JPH0121900B2 - - Google Patents
Info
- Publication number
- JPH0121900B2 JPH0121900B2 JP3876081A JP3876081A JPH0121900B2 JP H0121900 B2 JPH0121900 B2 JP H0121900B2 JP 3876081 A JP3876081 A JP 3876081A JP 3876081 A JP3876081 A JP 3876081A JP H0121900 B2 JPH0121900 B2 JP H0121900B2
- Authority
- JP
- Japan
- Prior art keywords
- vanadium
- gas
- molybdenum
- tungsten
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003054 catalyst Substances 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 21
- 229910044991 metal oxide Inorganic materials 0.000 claims description 19
- 150000004706 metal oxides Chemical class 0.000 claims description 19
- 229910052720 vanadium Inorganic materials 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- GXTVJIIYRCYTNM-UHFFFAOYSA-N [V].[Mo].[W] Chemical compound [V].[Mo].[W] GXTVJIIYRCYTNM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- NWJUARNXABNMDW-UHFFFAOYSA-N tungsten vanadium Chemical compound [W]=[V] NWJUARNXABNMDW-UHFFFAOYSA-N 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 47
- 230000035945 sensitivity Effects 0.000 description 18
- 239000012086 standard solution Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000004773 chlorofluoromethyl group Chemical group [H]C(F)(Cl)* 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012476 oxidizable substance Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001456 vanadium ion Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
本発明はガス検知素子に係り、特に低濃度の還
元性ガス及びフレオンガスの検出に適したガス検
知素子に関する。
従来から金属酸化物半導体表面にガスが接触す
ると、金属酸化物半導体の表面の比抵抗が変化す
ることを利用したガス検知素子が知られている。
例えばN型半導体性を示すZnO、SnO2、Fe2O3等
に還元性ガスが接触すると抵抗値は減少し、また
酸化性ガスが接触すると、抵抗値は増加する。ま
たP型半導体性を示す金属酸化物半導体において
は抵抗値の増減が逆の関係を示す。
前記のごとき金属酸化物半導体において、各種
ガスとの反応性すなわち選択性は、半導体表面温
度、表面電子レベルの構造、気孔率および気孔の
大きさ等により決まるが、一般には金属酸化物半
導体のみでは感ガス素子として感度が小さく、選
択性も充分とは言えない。そこでPt、Pd等の貴
金属を触媒として用いることによりガス検出感度
を向上させる試みがなされている。すなわち、貴
金属を直接金属酸化物半導体に添加したり、ある
いは、金属酸化物半導体上に貴金属担持触媒層を
設けるといつた方法がとられている。これら貴金
属を触媒として用いた場合、無触媒の場合と比較
して、CO、iso−C4H10等の還元性ガスに対する
ガス検出感度は向上するものの低濃度ガスに対し
ては必ずしも充分な感度が得られなかつた。ま
た、所謂フレオンガスに対する検出感度は極めて
低かつた。
本発明は上記の点に鑑み一酸化炭素、水素、炭
火水素等の還元性ガス及び一般に冷媒として使用
されるフレオンガスに対し優れた感度を有し、特
に低濃度ガスの検出に適したガス検知素子を提供
する事を目的とする。
即ち、本発明は、1対の電極を備えたガス感応
体を具備するガス検知素子において、
前記ガス感応体が、Al2O3、SiO2、又はSiO2−
Al2O3からなる担体にバナジウム、バナジウム−
モリブデン、バナジウム−タングステン、又はバ
ナジウム−モリブデン−タングステンを担持させ
てなる触媒を含有するZnO系金属酸化物半導体か
ら成ることを特徴とするガス検知素子である。
上記本発明において、触媒の金属酸化物半導体
に対する含有量は、0.1〜20重量%の範囲が好ま
しく、更には0.5〜15重量%の範囲が好ましい。
触媒含有量が前記範囲よりも少なくても、多くて
も感度が劣る傾向がある。
また、バナジウム−担持触媒におけるバナジウ
ム担持量は、担体に対して0.1〜50重量%(更に
は1.0〜20重量%)が好ましく、バナジウム−モ
リブデン、バナジウム−タングステン又はバナジ
ウム−モリブデン−タングステンを担体に担持さ
せた触媒においては、バナジウム担持量は担体に
対して0.1〜50重量%(更には1.0〜20重量%)
で、モリブデン及び/又はタングステンの担持量
はバナジウムに対するg原子比で表して0.01〜
0.5(更には0.05〜0.2)であることが好ましい。か
かる範囲にあるとき、本発明の素子は高い感度を
示し、この範囲外では十分な感度は得難い。
本発明に用いる触媒の触媒機構は、バナジウム
イオンの被酸化物による還元と、気相酸素による
再酸化とによる酸化還元サイクルで進むと考えら
れる。また、バナジウムと共に含有されるモリブ
デンおよびタングステンの働きは、V5+格子点に
同型置換して固溶体を生成し、その原子価制御に
よりV4+量を増加させ酸性度を増大させるものと
考えられる。
本発明においてZnO系金属酸化物半導体からな
るガス感応体としては、還元性ガスとの接触によ
り抵抗値の変化するものであれば使用できる。こ
のようなZnO系金属酸化物としては、ZnOにSb2、
O3、Cr2O3等を微量添加した組成物系等が挙げら
れ、通常は98ZnO−2Sb2O3が用いられる。
第1図及び第2図は、本発明の一実施例を表し
たもので、第1図は円筒状素子の断面図であり、
第2図は該素子をピン足上に取付けた状態の斜視
図である。以下、図面を即して詳細に説明する。
このガス検知素子4は、筒状絶縁基体1の外周
面上に一対の電極2が設けられ、該絶縁基体及び
電極を被覆するように、本発明に係る触媒含有の
金属酸化物半導体から成る層3が形成されて、ガ
ス感応体を構成している。金属酸化物半導体層3
は多孔質の層である。
前記のように構成されたガス検知素子4は例え
ば第2図に斜視的に示す如くピン足上に他と接触
しない状態に保持される。
なお、第2図中5はヒータ用リード線を、6は
電極用リード線を、7は加熱用ヒータを、8は絶
縁板をそれぞれ示す。
なおヒータ7はガス感応体を約450℃前後に加
熱できるようになつており感度を向上させるため
に設けられたものである。
また、本発明に係るガス検出素子は例えば以下
の如く製造される。
まず金属酸化物半導体にバインダーと溶媒とし
てH2Oを適当量加え、ボールミル等で一定時間
混合し、ペーストとする。このペーストをシヤー
レ等に移し、約100℃と十分乾燥する。乾燥後900
〜1000℃で焼成する。焼成した試料をボールミル
で十分に粉砕し粉末とする。この金属酸化物半導
体の粉末を所定量採取し、別途作成した触媒を所
定量加え、さらに、バインダーおよびH2Oを加
えボールミルで一定時間混合し触媒含有金属酸化
物半導体ペーストとする。このペーストを、予め
外周面に一対の電極2を金ペースト等を用いてプ
リントした筒状絶縁基体1の外周面に塗布し、乾
燥後500〜600で焼成する。
また、前記の触媒は例えば次のようにして作成
する。
また、バナジウム、モリブデン、タングステン
の各標準溶液を作製する。例えば、バナジウムの
標準溶液は、メタバナジン酸アンモニウムに水を
加え、加熱状態にしてシユウ酸を加えることによ
り、所定濃度のバナジン酸アンモニウム水溶液と
して調製する。モリブデン標準溶液は、所定濃度
のモリブデン酸アンモニウム水溶液として調製
し、タングステン標準溶液は、タングステン酸ア
ンモニウムに水を加え、加熱状態でシユウ酸を加
えて所定濃度のタングステン酸アンニウム水溶液
として調製する。
担体にバナジウムを担持させる場合には、バナ
ジウム標準液を用いて、これに担体を浸漬する。
バナジウム−モリブデンを担持させる場合にはバ
ナジウム標準溶液とモリブデン標準溶液を所定の
割合で配合した混合溶液を調製し、これに担体を
浸漬する。バナジウム−タングステン又はバナジ
ウム−モリブデン−タングステンを担持させる場
合も、同様に対応する混合溶液を適宜調製して、
これに担体を浸漬すればよい。溶液への浸漬は一
昼夜放置して行い、その後蒸発乾固し、乳鉢を用
いて粉砕して粉体となし、電気炉で300〜600℃で
焼成すると、目的とする触媒が得られる。
本発明に用いられる触媒の担体成分は、
Al2O3、SiO2又はSiO2−Al2O3であるが、Al2O3、
SiO2を主成分とするケイソウ土、シリカゲル、
活性アルミナ等を使用することができる。
以下、本発明の実施例をあげて具体的に説明す
る。
第1図及び第2図に示したごときガス検知素子
を製造し、濃度500ppmの各種ガスに対する感度
(約450℃)をRo/Rgとして測定した。ここで、
Roは被測定ガスを含まない空気中において素子
が示した抵抗値であり、Rgは各種ガスを500ppm
含む空気中において素子が示した抵抗値である。
使用した検知素子は金属酸化物半導体として
98ZnO−2Sb2O3組成系(重量比)から成るもの
で、含有せしめた触媒の種々、含有量はそれぞれ
表1に示すとおりである。得られた結果も表1に
あわせ示す。
なお比較のために、98ZnO−2Sb2O3組成系か
らなる金属酸化物半導体表面に、Al2O3、SiO2、
又はSiO2−Al2O3に貴金属を担持させた触媒層を
設けた従来の検知素子についても、同様の測定を
行つた。但し、この場合には、各種の被測定ガス
濃度を2000ppmとして測定した。測定結果を表2
に示した。
The present invention relates to a gas detection element, and particularly to a gas detection element suitable for detecting low concentration reducing gas and Freon gas. BACKGROUND ART Gas sensing elements have been known that utilize the fact that the specific resistance of the surface of a metal oxide semiconductor changes when a gas comes into contact with the surface of the metal oxide semiconductor.
For example, when a reducing gas comes into contact with ZnO, SnO 2 , Fe 2 O 3 , etc., which exhibit N-type semiconductor properties, the resistance value decreases, and when an oxidizing gas comes into contact with it, the resistance value increases. Furthermore, in metal oxide semiconductors exhibiting P-type semiconductor properties, the increase and decrease in resistance value exhibits an inverse relationship. In metal oxide semiconductors such as those mentioned above, the reactivity or selectivity with various gases is determined by the semiconductor surface temperature, surface electron level structure, porosity, pore size, etc., but in general, metal oxide semiconductors alone As a gas-sensitive element, the sensitivity is low and the selectivity is not sufficient. Therefore, attempts have been made to improve gas detection sensitivity by using noble metals such as Pt and Pd as catalysts. That is, methods have been used such as directly adding a noble metal to a metal oxide semiconductor or providing a noble metal supported catalyst layer on a metal oxide semiconductor. When these precious metals are used as catalysts, the gas detection sensitivity for reducing gases such as CO and iso-C 4 H 10 is improved compared to the case without catalysts, but the sensitivity is not necessarily sufficient for low concentration gases. was not obtained. Furthermore, the detection sensitivity for so-called Freon gas was extremely low. In view of the above points, the present invention provides a gas detection element that has excellent sensitivity to reducing gases such as carbon monoxide, hydrogen, and hydrocarbons, and Freon gas, which is generally used as a refrigerant, and is particularly suitable for detecting low concentration gases. The purpose is to provide. That is, the present invention provides a gas sensing element comprising a gas sensitive body having a pair of electrodes, wherein the gas sensitive body is made of Al 2 O 3 , SiO 2 , or SiO 2 −
Vanadium , vanadium-
This is a gas sensing element characterized by being made of a ZnO-based metal oxide semiconductor containing a catalyst supported on molybdenum, vanadium-tungsten, or vanadium-molybdenum-tungsten. In the present invention, the content of the catalyst relative to the metal oxide semiconductor is preferably in the range of 0.1 to 20% by weight, more preferably in the range of 0.5 to 15% by weight.
Even if the catalyst content is less than or greater than the above range, the sensitivity tends to be poor. The amount of vanadium supported in the vanadium-supported catalyst is preferably 0.1 to 50% by weight (more preferably 1.0 to 20% by weight) based on the carrier, and vanadium-molybdenum, vanadium-tungsten, or vanadium-molybdenum-tungsten is supported on the carrier. In the catalyst, the amount of vanadium supported is 0.1 to 50% by weight (or even 1.0 to 20% by weight) based on the carrier.
The supported amount of molybdenum and/or tungsten is 0.01 to 0.01 expressed as g atomic ratio to vanadium.
It is preferably 0.5 (more preferably 0.05 to 0.2). Within this range, the element of the present invention exhibits high sensitivity, and outside this range it is difficult to obtain sufficient sensitivity. The catalytic mechanism of the catalyst used in the present invention is thought to proceed through an oxidation-reduction cycle in which vanadium ions are reduced by an oxidizable substance and reoxidized by gaseous oxygen. In addition, the function of molybdenum and tungsten contained together with vanadium is thought to be to generate a solid solution by isomorphic substitution at V 5+ lattice points, and to increase the amount of V 4+ and acidity by controlling the valence of the solid solution. . In the present invention, as the gas sensitive material made of a ZnO-based metal oxide semiconductor, any material whose resistance value changes upon contact with a reducing gas can be used. Such ZnO-based metal oxides include ZnO with Sb 2 ,
Examples include compositions to which trace amounts of O 3 , Cr 2 O 3 and the like are added, and 98ZnO-2Sb 2 O 3 is usually used. 1 and 2 show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of a cylindrical element,
FIG. 2 is a perspective view of the element mounted on the pin foot. Hereinafter, a detailed description will be given with reference to the drawings. This gas detection element 4 includes a pair of electrodes 2 provided on the outer peripheral surface of a cylindrical insulating substrate 1, and a layer made of a metal oxide semiconductor containing a catalyst according to the present invention so as to cover the insulating substrate and the electrodes. 3 is formed to constitute a gas sensitive body. Metal oxide semiconductor layer 3
is a porous layer. The gas detection element 4 configured as described above is held on the pin foot in a state where it does not come into contact with anything else, for example, as shown perspectively in FIG. In FIG. 2, 5 represents a heater lead wire, 6 represents an electrode lead wire, 7 represents a heating heater, and 8 represents an insulating plate. The heater 7 is designed to heat the gas sensitive body to about 450° C. and is provided to improve sensitivity. Further, the gas detection element according to the present invention is manufactured, for example, as follows. First, a binder and an appropriate amount of H 2 O as a solvent are added to a metal oxide semiconductor, and the mixture is mixed for a certain period of time using a ball mill or the like to form a paste. Transfer this paste to a chemist and dry it thoroughly at about 100℃. 900 after drying
Bake at ~1000℃. Thoroughly crush the fired sample using a ball mill to form a powder. A predetermined amount of this metal oxide semiconductor powder is taken, a predetermined amount of a separately prepared catalyst is added, and a binder and H 2 O are added and mixed for a predetermined time in a ball mill to obtain a catalyst-containing metal oxide semiconductor paste. This paste is applied to the outer peripheral surface of a cylindrical insulating substrate 1 on which a pair of electrodes 2 have been previously printed using gold paste or the like, and after drying, it is fired at a temperature of 500 to 600 ℃. Further, the above-mentioned catalyst is prepared, for example, in the following manner. In addition, standard solutions of vanadium, molybdenum, and tungsten are prepared. For example, a standard solution of vanadium is prepared as an ammonium vanadate aqueous solution with a predetermined concentration by adding water to ammonium metavanadate, heating the mixture, and adding oxalic acid. The molybdenum standard solution is prepared as an ammonium molybdate aqueous solution with a predetermined concentration, and the tungsten standard solution is prepared as an ammonium tungstate aqueous solution with a predetermined concentration by adding water to ammonium tungstate and adding oxalic acid in a heated state. When supporting vanadium on a carrier, the carrier is immersed in a vanadium standard solution.
When supporting vanadium-molybdenum, a mixed solution containing a vanadium standard solution and a molybdenum standard solution at a predetermined ratio is prepared, and the carrier is immersed in this mixed solution. When supporting vanadium-tungsten or vanadium-molybdenum-tungsten, similarly prepare a corresponding mixed solution as appropriate,
The carrier may be immersed in this. The mixture is immersed in the solution for a day and night, then evaporated to dryness, crushed in a mortar to form a powder, and calcined in an electric furnace at 300 to 600°C to obtain the desired catalyst. The carrier component of the catalyst used in the present invention is:
Al2O3 , SiO2 or SiO2 - Al2O3 , but Al2O3 ,
Diatomaceous earth whose main component is SiO 2 , silica gel,
Activated alumina or the like can be used. Hereinafter, the present invention will be specifically explained by giving examples. Gas detection elements as shown in FIGS. 1 and 2 were manufactured, and the sensitivity (approximately 450° C.) to various gases at a concentration of 500 ppm was measured as Ro/Rg. here,
Ro is the resistance value shown by the element in air that does not contain the gas to be measured, and Rg is the resistance value shown by the element in air that does not contain the gas to be measured.
This is the resistance value exhibited by the element in air containing air.
The sensing element used is a metal oxide semiconductor.
It consists of a 98ZnO-2Sb 2 O 3 composition system (weight ratio), and the various catalysts and their contents are shown in Table 1. The obtained results are also shown in Table 1. For comparison, Al 2 O 3 , SiO 2 ,
Alternatively, similar measurements were performed on a conventional sensing element provided with a catalyst layer in which a precious metal was supported on SiO 2 -Al 2 O 3 . However, in this case, the concentration of each gas to be measured was set to 2000 ppm. Table 2 shows the measurement results.
It was shown to.
【表】【table】
【表】【table】
【表】
表1、2より明らかなように、本発明に係る素
子の各種還元性ガス濃度500ppmに対する感度は、
貴金属触媒を用いた素子の各種還元性ガス濃度
2000ppmに対する感度と同程度あるいはそれ以上
の感度を有することがわかる。
また、本発明に係る素子はフレオンと称される
ハロゲン化炭化水素系ガスにも高感度を示す。フ
レオンは部分ハロゲン化物(CHClF2、CHF3、
CHCl2F等)と完全ハロゲン化物(CCl2F2、
CCl3F、CClF3等)に大別でき、部分ハロゲン化
物はC−H結合を有し、還元性ガスと同様の挙動
を示すが、完全ハロゲン化物はC−H結合を有し
ておらず必らずしも還元性ガスとしての挙動を示
さないため従来感度が極めて低く、検知しにくい
ガスの一種とされていた。しかしながら本発明に
係る素子は表1にCHClF2、CCl2F2を代表させ、
その感度を示したように、表中に示した還元性ガ
スに対してと同様に高感度を示すことが明らかで
ある。
以上の説明のように、本発明に係る素子は還元
性ガスおよびフレオンガスに関して低濃度におけ
る感度特性および応答特性に優れており、前記ガ
スの低濃度用ガス検知素子として適していると言
える。[Table] As is clear from Tables 1 and 2, the sensitivity of the element according to the present invention to various reducing gas concentrations of 500 ppm is
Concentration of various reducing gases in devices using noble metal catalysts
It can be seen that the sensitivity is comparable to or higher than that for 2000 ppm. Furthermore, the element according to the present invention exhibits high sensitivity to a halogenated hydrocarbon gas called Freon. Freon is a partial halide (CHClF 2 , CHF 3 ,
CHCl 2 F, etc.) and complete halides (CCl 2 F 2 ,
CCl 3 F, CClF 3 , etc.) Partial halides have C-H bonds and behave similarly to reducing gases, but complete halides do not have C-H bonds. Because it does not necessarily behave as a reducing gas, it has traditionally been considered a type of gas that has extremely low sensitivity and is difficult to detect. However, the device according to the present invention has CHClF 2 and CCl 2 F 2 represented in Table 1,
As shown in the sensitivity, it is clear that the same high sensitivity is shown for the reducing gases shown in the table. As described above, the element according to the present invention has excellent sensitivity characteristics and response characteristics at low concentrations of reducing gases and Freon gases, and can be said to be suitable as a gas detection element for low concentrations of the above gases.
第1図は本発明に係るガス検知素子の構造例を
示す断面図、第2図は本発明素子を用いた装置例
を示す斜視図、
1……筒状絶縁体、2……電極、3……ガス感
応体。
FIG. 1 is a cross-sectional view showing a structural example of a gas detection element according to the present invention, and FIG. 2 is a perspective view showing an example of a device using the element of the present invention. 1... Cylindrical insulator, 2... Electrode, 3 ...Gas sensitive body.
Claims (1)
ス検知素子において、 前記ガス感応体が、Al2O3、SiO2、又はSiO2−
Al2O3からなる担体にバナジウム、バナジウム−
モリブデン、バナジウム−タングステン、又はバ
ナジウム−モリブデン−タングステンを担持させ
てなる触媒を含有するZnO系金属酸化物半導体か
ら成ることを特徴とするガス検知素子。 2 特許請求の範囲第1項の記載において、触媒
の金属酸化物半導体に対する含有量が0.1〜20重
量%であるガス検知素子。 3 特許請求の範囲第1項又は第2項の記載にお
いて、触媒が担体にバナジウムを担持させたもの
で、担体に対するバナジウムの担持量が0.1〜50
重量%であるガス検知素子。 4 特許請求の範囲第1項又は第2項の記載にお
いて、触媒が担体にバナジウム−モリブデン、バ
ナジウム−タングステン又はバナジウム−モリブ
デン−タングステンを担持させたもので、バナジ
ウムの担持量が担体に対して0.1〜50重量%であ
り、モリブデン及び/又はタングステンの担持量
がバナジウムに対するg原子比で表して0.01〜
0.5であるガス検知素子。[Scope of Claims] 1. A gas sensing element comprising a gas sensitive material having a pair of electrodes, wherein the gas sensitive material is made of Al 2 O 3 , SiO 2 , or SiO 2 −
Vanadium , vanadium-
A gas sensing element comprising a ZnO-based metal oxide semiconductor containing a catalyst supported on molybdenum, vanadium-tungsten, or vanadium-molybdenum-tungsten. 2. The gas sensing element according to claim 1, wherein the content of the catalyst relative to the metal oxide semiconductor is 0.1 to 20% by weight. 3. In the statement of claim 1 or 2, the catalyst has vanadium supported on a carrier, and the amount of vanadium supported on the carrier is 0.1 to 50.
Gas sensing element in weight%. 4. In the statement of claim 1 or 2, the catalyst is one in which vanadium-molybdenum, vanadium-tungsten, or vanadium-molybdenum-tungsten is supported on a carrier, and the amount of vanadium supported is 0.1 with respect to the carrier. ~50% by weight, and the supported amount of molybdenum and/or tungsten is 0.01~ expressed in g atomic ratio to vanadium.
Gas detection element with 0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3876081A JPS57154039A (en) | 1981-03-19 | 1981-03-19 | Gas detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3876081A JPS57154039A (en) | 1981-03-19 | 1981-03-19 | Gas detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57154039A JPS57154039A (en) | 1982-09-22 |
JPH0121900B2 true JPH0121900B2 (en) | 1989-04-24 |
Family
ID=12534234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3876081A Granted JPS57154039A (en) | 1981-03-19 | 1981-03-19 | Gas detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57154039A (en) |
-
1981
- 1981-03-19 JP JP3876081A patent/JPS57154039A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57154039A (en) | 1982-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4000089A (en) | Element for detecting carbon monoxide | |
US5427740A (en) | Tin oxide gas sensors | |
US4543273A (en) | Carbon monoxide sensing element and method of making same | |
JPH09159634A (en) | Gas sensor and preparation thereof | |
JP2766853B2 (en) | Gas sensor | |
GB1596095A (en) | Carbon monoxide detecting device | |
JP3053865B2 (en) | Sensor for detecting carbon monoxide | |
CA1227384A (en) | Antimony-doped stannic oxide thick film gas sensor | |
CA1177276A (en) | Thick film sensor for hydrogen and carbon monoxide | |
JPH0121900B2 (en) | ||
JPS6363064B2 (en) | ||
JPS6128932B2 (en) | ||
JPS6128937B2 (en) | ||
JPH0611400B2 (en) | Combustion catalyst with deterioration detection function | |
EP0261275B1 (en) | A hydrogen gas detecting element and method of producing same | |
JP3026523B2 (en) | Gas sensor | |
JP3191544B2 (en) | Thick film type gas sensor | |
JPS6128933B2 (en) | ||
JP4382245B2 (en) | Gas sensor and gas detector | |
JP3919306B2 (en) | Hydrocarbon gas detector | |
JPS58118953A (en) | Preparation of gas sensitive element | |
JPS5847018B2 (en) | gas sensing element | |
JPH0252247A (en) | Gas sensor | |
JPS59192950A (en) | Detecting element for carbon monoxide | |
JPH11271255A (en) | Semiconductor gas sensor |