JPH0121846B2 - - Google Patents

Info

Publication number
JPH0121846B2
JPH0121846B2 JP58169024A JP16902483A JPH0121846B2 JP H0121846 B2 JPH0121846 B2 JP H0121846B2 JP 58169024 A JP58169024 A JP 58169024A JP 16902483 A JP16902483 A JP 16902483A JP H0121846 B2 JPH0121846 B2 JP H0121846B2
Authority
JP
Japan
Prior art keywords
steel
less
delayed fracture
content
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58169024A
Other languages
Japanese (ja)
Other versions
JPS6059019A (en
Inventor
Seiichi Watanabe
Nozomi Komatsubara
Juichi Watanabe
Masaaki Nakamura
Yasuo Suishu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16902483A priority Critical patent/JPS6059019A/en
Priority to AU32935/84A priority patent/AU568403B2/en
Publication of JPS6059019A publication Critical patent/JPS6059019A/en
Publication of JPH0121846B2 publication Critical patent/JPH0121846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】 この発明は、鉱石や土砂による摩耗が問題にな
る土木・鉱山機械類のバケツト、大型ダンプトラ
ツクの荷台、ブルドーザーの排土板等に使用され
る高硬度の耐摩耗性鋼板に関するものである。 一般に、土木・鉱山機械類に使用される鋼材
の、鉱石や土砂等に直接触れる部分の摩耗は予想
をはるかに上回るほど激しいものであり、摩耗に
よつて耐用年数が決まると言われている。 ところで、鉱石や土砂類による鋼材の摩耗は鋼
材表面の硬さに支配されるものであり、硬さが硬
いほど摩耗量が小さくなることが知られている。 第1図は、鋼材の表面硬さと、砕石、硅砂及び
砂による鋼材の摩耗量との関係を示す線図であ
り、摩耗量を軟鋼(SM41材)に対する比で表わ
したものであるが、この第1図からも、鋼材の表
面硬さが高くなるにつれて摩耗量が減少すること
がわかる。 このように、鋼材の摩耗量の減少を図るには鋼
材硬度を上昇させるのが効果的な手段であつた
が、鋼材硬度を高めると、今度は水素に起因する
遅れ破壊発生の感受性が高まり、土木・鉱山機械
等の製作途中、或いはその使用中に破壊が発生し
やすくなるという困難な問題があつた。そして、
遅れ破壊現象は、厚鋼板をガス溶断した際に生し
る熱影響部硬化或を起点として起るものであるこ
とが解明されており、溶接施工を必須とする土
木・鉱山機械類には、耐摩耗性の良好な、表面硬
度の高い鋼板を使用することが事実上不可能だつ
たのである。 このため、比較的安価な厚鋼板を素材として使
用せざるを得ない土木・鉱山機械類には、表面硬
度の低い鋼板しか適用できず、土木・鉱山機械類
の耐用年数はどうしても摩耗により制約を受ける
こととなつて大きな経済的損失を余儀なくされて
いるのが現状であつた。 本発明者等は、上述のような観点から、耐摩耗
性の良好な表面ブリネル硬さ:360〜600程度の高
硬度鋼であつて、しかも遅れ破壊感受性の低い鋼
材を実現し、鉱物資源等の採掘能率の向上と作業
コストの低減を図るべく研究を行つた結果、以上
(a)〜(d)に示す如き知見を得たのである。即ち、 (a) 土木・鉱山機械類に必要とされる鋼材硬度を
実現する成分組成の鋼において、そのMn含有
量を通常鋼の0.6〜1.2%(以下、成分組成割合
を表わす%は重量%とする)から0.30%前後に
低減すると遅れ破壊時間が大幅に延長され、耐
遅れ破壊性が非常に改善されること。 第2図は、55℃温水中での遅れ破壊発生促進
試験における鋼材硬さと遅れ破壊発生時間との
対応を示すグラフであるが、耐遅れ破壊対策を
何ら施していないところのMn含有量が0.9%で
ある通常鋼では鋼材の遅れ破壊発生時間と硬さ
との間に一定の相関関係があり、硬度の上昇に
伴つて遅れ破壊発生時間の短かくなることが明
らかである。そして、第2図からは、鋼材の
Mn含有量を0.30%程度未満に低減するとその
遅れ破壊発生時間が大幅に延長され、耐遅れ破
壊性能が改善されることも明白である。 また、第2図からは、鋼材の遅れ破壊発生時
間と硬さとの対応状況は一義的であつて、硬さ
が同等であれば焼入れ・焼もどし処理したもの
でも、焼入れのままのものでも同等の遅れ破壊
発生時間を示すことが明らかであるから、特に
Mn含有量を低く調整すれば、溶接性の良好な
低C材等の比較的少ない化学成分の鋼材であつ
ても、焼入れのまま材とすることによつて焼入
れ・焼もどし材よりも有利に耐摩耗性の良好な
高硬度を達成でき、かつ遅れ破壊に対して十分
に対処し得る鋼材にできることがわかる。 (b) Sb及びPbを含有した鋼材の遅れ破壊発生時
間は通常鋼材よりも短かく、これらの元素は不
純物としてであつても、遅れ破壊の観点からは
極力低減する必要のあること。 (c) 従つて、Mn含有量を十分に低減するととも
に、Sb及びPb含有量を極力低減した鋼に焼入
れ処理を施せば、土木・鉱山機械類に必要とさ
れる耐摩耗性に応え得る硬度を確保し、しかも
耐遅れ破壊性の優れた鋼材が実現できること。 (d) 更に、前記焼入れ材に所定の焼もどしを施す
と、残留応力が軽減されるとともに、平坦度確
保のためのレベラー作業が非常に容易となるこ
と。 この発明は、上記知見に基づいてなされたもの
であつて、 C:0.15〜0.45%、 Si:0.05〜1.00%、 Mn:0.05〜0.30%未満、 Cr:0.05〜1.00%、 Mo:0.03〜0.85%、 sol.Al:0.010〜0.150%、 B:0.0003〜0.0025%、 を含有し、必要により更に、 Cu:0.05〜0.75%、 Ni:0.05〜1.50%、 V:0.005〜0.250%、 Nb:0.005〜0.150%、 Ti:0.005〜0.250%、 Ca:0.0005〜0.0080%、 のうちの1種以上をも含むとともに、 Fe及び不可避不純物:残り から成り、かつ不純物中のN、P、S、Pb及び
Sbの含有量がそれぞれ、 N:0.0015〜0.0100%、 P:0.018%以下、 S:0.008%以下、 Pb:0.015%以下、 Sb:0.015%以下、 である鋼を、加熱温度:1000〜1200℃にて熱間圧
延し、次いでAc3変態点の温度以上からの焼入れ
処理を施すか、或いは必要により更に300〜500℃
で焼もどすことにより、耐遅れ破壊性能の優れた
耐摩耗性鋼板を得る点に特徴を有するものであ
る。 次いで、この発明の方法において、鋼の成分組
成割合及び圧延・熱処理条件を前述のように数値
限定した理由を説明する。 A 鋼の成分組成 C C成分には鋼板の硬さを向上させる作用が
あり、表面ブリネル硬さ:360以上を確保す
るためには0.15%以上添加する必要がある
が、0.45%を越えて添加しても残留オーステ
ナイトが未変態のまま残るのでより以上の硬
さの向上が期待できず、従つてC含有量を
0.15〜0.45%と定めた。 Si Si成分は、0.05%以上の添加により焼入れ
性及び焼もどし軟化抵抗を向上させるが、
1.00%を越えて含有させると靭性が著しく劣
化することとなるので、Si含有量を0.05〜
1.00%と定めた。 Mn 鋼の耐遅れ破壊性に対してMnは大きな影
響を与えるものであり、Mn含有量を調整す
ることは本発明の骨子をなすものである。 Mn成分は、鋼材の板厚中心にまで“焼
き”を入れるためには0.05%以上含有させる
ことが必要であるが、第2図に示す0.3%程
度のMn鋼の中でより低Mnのものが良好な
側に偏在することなどを考慮して、Mn量を
厳しく限定し、Mn含有量を0.05〜0.30%未
満と定めた。なお、Mnは安価で、しかも鋼
の焼入れ性を高めるのに有効な元素であるこ
とから、通常の鋼には0.6%以上添加含有せ
しめられているものであるが、本発明の方法
においては、このようにMn含有量を低く抑
えることによつて耐遅れ破壊特性を飛躍的に
向上することができるのである。 Cr 鋼のMn含有量を低減すると焼入れ性が低
下するが、その焼入れ性不足を補うために
0.05%以上のCr成分を含有せしめる必要があ
る。但し、その含有量が1.00%を越えると、
鋼の靭性及び溶接性が劣化することとなるの
で、Cr含有量を0.05〜1.00%と定めた。 Mo Mo成分は、Bと共在して鋼の焼入れ性を
著しく高める作用があり、板厚中心にまで確
実に焼きを入れるためには0.03%以上のMo
を含有させる必要がある。一方、通常使用す
る板厚範囲では0.85%を越えて含有せしめる
必要はなく、溶接性をも考慮してMo含有量
を0.03〜0.85%を定めた。 Sol.Al 鋼の脱酸、細粒化による靭性改善のために
は0.010%以上のsol.Al成分を添加する必要が
あるが、0.150%を越えて含有させるとかえ
つて粗粒化を来たし、靭性劣化の原因となる
ことから、sol.Al含有量を0.010〜0.150%と
定めた。 B B成分は、0.0003%以上の微量添加で鋼の
焼入れ性を大幅い向上させるので所望の焼入
れ性を確保するために添加するものである
が、0.0025%を越えて含有させると焼入れ途
中でボロン組成物を析出し、かえつて焼入れ
性を低下させることから、B含有量を0.0003
〜0.0025%と定めた。 Cu、及びNi これらの成分には、いずれも鋼の焼入れ性
を向上する作用があり、鋼材板厚が厚くなつ
たときにも板厚中心部まで確実に焼きを入れ
るのに有効な元素であるので、必要に応じて
添加含有せしめられるものであるが、直接焼
入れを行う場合には再加熱焼入れよりも焼入
れ性が向上するので、板厚増大に伴なつて添
加するCu及びNiの合金元素量は少なくて良
い。以下、それぞれについて、その含有量を
数値によつて限定した理由を詳述する。 (i) Cu Cu成分は、0.05%以上の添加によつて鋼
の焼入れ性向上効果が得られるが、0.75%
を越えて添加してもより以上の向上効果が
得られないことから、Cu含有量を0.05〜
0.75%と定めた。なお、直接焼入れを施す
場合には0.50%以下で十分な効果を得るこ
とができる。 (ii) Ni Ni成分も、0.05%以上の添加で鋼の焼入
れ性を高める元素であり、かつ靭性を劣化
させることがないので焼入れ性改善のため
には極めて有効なものであるが、非常に高
価な元素であることから経済性を考慮し
て、Ni含有量を0.05〜1.50%と定めた。な
お、直接焼入れを施す場合には1.00%以下
で十分な効果を得ることができる。 ○…
[Detailed Description of the Invention] This invention is a highly hard and wear-resistant material that is used for bucket carts for civil engineering and mining machinery, loading platforms for large dump trucks, earth removal plates for bulldozers, etc. where abrasion caused by ore and earth and sand is a problem. It concerns steel plates. In general, the parts of steel used in civil engineering and mining machinery that come into direct contact with ore and earth and sand are subject to much more wear than expected, and it is said that wear determines the service life of the steel. By the way, it is known that the wear of steel materials due to ores and earth and sand is controlled by the hardness of the surface of the steel material, and the harder the steel material, the smaller the amount of wear. Figure 1 is a diagram showing the relationship between the surface hardness of steel and the amount of wear on the steel due to crushed stone, silica sand, and sand, and the amount of wear is expressed as a ratio to mild steel (SM41 material). It can also be seen from FIG. 1 that the amount of wear decreases as the surface hardness of the steel material increases. In this way, increasing the hardness of steel has been an effective means of reducing the amount of wear on steel, but increasing the hardness of steel also increases the susceptibility to delayed fracture caused by hydrogen. A difficult problem has arisen in that civil engineering and mining machines are more likely to break during production or use. and,
It has been clarified that the delayed fracture phenomenon occurs due to the hardening of the heat-affected zone that occurs when thick steel plates are cut by gas welding. It was virtually impossible to use a steel plate with good wear resistance and high surface hardness. For this reason, only steel plates with low surface hardness can be applied to civil engineering and mining machinery that has no choice but to use relatively inexpensive thick steel plates as materials, and the service life of civil engineering and mining machinery is inevitably limited by wear. The current situation was that they were forced to suffer huge economic losses. From the above-mentioned viewpoints, the present inventors have realized a high-hardness steel with good wear resistance, a surface Brinell hardness of about 360 to 600, and low susceptibility to delayed fracture, and have developed a steel material that has good wear resistance and low delayed fracture susceptibility. As a result of research aimed at improving mining efficiency and reducing operating costs, the above results were obtained.
The findings shown in (a) to (d) were obtained. That is, (a) In steel with a composition that achieves the steel hardness required for civil engineering and mining machinery, the Mn content should be 0.6 to 1.2% of that of ordinary steel (hereinafter, % indicating the composition ratio is weight %). ) to around 0.30%, the delayed fracture time will be significantly extended, and the delayed fracture resistance will be greatly improved. Figure 2 is a graph showing the correspondence between steel material hardness and delayed fracture occurrence time in a delayed fracture acceleration test in 55°C hot water, where the Mn content is 0.9 in the case where no delayed fracture resistance measures are taken. %, there is a certain correlation between the delayed fracture occurrence time and hardness of the steel material, and it is clear that the delayed fracture occurrence time becomes shorter as the hardness increases. From Figure 2, we can see that the steel material
It is also clear that when the Mn content is reduced to less than about 0.30%, the delayed fracture occurrence time is significantly extended, and the delayed fracture resistance performance is improved. Also, from Figure 2, the correspondence between the delayed fracture occurrence time and hardness of steel is unique, and if the hardness is the same, it is the same whether it is quenched and tempered or as-quenched. In particular, it is clear that it indicates the delayed failure occurrence time of
By adjusting the Mn content to a low level, even steel materials with relatively low chemical composition, such as low C materials with good weldability, can be made into materials as quenched, which is more advantageous than quenched and tempered materials. It can be seen that it is possible to achieve high hardness with good wear resistance, and to make a steel material that can sufficiently cope with delayed fracture. (b) The delayed fracture occurrence time of steel containing Sb and Pb is shorter than that of normal steel, and even if these elements are impurities, they must be reduced as much as possible from the perspective of delayed fracture. (c) Therefore, if the Mn content is sufficiently reduced and the Sb and Pb contents are reduced as much as possible by quenching, the hardness can meet the wear resistance required for civil engineering and mining machinery. It is possible to realize a steel material with excellent delayed fracture resistance. (d) Furthermore, when the hardened material is subjected to a prescribed tempering process, residual stress is reduced and leveler work for ensuring flatness becomes extremely easy. This invention was made based on the above findings, and includes: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.30%, Cr: 0.05 to 1.00%, Mo: 0.03 to 0.85. %, sol.Al: 0.010 to 0.150%, B: 0.0003 to 0.0025%, and further contains Cu: 0.05 to 0.75%, Ni: 0.05 to 1.50%, V: 0.005 to 0.250%, Nb: 0.005 ~0.150%, Ti: 0.005~0.250%, Ca: 0.0005~0.0080%, and also contains one or more of the following: Fe and unavoidable impurities: the remainder, and N, P, S, Pb and N in the impurities.
Steel with an Sb content of N: 0.0015 to 0.0100%, P: 0.018% or less, S: 0.008% or less, Pb: 0.015% or less, Sb: 0.015% or less, respectively, is heated at a temperature of 1000 to 1200°C. Hot rolling at 300°F and then quenching at a temperature above the Ac 3 transformation point, or further at 300 to 500°C if necessary.
It is characterized in that a wear-resistant steel plate with excellent delayed fracture resistance can be obtained by tempering the steel plate. Next, in the method of the present invention, the reason why the composition ratio of the steel and the rolling/heat treatment conditions are numerically limited as described above will be explained. A. Composition of steel C. C component has the effect of improving the hardness of the steel plate, and in order to ensure a surface Brinell hardness of 360 or higher, it is necessary to add 0.15% or more, but it is necessary to add more than 0.45%. However, since the retained austenite remains untransformed, further improvement in hardness cannot be expected.
It was set at 0.15-0.45%. Si The Si component improves hardenability and temper softening resistance by adding 0.05% or more, but
If the Si content exceeds 1.00%, the toughness will deteriorate significantly, so the Si content should be reduced to 0.05% or more.
It was set at 1.00%. Mn Mn has a great effect on the delayed fracture resistance of steel, and adjusting the Mn content is the gist of the present invention. The Mn content must be at least 0.05% in order to "harden" the steel material to the center of its thickness, but among the Mn steels with a lower Mn content of around 0.3% as shown in Figure 2, Considering that Mn is unevenly distributed on the good side, the amount of Mn was strictly limited, and the Mn content was determined to be less than 0.05% to 0.30%. Note that Mn is an inexpensive element that is effective in improving the hardenability of steel, so it is added to ordinary steel in an amount of 0.6% or more, but in the method of the present invention, By keeping the Mn content low in this way, delayed fracture resistance can be dramatically improved. When reducing the Mn content of Cr steel, the hardenability decreases, but in order to compensate for the lack of hardenability,
It is necessary to contain 0.05% or more of Cr component. However, if the content exceeds 1.00%,
Since the toughness and weldability of the steel would deteriorate, the Cr content was set at 0.05 to 1.00%. Mo The Mo component coexists with B and has the effect of significantly increasing the hardenability of steel, and in order to reliably harden the steel to the center of the thickness, it is necessary to
It is necessary to contain. On the other hand, there is no need for the Mo content to exceed 0.85% in the normally used plate thickness range, and the Mo content was determined to be 0.03 to 0.85%, taking weldability into consideration. Sol.Al It is necessary to add 0.010% or more of sol.Al to improve the toughness of steel by deoxidizing it and making it grain finer, but if it is added in excess of 0.150%, the grains will become coarser. Since it causes toughness deterioration, the sol.Al content was set at 0.010 to 0.150%. B Component B is added in order to ensure the desired hardenability because it greatly improves the hardenability of steel when added in a trace amount of 0.0003% or more. However, if it is added in excess of 0.0025%, boron is formed during hardening. The B content is set to 0.0003 because it precipitates the composition and reduces the hardenability.
It was set at ~0.0025%. Cu and Ni Both of these components have the effect of improving the hardenability of steel, and are effective elements for ensuring hardening to the center of the steel plate even when the thickness of the steel plate increases. Therefore, they can be added as necessary, but when direct hardening is performed, the hardenability is improved compared to reheat hardening, so the amount of alloying elements of Cu and Ni added as the plate thickness increases. less is better. The reasons for limiting the content by numerical value for each will be explained in detail below. (i) Cu Cu component can improve the hardenability of steel by adding 0.05% or more, but 0.75% or more
Since no further improvement effect can be obtained even if the Cu content is added in excess of 0.05~
It was set at 0.75%. In addition, when directly quenching, a sufficient effect can be obtained with a content of 0.50% or less. (ii) Ni Ni is also an element that increases the hardenability of steel when added in an amount of 0.05% or more, and it does not deteriorate toughness, so it is extremely effective for improving hardenability. Since Ni is an expensive element, the Ni content was set at 0.05 to 1.50% in consideration of economic efficiency. In addition, when directly quenching, a sufficient effect can be obtained with a content of 1.00% or less. ○…

Claims (1)

【特許請求の範囲】 1 重量割合で、 C:0.15〜0.45%、 Si:0.05〜1.00%、 Mn:0.05〜0.30%未満、 Cr:0.05〜1.00%、 Mo:0.03〜0.85%、 sol.Al:0.010〜0.150%、 B:0.0003〜0.0025%、 を含有し、更に、 Cu:0.05〜0.75%、 Ni:0.05〜1.50%、 V:0.005〜0.250%、 Nb:0.005〜0.150%、 Ti:0.005〜0.250%、 Ca:0.0005〜0.0080%、 のうちの1種以上をも含むとともに、 Fe及び不可避不純物:残り から成り、かつ不純物中のN、P、S、Pb及び
Sbの含有量がそれぞれ、 N:0.0015〜0.0100%、 P:0.018%以下、 S:0.008%以下、 Pb:0.015%以下、 Sb:0.015%以下、 である鋼を、加熱温度:1000〜1200℃にて熱間圧
延し、次いでAc3変態点の温度以上からの焼入れ
処理を施すことを特徴とする、耐遅れ破壊性能の
優れた耐摩耗性鋼板の製造方法。 2 焼入れ処理を、圧延終了後Ar3変態点以下に
降温することなく実施する直接焼入れとする、特
許請求の範囲第1項に記載の耐遅れ破壊性能の優
れた耐摩耗性鋼板の製造方法。 3 重量割合で、 C:0.15〜0.45%、 Si:0.05〜1.00%、 Mn:0.05〜0.30%未満、 Cr:0.05〜1.00%、 Mo:0.03〜0.85%、 sol.Al:0.010〜0.150%、 B:0.0003〜0.0025%、 を含有し、更に、 Cu:0.05〜0.75%、 Ni:0.05〜1.50%、 V:0.005〜0.250%、 Nb:0.005〜0.150%、 Ti:0.005〜0.250%、 Ca:0.0005〜0.0080%、 のうちの1種以上をも含むとともに、 Fe及び不可避不純物:残り から成り、かつ不純物中のN、P、S、Pb及び
Sbの含有量がそれぞれ、 N:0.0015〜0.0100%、 P:0.018%以下、 S:0.008%以下、 Pb:0.015%以下、 Sb:0.015%以下、 である鋼を、加熱温度:1000〜1200℃にて熱間圧
延し、次いでAc3変態点の温度以上からの焼入れ
処理を施した後、300〜500℃で焼きもどすことを
特徴とする、耐遅れ破壊性能の優れた耐摩耗性鋼
板の製造方法。 4 焼入れ処理を、圧延終了後Ar3変態点以下に
降温することなく実施する直接焼入れとする、特
許請求の範囲第2項に記載の耐遅れ破壊性能の優
れた耐摩耗性鋼板の製造方法。
[Claims] 1. In weight percentage: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.30%, Cr: 0.05 to 1.00%, Mo: 0.03 to 0.85%, sol.Al : 0.010 to 0.150%, B: 0.0003 to 0.0025%, and further contains Cu: 0.05 to 0.75%, Ni: 0.05 to 1.50%, V: 0.005 to 0.250%, Nb: 0.005 to 0.150%, Ti: 0.005 ~0.250%, Ca: 0.0005~0.0080%, and also contains Fe and inevitable impurities: the remainder, and N, P, S, Pb and
Steel with an Sb content of N: 0.0015 to 0.0100%, P: 0.018% or less, S: 0.008% or less, Pb: 0.015% or less, Sb: 0.015% or less, respectively, is heated at a temperature of 1000 to 1200°C. 1. A method for producing a wear-resistant steel sheet with excellent delayed fracture resistance, the method comprising hot rolling at a temperature of at least 100 nm, followed by quenching at a temperature equal to or higher than the Ac 3 transformation point. 2. The method for producing a wear-resistant steel sheet with excellent delayed fracture resistance according to claim 1, wherein the quenching treatment is direct quenching performed without lowering the temperature below the Ar 3 transformation point after rolling. 3 In terms of weight percentage, C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.30%, Cr: 0.05 to 1.00%, Mo: 0.03 to 0.85%, sol.Al: 0.010 to 0.150%, Contains B: 0.0003-0.0025%, Cu: 0.05-0.75%, Ni: 0.05-1.50%, V: 0.005-0.250%, Nb: 0.005-0.150%, Ti: 0.005-0.250%, Ca: 0.0005 to 0.0080%, and also contains one or more of the following: Fe and unavoidable impurities: the remainder, and N, P, S, Pb and
Steel with an Sb content of N: 0.0015 to 0.0100%, P: 0.018% or less, S: 0.008% or less, Pb: 0.015% or less, Sb: 0.015% or less, respectively, is heated at a temperature of 1000 to 1200°C. Production of a wear-resistant steel sheet with excellent delayed fracture resistance, characterized by hot rolling at a temperature of 300°C, followed by quenching at a temperature above the Ac 3 transformation point, and then tempering at 300 to 500°C. Method. 4. The method for producing a wear-resistant steel sheet with excellent delayed fracture resistance according to claim 2, wherein the quenching treatment is direct quenching performed without lowering the temperature below the Ar 3 transformation point after rolling.
JP16902483A 1983-09-13 1983-09-13 Production of wear-resistant steel plate having excellent resistance to delayed cracking Granted JPS6059019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16902483A JPS6059019A (en) 1983-09-13 1983-09-13 Production of wear-resistant steel plate having excellent resistance to delayed cracking
AU32935/84A AU568403B2 (en) 1983-09-13 1984-09-12 Wear - resistant steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16902483A JPS6059019A (en) 1983-09-13 1983-09-13 Production of wear-resistant steel plate having excellent resistance to delayed cracking

Publications (2)

Publication Number Publication Date
JPS6059019A JPS6059019A (en) 1985-04-05
JPH0121846B2 true JPH0121846B2 (en) 1989-04-24

Family

ID=15878908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16902483A Granted JPS6059019A (en) 1983-09-13 1983-09-13 Production of wear-resistant steel plate having excellent resistance to delayed cracking

Country Status (2)

Country Link
JP (1) JPS6059019A (en)
AU (1) AU568403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177801A (en) * 2017-06-06 2017-09-19 界首市七曜新能源有限公司 High pressure resistant easy heat-conducting gas cooler and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204353A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp Steel material having superior strength and toughness in as warm forged state
JPS61204352A (en) * 1985-03-07 1986-09-10 Nippon Steel Corp High strength nontemper steel material as warm forged
JPS6318019A (en) * 1986-07-10 1988-01-25 Kobe Steel Ltd Manufacture of wear-resistant steel plate
JPS6431928A (en) * 1987-07-27 1989-02-02 Kawasaki Steel Co Manufacture of wear-resistant steel stock by direct hardening
JP2578449B2 (en) * 1987-12-04 1997-02-05 川崎製鉄株式会社 Manufacturing method of direct hardened high strength steel with excellent delayed cracking resistance
JPH01172550A (en) * 1987-12-25 1989-07-07 Nippon Steel Corp Wear-resistant steel excellent in heat check resistance and having high hardness and high toughness
JP4846308B2 (en) * 2005-09-09 2011-12-28 新日本製鐵株式会社 High tough wear-resistant steel with little change in hardness during use and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937813A (en) * 1972-08-11 1974-04-08
JPS5365213A (en) * 1976-11-25 1978-06-10 Nippon Steel Corp Low alloy high toughness steel with excellent delayed fracture resistantproperty
JPS57210956A (en) * 1981-06-19 1982-12-24 Kawasaki Steel Corp Tough refined wear resistant steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043866A1 (en) * 1980-07-15 1982-01-20 Nippon Steel Corporation Process for producing a high-toughness steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937813A (en) * 1972-08-11 1974-04-08
JPS5365213A (en) * 1976-11-25 1978-06-10 Nippon Steel Corp Low alloy high toughness steel with excellent delayed fracture resistantproperty
JPS57210956A (en) * 1981-06-19 1982-12-24 Kawasaki Steel Corp Tough refined wear resistant steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177801A (en) * 2017-06-06 2017-09-19 界首市七曜新能源有限公司 High pressure resistant easy heat-conducting gas cooler and preparation method thereof

Also Published As

Publication number Publication date
JPS6059019A (en) 1985-04-05
AU568403B2 (en) 1987-12-24
AU3293584A (en) 1985-03-21

Similar Documents

Publication Publication Date Title
CN103146997B (en) A kind of low-alloy high-flexibility wear-resistant steel plate and manufacture method thereof
JPH0841535A (en) Production of high hardness wear resistant steel excellent in low temperature toughness
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JP3543619B2 (en) High toughness wear-resistant steel and method of manufacturing the same
JPH0551691A (en) Wear resistant steel sheet excellent in delayed fracture resistance and its production
JPH0121846B2 (en)
JPS63169359A (en) Thick steel plate having high toughness and wear resistance
JPH01279709A (en) Production of pre-hardened steel for plastic die by directly quenching
JPH01172514A (en) Manufacture of high hardness, high ductility and wear resistant steel having excellent heat crack resistance
JP3566162B2 (en) Hot tool steel with excellent weldability
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP2576857B2 (en) High strength non-tempered tough steel
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2578449B2 (en) Manufacturing method of direct hardened high strength steel with excellent delayed cracking resistance
JPH02179842A (en) High-toughness wear-resistant steel sheet
JPS5925957A (en) High toughness chisel for breaker
JPH1017929A (en) Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness
JPH01255622A (en) Manufacture of directly quenched wear resistant steel plate having superior delayed cracking resistance
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JPH0250911A (en) Production of steel plate for die having good heat fatigue characteristic
JPH02141528A (en) Manufacture of tempered-type high tensile steel plate excellent in toughness