, and its reduction in the specific resistance becomes insufficient. If the x exceeds 1, since metallic properties are generated, it is not desired. Additional matter for making it semiconductor or positive temperature coefficient additional matter can be contained in the material powder.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、チタン酸バリウムを特徴とする特性半導体磁
器(PTCサーミスタ)の製造方法に関し、さらに詳し
く言えば、比抵抗が小さ〈従来に比べ小型形状にて所望
の抵抗値を得ることができ、設計の自由度が拡大し、さ
らに応用製品の小型化によるコストダウンが期待される
正特性半導体La器の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method for manufacturing a special semiconductor porcelain (PTC thermistor) characterized by barium titanate. The present invention relates to a method for manufacturing a positive characteristic semiconductor La device that can obtain a desired resistance value in a compact shape, expands the degree of freedom in design, and is expected to reduce costs due to miniaturization of applied products.

本発明は、モータやトランスの過電流保護装茜(ブロワ
レジスタ)、モータ起動用素子、温度センサおよび自己
温度i制御発熱体等に利用される。
INDUSTRIAL APPLICATION This invention is utilized for the overcurrent protection device (blower resistor) of a motor or a transformer, a motor starting element, a temperature sensor, a self-temperature control heating element, etc.

[従来の技術] 従来の一般的な正特性半導体磁器の製造方法は、炭酸バ
リウム(BaCO3) 、二酸化チタン(TO2)を主
原料とし、これにY、La、Nb等の半導体化元素を加
えて仮焼して同相反応を行なわせ、それによって得られ
たチタン酸バリウム(Ba丁103)粉体を粉砕し、そ
れを用いて成形した後、大気中にて焼成する方法である
[Prior Art] The conventional general method for manufacturing positive characteristic semiconductor porcelain uses barium carbonate (BaCO3) and titanium dioxide (TO2) as main raw materials, and adds semiconducting elements such as Y, La, and Nb to them. This is a method in which the barium titanate (Bacho 103) powder obtained by calcining is carried out to carry out an in-phase reaction, and the resultant barium titanate (Bacho 103) powder is pulverized, molded using the powder, and then fired in the atmosphere.

又、共沈法やアルコキシド法による半導体磁器の製法も
試みられている。
Also, attempts have been made to produce semiconductor ceramics using the coprecipitation method or the alkoxide method.

[発明が解決しようとする課題] PTCサーミスタをモータ、トランス等の過電流保21
!装置やエアコン用プロワレジスタ、又はモ−夕起動用
素子に応用す場合には、自己発熱による誤作動を防止す
るために、又は電圧降下を低減するために、低抵抗なP
TCサーミスタが必要となる。
[Problem to be solved by the invention] PTC thermistor for overcurrent protection of motors, transformers, etc.21
! When applied to devices, air conditioner blower resistors, or motor start-up elements, low-resistance P is used to prevent malfunctions due to self-heating or to reduce voltage drop.
A TC thermistor is required.

しかし前記のいずれの方法を用いても、この半導体磁器
の常温比抵抗は、5Ω・cmが限界であった。このため
、従来は素子形状を大きくしかつ素子厚を薄くしたり、
又は複数のサーミスタを並列接続して用いる等の方法に
より対応していたが、す゛−ミスタの大型化に伴い、設
計時におけるスペース上のυ1杓が大きく、さらに大幅
なコスト上行をR3いていた。
However, no matter which method is used, the room temperature specific resistance of this semiconductor ceramic is limited to 5 Ω·cm. For this reason, conventional methods have been to increase the element shape and reduce the element thickness.
Alternatively, this has been dealt with by methods such as using multiple thermistors connected in parallel, but as the size of the thermistor increases, the space required during design is large, and the cost also increases significantly.

本発明は、上記問題点を克服するものであり、PTCサ
ーミスタを大型化することなく、5Ω・C1ス下の低比
抵抗化を容易に達成できる正特性半導体磁器の製造方法
を提供することを目的とする。
The present invention overcomes the above-mentioned problems, and aims to provide a method for manufacturing positive characteristic semiconductor porcelain that can easily achieve a low resistivity of 5Ω/C1 or less without increasing the size of the PTC thermistor. purpose.

[課題を解決するための手段3 本発明の正特性半導体磁器の製造方法は、チタン酸化物
原料として、Xが0.02以上のTiO2−Xで示され
る化学組成をもつ粉末あるいは仮焼によりT r o 
2−X  となる化学組成をもつ粉末を含む原料粉末を
混合する混合工程と、前記混合工程において混合された
混合粉体を仮焼して主としてチタン酸バリウム仮焼粉体
を合成する仮焼工程と、前記チタン酸バリウム仮焼粉体
より所定形状の成形体を成形する成形工程と、その後前
記成形体を大気中にて焼成する焼成工程と、かうなるこ
とを特徴とする。
[Means for Solving the Problem 3] The method for producing positive characteristic semiconductor porcelain of the present invention uses powder having a chemical composition of TiO2-X with X of 0.02 or more or T by calcining as a titanium oxide raw material. r o
2-X A mixing step of mixing raw material powders containing powder having a chemical composition as shown in FIG. A molding step of molding a molded body of a predetermined shape from the calcined barium titanate powder, and a firing step of firing the molded body in the atmosphere.

ところでP 1’ C素子の*’am構については、3
dN子のホッピング伝導等1種々の説があるが、WJ素
大欠陥生成に伴う自由電子の生成による説が一般である
By the way, regarding the *'am structure of the P 1'C element, 3
There are various theories such as hopping conduction of dN atoms, but the general theory is that free electrons are generated due to the generation of WJ elemental defects.

そしてPTC素子の抵抗は、バルク(素子を構成する粒
子)と粒界の抵抗の和によって表わされるツメ、一般に
、キュリー温度(Tc)以下の温度においてはバルクの
抵抗が、TC以上の温度においては粒界の抵抗が支配的
であることが知られている。そのためP T C素子の
低抵抗化に関しては、常温抵抗を支配するバルクの!I
i nが重要である。
The resistance of a PTC element is expressed by the sum of the resistance of the bulk (particles that make up the element) and the grain boundaries. Generally, the resistance of the bulk at temperatures below the Curie temperature (Tc) is the resistance at temperatures above TC It is known that grain boundary resistance is dominant. Therefore, when it comes to lowering the resistance of PTC elements, the bulk ! I
i n is important.

このPTC*子の常温比抵抗は一般に、次の様に表わさ
れる。
The room temperature resistivity of this PTC* element is generally expressed as follows.

ρ(P’rC)−D (bu l k)−1/ (n 
(D)・e・μ) (n(D)−ドナー密度、e−電子の電荷、μ−易動度
) 従って、PTC索子の抵抗は、ドナー密度、ずなわら、
バルク内の酸素欠陥の濃度に依存しており、低抵抗のP
TC素子を得るためには酸素欠陥の濃度を高める必要が
ある。
ρ(P'rC)-D (bu l k)-1/ (n
(D)・e・μ) (n(D)-donor density, e-electron charge, μ-mobility) Therefore, the resistance of the PTC cord is the donor density,
It depends on the concentration of oxygen vacancies in the bulk, and P with low resistance
In order to obtain a TC element, it is necessary to increase the concentration of oxygen vacancies.

なお、この/=めに、P 1’ C素子をNz、Ar、
82等の中性・還元雰囲気中にて熱処理〈焼成)するこ
とによりバルク内の酸素欠陥濃度を高め!J(抵抗化す
ることも可能であるが、PTC特性を発生させる粒界が
還元されてしまい、2丁C特性が消失、あるいは劣化す
る問題がある。
In addition, for this /=, the P 1' C element is Nz, Ar,
The concentration of oxygen defects in the bulk is increased by heat treatment (baking) in a neutral/reducing atmosphere such as 82! Although it is possible to make it resistive, there is a problem in that the grain boundaries that generate the PTC characteristic are reduced and the two-dimensional C characteristic disappears or deteriorates.

本発明は、あらかじめ還元されたチタンの還元だ化物を
含むチタン酸化物原料粉末を用いて通常の方法で製造す
ることにより、PTC特性を支配する粒界を還元するこ
とな(、バルクのみを選択的に還元して、バルク内の1
1311欠陥IIIが^い低抵抗のPTC素子を製造す
るものである。
In the present invention, titanium oxide raw material powder containing a reduced titanium oxide that has been reduced in advance is produced in a conventional manner, so that the grain boundaries that govern PTC characteristics are not reduced (and only the bulk is selected). 1 in the bulk
A low resistance PTC element with 1311 defect III is manufactured.

本発明の原料粉末のチタン酸化物原料としては、Xが0
.02以上のT i O2−× で示される化学組成を
もつ粉末あるいは仮焼によりT f Oz−xとなる化
学組成をもつ粉末とすることができる。
As the titanium oxide raw material for the raw material powder of the present invention, X is 0
.. The powder can be made into a powder having a chemical composition of T i O2-x of 02 or more, or a powder having a chemical composition of T f Oz-x by calcination.

このため、チタン酸化物原料としてTtO1丁1203
、Ti30a等のチタンの還元酸化物をip独で、又は
混合して用いることができる。また、上記f−タンの還
元酸化物にTiO2を混合して用いることもできる。た
だ、チタン酸化物原料粉末全体として、×が0.02以
上のTiO2−×で示される化学組成をもつことが必要
である。このXが0.02未満の場合には、比抵抗を5
Ω・cm以下にすることができず、低比抵抗化が不十分
となる。またXが1を越える1!1合には粉体に金属的
性質が生じるため好ましくない。
For this reason, TtO1-1203 is used as a titanium oxide raw material.
, Ti30a, and other reduced oxides of titanium can be used alone or in combination. Further, it is also possible to use a mixture of TiO2 in the reduced oxide of f-tan. However, it is necessary that the titanium oxide raw material powder as a whole has a chemical composition represented by TiO2-x, where x is 0.02 or more. If this X is less than 0.02, reduce the specific resistance to 5
It is not possible to reduce the resistivity to Ω·cm or less, resulting in insufficient reduction in specific resistance. Furthermore, a 1!1 ratio in which X exceeds 1 is not preferable because the powder develops metallic properties.

なお、本発明に用いられる原料粉末には、半導体化添加
物又は正特性化添加物(P型化添加物)を含ますことが
できる。この半導体化添加物としては、YtO3,La
x03、NbzOs、Cez03LJ″3よび丁ato
s等のうちの少なくともつを用いることができ、通常、
Y2O3が用いられる。P型化添加物としては、Mn0
z、FezO3、Cr2O2,CuOおよびNiO等の
うちの少なくとも一つを用いることができ、通常MnO
2が用いられる。
Note that the raw material powder used in the present invention can contain a semiconductor additive or a positive characteristic additive (P-type additive). This semiconductor additive includes YtO3, La
x03, NbzOs, Cez03LJ″3 and Dingato
At least one of s, etc. can be used, and usually,
Y2O3 is used. As a P-type additive, Mn0
At least one of z, FezO3, Cr2O2, CuO, NiO, etc. can be used, and usually MnO
2 is used.

前記両温加物は、前記各酸化物に限らず、硝酸塩、炭酸
43等の焼成により酸化物となるものを用いることもで
きる。
The above-mentioned hot substances are not limited to the above-mentioned oxides, but nitrates, carbonic acid 43, etc., which become oxides upon firing, can also be used.

この半導体低温m物の添加油が過剰になっても、またそ
の添加油が少なくなっても常温比抵抗が上行するので、
常温比抵抗を5Ω・cm以上とするために、この半導体
化添加物はチタン酸バリウム100モルに対して0.0
5’Eル〜0.5モルの添加範囲が良好となる。
Even if the added oil of this semiconductor low-temperature substance becomes excessive or decreases, the room temperature resistivity increases.
In order to make the specific resistance at room temperature 5Ω・cm or more, this semiconductor additive is added at a concentration of 0.0 mol per 100 mol of barium titanate.
A good addition range is 5'El to 0.5 mol.

半導体化添加物およびP型化添加物の双方を含む場合、
半導体化添加物の配合回合1,1チタン酸バリウム10
0 Eルに対して0.05−Eルー0,5しルであり、
前記P型化添加物の配合〃j合は0゜15モル以下であ
るのが好ましい。P型化添加物を添加するとR−T特性
(ΔR)は良好となるが、過剰に添加すると常温比抵抗
が向トするので、0゜15モル以下が好ましい。なおP
型化添加物の添加により△1(が良りfとなるのは、粒
界に析出づると考えられているP型化合物が酸素供給体
となり粒界の還元を防止するためであると推定される。
When containing both a semiconductor additive and a P-type additive,
Mixing ratio of semiconducting additive: 1, barium titanate: 10
0.05-E to 0.5,
The content of the P-type additive is preferably 0.15 mol or less. When a P-type additive is added, the RT characteristic (ΔR) becomes good, but if it is added in excess, the specific resistance at room temperature decreases, so it is preferably 0°15 mol or less. Furthermore, P
It is presumed that the reason why △1(f) becomes better due to the addition of molding additives is that the P-type compound, which is thought to precipitate at the grain boundaries, becomes an oxygen supplier and prevents reduction at the grain boundaries. Ru.

また、焼成工程における加熱温度番よ、1280〜17
100℃が好ましい。1280℃よりも低い温度では、
焼結が不十分であり、また1400℃を越える4度では
、過焼成となり、低抵抗化に問題を生じるため好ましく
ない。
Also, the heating temperature number in the firing process is 1280 to 17
100°C is preferred. At temperatures lower than 1280℃,
Sintering is insufficient, and 4 degrees above 1400° C. is not preferable because it results in oversintering and causes problems in lowering the resistance.

なお、本発明に用いる原料粉末の組成は、BaT + 
03 、Pb、Srを配合した焼結体組成となるような
ものに限定されるものではイτく、Tcや1<−1特性
(△R)ヲLIIlitlリルタめに、(/a、7r、
3n、 Fe、Or等の他の元素を配合した焼結体組成
となるような原料粉末を添加しても同様の効果を得るこ
とができる。
The composition of the raw material powder used in the present invention is BaT +
It is not limited to those having a sintered body composition containing 03, Pb, and Sr, but for Tc and 1<-1 characteristics (△R),
A similar effect can be obtained by adding raw material powder that has a sintered body composition containing other elements such as 3n, Fe, and Or.

[実施例] 以下、実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

本実施例では、第1図に示すように、温合、乾燥、仮焼
、粉砕、造粒、成形及び焼成を実施して、表に示す原料
組成で所定の各半導体磁器を製造した。なお、試験例N
o、5〜11及びNo、13〜21は本発明に係る試験
例で、チタン酸化物原#】1としてチタンの還元酸化物
を含み、かつこのチタン酸化物原料全体としてXh<0
.02以上の102−X  で示される化学組成をもつ
ものである。
In this example, as shown in FIG. 1, heating, drying, calcination, pulverization, granulation, molding, and firing were carried out to produce each predetermined semiconductor porcelain with the raw material composition shown in the table. In addition, test example N
o, 5 to 11 and Nos. 13 to 21 are test examples according to the present invention, in which the titanium oxide raw material #1 contains a reduced oxide of titanium, and the titanium oxide raw material as a whole has Xh<0.
.. It has a chemical composition represented by 102-X of 02 or more.

また、試験例No、4及びNo、12は比較例であり、
チタン酸化物原料としてチタンの還元酸化物を含んでい
るが、チタン酸化物原料全体としてXが0.02より小
さいr i 02−Xで示される化学組成をもつもので
ある。また、試験例No。
In addition, test examples No. 4 and No. 12 are comparative examples,
Although a reduced oxide of titanium is included as a titanium oxide raw material, the titanium oxide raw material as a whole has a chemical composition represented by r i 02-X where X is smaller than 0.02. Also, test example no.

1〜3は、チタン酸化物原料としてTiO2を単独で用
いた従来例を示づ。さらに、第1表中、×1はチタン酸
化物原11全体とじての化学組成式(102−x)にお
1ノる値を示す。
1 to 3 show conventional examples in which TiO2 was used alone as a titanium oxide raw material. Furthermore, in Table 1, x1 indicates a value of 1 in the chemical composition formula (102-x) of the entire titanium oxide raw material 11.

以上、試験例No、 11 <本発明)の製造方法につ
いて説明するが、他の試験例についても出発原料の組成
が異なる以外はこの方法と同様である。
The manufacturing method of Test Example No. 11 (the present invention) is described above, and the other test examples are similar to this method except that the composition of the starting materials is different.

まv、BaCOxを1.OOEル、T’i0を1゜02
t−ル、Y!03を0.0025モルとこれら占の合計
100車闇品に対して3+Q+を0511^1部、△1
103を0.3@間部、さらに、M n Otを0.0
002七ル調合した後、メノウ1凸を用いたボールミル
に純水を加えて20時閂i!j JC混合した。
1. BaCOx. OOE le, T'i0 1゜02
t-ru, Y! 03 is 0.0025 mole and 3+Q+ is 0511^1 part, △1 for a total of 100 black market items.
103 to 0.3 @ between, and M n Ot to 0.0
After blending 0027, add pure water to a ball mill using 1 convex agate and press at 20 o'clock! j JC mixed.

そのIQ 150’C124時!、1乾燥を行い、さら
に1100℃、4時間仮焼してチタン酎バリウム仮焼粉
体を1!7だ。そして、この仮焼粉体をボールミルを用
いて湿式粉砕した(蔓、ポリごニルアルフルをl w 
t%加えスプレドライヤにまり造粒を行なった。そして
(qられた迄粒粉を500kg/as2の成形圧にて金
型成形をした侵、通常の方法を用いて人気中にて135
0℃、1時間焼成を11ない焼成体をI’lだ。
Its IQ is 150'C124 hours! , 1 drying, and further calcining at 1100℃ for 4 hours to obtain a titanium liquor barium calcined powder with a temperature of 1.7. Then, this calcined powder was wet-pulverized using a ball mill.
t% was added and granulated in a spray dryer. Then, the grain powder was molded with a mold at a molding pressure of 500 kg/as2, and 135
I'l is a fired product that is fired at 0°C for 1 hour.

次にこの各焼成体の端面を研磨し、N1無電解メ:)4
及びAgベースト電極を付与して、その比抵抗(ρ+o
)およびR−T特性(△R= l o g(Rwax 
、−’ Rsin > )の評価を行ない、その結果を
去に併せて示した。なお、試験例No、1 <従来例)
とNo、11(本発明)についてのR−T特性を第2図
に示した。またセ1定槙準は、比抵抗(ρxo)が5Ω
−calス下、1り一1特性(△R)2桁以上をOとし
、それ以外1.L△とした。
Next, the end face of each fired body was polished, and the N1 electroless method was polished.
and an Ag-based electrode, its specific resistance (ρ+o
) and RT characteristics (△R= l o g(Rwax
, -'Rsin > ) was evaluated, and the results are also shown below. In addition, test example No. 1 <Conventional example)
FIG. 2 shows the RT characteristics for No. 1 and No. 11 (invention). In addition, the specific resistance (ρxo) is 5Ω
-Cals below, 1-1 characteristics (△R) 2 digits or more are O, otherwise 1. It was set as L△.

この結果によれば、チタン酸化物原料としてTO!を単
独で用いた従来例(No、1〜3)の比抵抗は、いずれ
も6.2Ω・cmLx十と高かった。また、チタン酸化
物原nとしてT101とTiO又はTi1zとli+0
3を混合したものを用いたが、これらのチタン酸化物原
料全体としてXが0.02より小さいT i O2−に
で承される化学組成をもつ比較VA(No、4及び12
)は、いヂれも、比抵抗が5.5Ω・caP?疫と^か
った。
According to this result, TO! The specific resistances of the conventional examples (Nos. 1 to 3) in which only 1 was used were as high as 6.2 Ω·cmL×10. In addition, as the titanium oxide source n, T101 and TiO or Ti1z and li+0
Comparative VAs (No. 4 and 12
) has a specific resistance of 5.5Ω・caP? It was like an epidemic.

方その他の試験例(本発明)は、R−T特性(ΔR)に
おいてはやや劣化するものの、比抵抗はいずれも前記従
来例および比較例と比べて50・C−以下と小さかった
。すなわち、チタン酸化物原料としてfタンの還元酸化
物(丁10、Tiz03)を含み、かつ、チタン酸化?
5原料全体としての化学組成式Ti0z−XにJ月Jる
Xの値がOO2以トて・ある場合に喀り、低抵抗なP1
C#了を得ることができtこ、@えば、試験例N015
〜11(水R明)の結束により、チタン酸化物原料全体
としての化学組成式T i O2−Xに、j30るXの
値が人さくなるにしたがい、低比抵抗になることがわか
る。特に、試験例No、11の比抵抗は1゜10・CI
となり極めて良ofな結束を得ることがて・き1J0 (「お、卯¥4扮休の組成即ち焼結体組成は、Ba11
03のもの(No、5〜11.13〜17.19.21
)のみくiらず、l) b又はSrを配合した乙の(N
o、18.20)でら同様の効果を得ることがて・さた
In the other test examples (invention), although the RT characteristics (ΔR) were slightly deteriorated, the specific resistances were all as small as 50·C or less compared to the conventional examples and comparative examples. That is, the titanium oxide raw material contains a reduced oxide of f-tanium (Tiz10, Tiz03), and titanium oxide?
5 If the chemical composition formula Ti0z-X of the raw material as a whole has a value of X greater than OO2, P1 with low resistance
I can get C# completion, @For example, test example N015
It can be seen that due to the unity of ~11 (water R light), the specific resistance becomes lower as the value of j30 becomes smaller in the chemical composition formula T i O2-X of the titanium oxide raw material as a whole. In particular, the specific resistance of test example No. 11 is 1°10・CI
Therefore, it was possible to obtain an extremely good bond.
03 (No, 5-11.13-17.19.21
) only, l) b or (N) containing Sr.
o, 18.20), it was possible to obtain a similar effect.

[R明の211宋j 水f明の特ゐ方法は、出発原料としてXが0゜021ス
1−のr’ i 02−Xで示される化学組成をbつf
タンII!!化物を用いて通常のli?ム(大気中焼成
)でシHΔケることにより、PTC特性を支配する粒界
を;!元することなく、バルクのみを選択的にぶ元し゛
Cバルク内のM系欠陥m度を^めるものである。本製造
ri法によれば、0(抵抗でかつ小ヤ形状のi′[特性
半導体48を製造することができる。したがって、低敢
熱域にて使用されるゾシ11ルジスタ、A+c流保′S
装冒等への応用が可能となり、適用範囲及び設31の自
由度が拡大する。さらに、従来に比べ小)り形状にて所
望の素子抵抗が17られるので、応用製品の小型化に5
する」ス1−ダウンを1.tかることもでさる。
[R Ming's 211 Song j Water f Ming's special method uses as a starting material a chemical composition of r' i 02-X where X is 0°021s1-.
Tan II! ! Ordinary li? The grain boundaries that govern PTC properties are formed by sintering in the atmosphere (firing in the atmosphere). This method selectively removes only the bulk without causing damage to the bulk, thereby reducing the number of M-type defects in the C bulk. According to this manufacturing method, it is possible to manufacture a semiconductor 48 with 0 (resistance) and small diameter i' [characteristics. S
It becomes possible to apply it to adventure equipment, etc., and the range of application and the degree of freedom of installation 31 are expanded. Furthermore, since the desired element resistance can be reduced by 17% with a smaller shape than conventional products, it is possible to reduce the size of applied products by 5%.
1-down 1. It is also possible to earn money.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は木琵明の製造51人を)六4フ[]−チPト、
第21q番、L実圧例の抵抗−温度特性の一例を示すグ
ラフeある。 特許出願人   日本市賃株式会社 代理人    弁l1lIF  入用 宏第1図 第2図 温 度 (°C)
Figure 1 shows the 51 people who made the Mokubimei.
No. 21q, there is a graph e showing an example of the resistance-temperature characteristics of the L actual pressure example. Patent Applicant Nippon City Rental Co., Ltd. Agent Benl1lIF Required Hiroshi Figure 1 Figure 2 Temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] (1)チタン酸化物原料として、xが0.02以上のT
iO_2_−_xで示される化学組成をもつ粉末あるい
は仮焼によりTiO_2_−_xとなる化学組成をもつ
粉末を含む原料粉末を混合する混合工程と、前記混合工
程において混合された混合粉体を仮焼して主としてチタ
ン酸バリウム仮焼粉体を合成する仮焼工程と、前記チタ
ン酸バリウム仮焼粉体より所定形状の成形体を成形する
成形工程と、その後前記成形体を大気中にて焼成する焼
成工程と、からなることを特徴とする正特性半導体磁器
の製造方法。
(1) As a titanium oxide raw material, T with x of 0.02 or more
A mixing step of mixing raw material powder including a powder having a chemical composition represented by iO_2_-_x or a powder having a chemical composition that becomes TiO_2_-_x by calcination, and calcination of the mixed powder mixed in the mixing step. a calcination step in which a barium titanate calcined powder is mainly synthesized, a molding step in which a molded body of a predetermined shape is formed from the barium titanate calcined powder, and then a firing step in which the molded body is fired in the atmosphere. A method for producing positive characteristic semiconductor porcelain, comprising the steps of:
JP20973188A 1988-08-24 1988-08-24 Manufacture of positive temperature coefficient semiconductor porcelain Pending JPH0258302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20973188A JPH0258302A (en) 1988-08-24 1988-08-24 Manufacture of positive temperature coefficient semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20973188A JPH0258302A (en) 1988-08-24 1988-08-24 Manufacture of positive temperature coefficient semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH0258302A true JPH0258302A (en) 1990-02-27

Family

ID=16577704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20973188A Pending JPH0258302A (en) 1988-08-24 1988-08-24 Manufacture of positive temperature coefficient semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH0258302A (en)

Similar Documents

Publication Publication Date Title
US4483933A (en) Semiconductor ceramic composition
JP4080576B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
CN105321641A (en) Semiconductor ceramic composition and PTC thermistor
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JPH0258302A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH01238101A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH10101413A (en) Ptc ceramic, its production and heater
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
US2475864A (en) Electric resistance element
JPH01232701A (en) Manufacture of positive characteristic semiconductor porcelain
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH0338803A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JP2002274940A (en) Raw material powder for ceramics, method for manufacturing the same, ceramic and method for manufacturing the same, and method for manufacturing laminated ceramic electronic part
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH0335501A (en) Manufacture of ptc thermistor
JPH03278401A (en) Manufacture of ceramics for thermistor
JPH11139869A (en) Semiconductor ceramic and its production