JPH01214161A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH01214161A
JPH01214161A JP3851188A JP3851188A JPH01214161A JP H01214161 A JPH01214161 A JP H01214161A JP 3851188 A JP3851188 A JP 3851188A JP 3851188 A JP3851188 A JP 3851188A JP H01214161 A JPH01214161 A JP H01214161A
Authority
JP
Japan
Prior art keywords
impurities
compound semiconductor
layers
ion implantation
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3851188A
Other languages
Japanese (ja)
Inventor
Takeshi Nogami
毅 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3851188A priority Critical patent/JPH01214161A/en
Publication of JPH01214161A publication Critical patent/JPH01214161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize ohmic contact having low resistance between surfaces of compound semiconductor layers, by performing impurity ion implantation with low acceleration energy to the surfaces of compound semiconductor layer and depositing Au and the like on the surface after treating the surface with heat within a specific range of temperature, thereby changing the surfaces of the layers into alloy. CONSTITUTION:After performing ion implantation 14 of impurities with low acceleration energy to semiconductor layers 11 and 13, the impurities are distributed in the surface parts and the layers allow the surfaces to be recovered by heat treatment at 150 deg.C-400 deg.C, for example, at approximately 250 deg.C. In such a case, the impurities are taken in a lattice position and are not activated electrically. After recovery from a damage, the impurities remain in the surfaces as interstitial atoms and no diffusion occurs inside. If Au and the like 15 are deposited on the surfaces and the surface part is alloyed in such a case, vacancies are produced at group III site and then, implanted impurity atoms located at interstitial positions are taken in the vacancies. It is enough for energy necessary for performing the foregoing processes to be an alloy temperature of 300 deg.-450 deg.C and then, impurities implanted into alloyed substances are activated and further, donors as well as acceptors are produced effectively. Thus, the semiconductor surfaces which are doped into a high concentration and ohmic contact having low resistance are obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は化合物半導体装置の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a compound semiconductor device.

(従来の技術) 従来、オーム性コンタクト抵抗の低減は、■半導体基板
を高濃度にドープさせる■被着するコンタトメタル内に
、ドナー又はアクセプタとなる不純物をドープしておき
、アロイ工程中に半導体基板中に拡散させるという二つ
の方向で試みられてきた。
(Prior art) Conventionally, the ohmic contact resistance has been reduced by: ■ doping the semiconductor substrate with a high concentration; and doping the contact metal to be deposited with an impurity that will serve as a donor or acceptor. Attempts have been made in two directions: to diffuse the

半導体基板の高濃度ドーピングの手段としては、■−1
イオン注入技術により、不純物を注入し、800℃程度
の高温でアニールして、注入不純物を結晶格子に取り込
み電気的に活性化する。■−2MBE (分子線エピタ
キシー) 、 MOCVD(有機金属化学蒸着)法等に
より、高濃度にドナー又はアクセプタをドープした結晶
層を成長させる1次に、コンタクトメタル中に不純物を
ドープする方法としては、金属としてAu(金)を主体
として、Zn、 Ge等の不純物をドープする方法が採
られている。
As a means of high concentration doping of a semiconductor substrate, ■-1
Impurities are implanted using ion implantation technology and annealed at a high temperature of about 800° C. to incorporate the implanted impurities into the crystal lattice and electrically activate them. ■-2 The first method of doping impurities into the contact metal is to grow a crystal layer doped with donors or acceptors at a high concentration using MBE (molecular beam epitaxy), MOCVD (metal organic chemical vapor deposition), etc. A method is adopted in which the metal is mainly Au (gold) and doped with impurities such as Zn and Ge.

■−1.■−2の基板の高濃度ドーピングの持つ問題点
は以下の通りである。すなわち実際のデバイス製造プロ
セスに於いては、600℃以上の高温で、拡散・反応等
により、デバイスの他の部位が劣化することがしばしば
である。ところが、不純物の電気的活性化のためのアニ
ールでは800℃付近、エピタキシャル成長では600
℃程度の基板温度が必要であるため、これらの技術の適
用は、他の部位の特性の劣化を招く。次にコンタクトメ
タル中にドナー又はアクセプタとなる不純物をドープさ
せる場合、メタル中の不純物の化合物の化合物半導体中
への拡散は充分ではなく、得られるコンタクト抵抗の低
さには限界があった。
■-1. The problems associated with high concentration doping of the substrate in (2)-2 are as follows. That is, in actual device manufacturing processes, other parts of the device often deteriorate due to diffusion, reactions, etc. at high temperatures of 600° C. or higher. However, the annealing temperature for electrical activation of impurities is around 800°C, and the temperature for epitaxial growth is around 600°C.
Since a substrate temperature on the order of degrees Celsius is required, application of these techniques leads to deterioration of the characteristics of other parts. Next, when doping a contact metal with an impurity to serve as a donor or acceptor, the impurity compound in the metal does not diffuse sufficiently into the compound semiconductor, and there is a limit to the low contact resistance that can be obtained.

(発明が解決しようとする課題) このように、オーミックコンタクトの形成には実際の製
造プロセス中では高温工程を用いることが望ましくなく
、800℃アニール、600℃エピタキ兵ル成長は使用
できない。コンタクトメタル中の不純物は、半導体中へ
の拡散が不充分であり、低いコンタクト抵抗が得られな
いといった問題点があった。
(Problems to be Solved by the Invention) As described above, it is not desirable to use a high-temperature process in the actual manufacturing process to form an ohmic contact, and 800° C. annealing and 600° C. epitaxial growth cannot be used. Impurities in the contact metal are insufficiently diffused into the semiconductor, resulting in a problem that low contact resistance cannot be obtained.

本発明はこのような問題点に鑑みなされたものであり、
デバイスの特性を劣化することなくオーム性コンタクト
抵抗を低減することができる化合物半導体装置の製造方
法を提供することを目的とする。
The present invention was made in view of these problems,
An object of the present invention is to provide a method for manufacturing a compound semiconductor device that can reduce ohmic contact resistance without deteriorating device characteristics.

【発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、化合物半導体層上に電極となる金属薄膜を形
成する化合物半導体装置の製造方法において、化合物半
導体層上に不純物原子をイオン注入す工程と、該化合物
半導体基層を150〜400℃の低温で熱処理する工程
と、熱処理後のイオン注入領域の表面に、金属薄膜を被
着する工程と、金属薄膜及び化合物半導体層を300〜
450℃で熱処理する工程とを具備することを特徴とす
る化合物半導体装置の製造方法である。
(Means for Solving the Problems) The present invention provides a method for manufacturing a compound semiconductor device in which a metal thin film serving as an electrode is formed on a compound semiconductor layer, including a step of ion-implanting impurity atoms onto the compound semiconductor layer, and a step of ion-implanting impurity atoms onto the compound semiconductor layer. A process of heat treating the semiconductor base layer at a low temperature of 150 to 400°C, a process of depositing a metal thin film on the surface of the ion implantation region after the heat treatment, and a process of depositing the metal thin film and the compound semiconductor layer at a temperature of 300 to 400°C.
This method of manufacturing a compound semiconductor device is characterized by comprising a step of heat treatment at 450°C.

(作 用) 本発明では、化合物半導体基板上に、極く表面近傍に注
入不純物が分布するように低い加速エネルギーで不純物
のイオン注入を行ない、その後、250℃程度の低温処
理でイオン注入により生じた結晶のダメージを回復させ
る。格子間に不純物が分布したこの状態で、Au、 P
t等のコンタクトメタロイ ルを基板表面に被着して、ア士コグすることにより、低
抵抗のオーミックコンタクト抵抗を実現する。
(Function) In the present invention, impurity ions are implanted into a compound semiconductor substrate at low acceleration energy so that the implanted impurities are distributed very close to the surface, and then a low-temperature process of about 250°C is performed to improve the ion implantation. Recovers damage from crystals. In this state with impurities distributed between the lattices, Au, P
A low ohmic contact resistance can be achieved by depositing a contact metal foil such as T on the surface of the substrate and cogging it.

イオン注入により生じた結晶のダメージは、250℃程
度の熱処理により回復する。この時、注入不純物は、そ
の系が充分な活性化エネルギーを持たないため、格子位
置に取り込まれ電気的に活性化されることはない。この
低温の熱処理後、結晶のダメージは回復するが、注入不
純物は格子間原子として表面に残留する。また、250
℃程度の低温では、デバイス上の他の部位を劣化させた
りすることもなく、また、注入不純物が半導体内部に拡
散することもない。
Damage to the crystal caused by ion implantation can be recovered by heat treatment at about 250°C. At this time, the implanted impurity is incorporated into the lattice position and is not electrically activated because the system does not have sufficient activation energy. After this low-temperature heat treatment, the damage to the crystal is recovered, but the implanted impurities remain on the surface as interstitial atoms. Also, 250
At a low temperature of about .degree. C., other parts of the device will not deteriorate, and the implanted impurities will not diffuse into the semiconductor.

このようにドナー又はアクセプタとなる不純物を、格子
間原子として持たせた状態で、基板表面にAu、Pt等
のコンタクトメタルを被着し、アロイすることにより、
Au等の■族原子の捕獲作用のある原子により、■族す
イトに空孔が生じ、この時、格子間位置にある注入不純
物原子が空孔へ取り込まれるに必要なエネルギーは、4
00℃程度のアロイ温度で充分に与えられ、アロイ中、
注入不純物は電気的に活性化することになる。この結果
、有効にドナー又はアクセプターが生成され、高濃度に
ドーピングされた半導体表面が得られるため。
By depositing and alloying a contact metal such as Au or Pt on the substrate surface with impurities that serve as donors or acceptors as interstitial atoms,
A vacancy is created in the group II group by an atom such as Au that has a trapping effect on the group II atom, and at this time, the energy required for the implanted impurity atom at the interstitial position to be taken into the vacancy is 4.
It is sufficiently given at the alloy temperature of about 00℃, and during alloying,
The implanted impurities will be electrically activated. As a result, donors or acceptors are effectively generated and a highly doped semiconductor surface is obtained.

結果として、低抵抗のオーミックコンタクトが実現され
る。
As a result, a low resistance ohmic contact is realized.

(実施例) i)実施例I AQGeAs/GaAsヘテロ接合バイポーラトランジ
スタ(HB T)製造へ適用した場合について以下に示
す。
(Examples) i) Example I A case where the present invention is applied to the manufacture of an AQGeAs/GaAs heterojunction bipolar transistor (HBT) will be described below.

半絶縁性ガリウム砒素基板上にMBE (分子線エピタ
キシー)により、半導体層構造を形成する(第1図(a
) ) 、 VSi(タングステンシリサイド)を、基
板表面にスパッタ蒸着し、続いて酸化膜(SiO□膜)
を、CVD法により蒸着する(第1図(b) ) 、ホ
トリソグラフィーにより、フォトレジストのパターニン
グを行ない、RIE (反応性イオンエツチング)によ
って、5in2膜及びVSi膜を加工する(第1図(C
))。次にSin、 、WSiをマスクにしながらリン
酸+過酸化水素水の水溶液にて、半導体基板を%iet
メサエッチングすることにより、ベース層にあたるp型
GaAs層を露出させる(第1図(d)) 、次に同じ
く、Sun、膜、 VSi膜をストッパーとしながら、
Znイオン注入を加速エネルギー30keV、ドーズ量
5 X 10” cxa−”で行なう(第1図(e))
A semiconductor layer structure is formed on a semi-insulating gallium arsenide substrate by MBE (molecular beam epitaxy) (see Fig. 1(a)).
) ), VSi (tungsten silicide) is sputter-deposited on the substrate surface, followed by an oxide film (SiO□ film).
The photoresist is patterned by photolithography, and the 5in2 film and VSi film are processed by RIE (reactive ion etching) (Fig. 1(C)).
)). Next, the semiconductor substrate was etched with an aqueous solution of phosphoric acid and hydrogen peroxide using Sin, WSi as a mask.
The p-type GaAs layer, which is the base layer, is exposed by mesa etching (Fig. 1(d)). Next, using the Sun film and VSi film as a stopper,
Zn ion implantation is performed at an acceleration energy of 30 keV and a dose of 5 x 10"cxa-" (Fig. 1(e)).
.

この後レジストを完全に除去しN2ガス雰囲気中で基板
を250℃で、60分間加熱する。この時、イオン注入
により、発生した半導体表面のダメージはぼぼ完全に回
復し、基板は格子間にZnを持つ結晶となる0次にAu
、 Ptをそれぞれ抵抗加熱、E12ectron−B
eam加熱により蒸着する。Auは、500人、ptは
、2000人の薄膜とする。酸化膜を除去することによ
りリフトオフし、これをN2雰囲気中で、360’C,
40秒のラピッドサーマルアロイ(第1図(f))し、
アロイ層を形成する(第1図(g) ) 、コレクタ領
域を、メサエッチング最後にAu/AuGeアロイによ
りコレクタ電極を形成し、プロトン注入により素子間分
層を行ない、HBTを完成する。(第1 図(hン )
 。
Thereafter, the resist is completely removed and the substrate is heated at 250° C. for 60 minutes in an N2 gas atmosphere. At this time, the damage to the semiconductor surface caused by the ion implantation is almost completely recovered, and the substrate becomes a zero-order Au crystal with Zn between the lattices.
, Pt resistance heating, E12ectron-B
Vapor deposition is performed by eam heating. The thickness of Au is 500, and the thickness of PT is 2000. Lift-off is performed by removing the oxide film, and this is heated at 360'C in a N2 atmosphere.
Rapid thermal alloying for 40 seconds (Fig. 1 (f)),
An alloy layer is formed (FIG. 1(g)). The collector region is mesa-etched.Finally, a collector electrode is formed from Au/AuGe alloy, and interlayer separation is performed by proton injection to complete the HBT. (Figure 1 (h)
.

このプロセスにより、低抵抗の外部ベースのオーム性接
触が得られ、しかも充分な低温で行なわれるプロセスで
あるため、他の部位例えば11si/InGaAs界面
、真性ベース領域で、それぞれ反応、不純物の異常拡散
が起こらないため、良好な特性が保持される。結果とし
て、低抵抗の外部ベース寄生抵抗を有する高周波動作可
能のHBTが実現される。
By this process, a low-resistance external-based ohmic contact is obtained, and since it is a process carried out at a sufficiently low temperature, reactions and abnormal diffusion of impurities occur in other regions, such as the 11si/InGaAs interface and the intrinsic base region, respectively. Since this does not occur, good characteristics are maintained. As a result, an HBT capable of high frequency operation with low external base parasitic resistance is realized.

本実施例ではベース電極の形成に本発明を実施したが、
この他、エミッタ及びコレクタ電極の形成に本発明を適
用することができる。また、GaAs等の化合物半導体
を用いたMISFETのゲート電極あるいはソース・ド
レイン電極、MISFETのソース・ドレイン電極の形
成に本発明を適用してもよい。
In this example, the present invention was applied to the formation of the base electrode, but
In addition, the present invention can be applied to the formation of emitter and collector electrodes. Further, the present invention may be applied to the formation of a gate electrode or a source/drain electrode of a MISFET, or a source/drain electrode of a MISFET using a compound semiconductor such as GaAs.

■)実施例2 GaAsMESFET (金属−半導体接触型電界効果
トラ製 ンジスタ)の新造へ適用した場合について以下に示す。
(2) Example 2 A case where the present invention is applied to the new manufacture of a GaAs MESFET (metal-semiconductor contact field effect transistor) will be described below.

半絶縁性ガリウム砒素基板に、活性層形成の為のシリコ
ンのイオン注入を加速電圧30keV、 ドーズ量3.
OX 10” cxa−”で2選択的に行なう、この後
、アルシン雰囲気中で800℃でアニールを行なう。
Silicon ions were implanted into a semi-insulating gallium arsenide substrate to form an active layer at an acceleration voltage of 30 keV and a dose of 3.
OX 10"cxa-" selectively, followed by annealing at 800 DEG C. in an arsine atmosphere.

タングステンシリサイド(VSi)を基板表面に100
0人の厚さでスパッタ蒸着する。さらに、シリコン酸化
膜をCVD蒸着し、フォトリソグラフィーによってゲー
ト電極形状のパターンニングを行なって、反応性イオン
エツチング(RIE)によってシリコン酸化膜とタング
ステンシリサイド膜の加工を行なう。この時、エツチン
グ条件を適当に選ぶことにより、タングステンシリサイ
ド膜にサイドエッチを入れる。フォトレジスト、シリコ
ン酸化膜とゲート電極をストッパーとして用いながら、
シリコンのイオン注入を加速電圧30keV、ドーズ量
3.OX 1013a1″′2で行なう。この時の注入
加速電圧は通常二二で用いられる120〜180keV
よりも遥かに小さいものである。次に、AuGe、 A
uを抵抗加熱蒸着法により連続的に、それぞれ1500
人、 1000人蒸着口重フォトレジスト上のAuGe
/Auをリフトオフ法により除去し、350℃で10分
のアロイを行杭は、lXl0−’ΩI程度の低い値であ
り、GaAsMESFETの高速動作にとって充分の特
性である。しかもGaAsMESFETの高性能化にと
って最も大きな障害となる短チヤネル効果は、一般にソ
ース、ドレイン領域形成の為に注入された高ドーズ量の
Si原子が、この原子を活性化するための800℃付近
での高温の7ニールエ程中に、チャネル領域に拡散しチ
ャネル領域のキャリア分布を乱すことに起因するのであ
るが、本発明によれば高温のアニール工程は不必要な為
、上記の拡散が起こらず良好な素子特性が得られる。
100% tungsten silicide (VSi) on the substrate surface
Sputter deposit with a thickness of 0. Further, a silicon oxide film is deposited by CVD, patterned into a gate electrode shape by photolithography, and the silicon oxide film and tungsten silicide film are processed by reactive ion etching (RIE). At this time, side etching is performed on the tungsten silicide film by appropriately selecting etching conditions. Using photoresist, silicon oxide film and gate electrode as a stopper,
Silicon ion implantation was performed at an acceleration voltage of 30 keV and a dose of 3. The injection acceleration voltage at this time is 120 to 180 keV, which is usually used in 22.
It is much smaller than. Next, AuGe, A
1,500 μm each by a resistance heating evaporation method.
1000 people AuGe on heavy photoresist
/Au is removed by lift-off method and alloyed at 350° C. for 10 minutes. The value is as low as lXl0-'ΩI, which is a sufficient characteristic for high-speed operation of GaAs MESFET. Moreover, the short channel effect, which is the biggest obstacle to improving the performance of GaAs MESFETs, is caused by the high dose of Si atoms implanted to form the source and drain regions, which is activated at around 800 degrees Celsius. This is caused by diffusion into the channel region during the high-temperature 7-annealing step, which disturbs the carrier distribution in the channel region. However, according to the present invention, since the high-temperature annealing step is unnecessary, the above-mentioned diffusion does not occur and the result is good. It is possible to obtain excellent device characteristics.

【発明の効果〕【Effect of the invention〕

本発明によれば、デバイス特性を劣化することなく、オ
ーム性抵抗が低減した電極形成をかることができる化合
物半導体の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for manufacturing a compound semiconductor that can form electrodes with reduced ohmic resistance without deteriorating device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図である。 1・・・半絶縁性ガリウム砒素基板 2−n”GaAsN 3 ・・・n−GaAs層 4・・・p QaAs層 5−n AuGaAs層 6−n”GaAs層 7−n+InGaAs層 8・・・エピタキシャル層+S、1.GaAs基板9・
・・WSi膜 10・・・5in2膜 11・・・フォトレジスト 12・・・頭出しされたp−GaAsm(イ)13・・
・Znイオン注入層 14・・・Znイオン 15・=Au/Ti膜 16・・・低温アニールされたZuイオン注入層17・
=Au/AuGeアロイ層 18・・・頭出しされたコレクタ層■ 代理人 弁理士 則 近 憲 佑 同  松山光之 第  1 図
FIG. 1 is a diagram for explaining one embodiment of the present invention. 1... Semi-insulating gallium arsenide substrate 2-n'' GaAsN 3... n-GaAs layer 4... p QaAs layer 5-n AuGaAs layer 6-n'' GaAs layer 7-n+InGaAs layer 8... epitaxial Layer+S, 1. GaAs substrate 9・
...WSi film 10...5in2 film 11...Photoresist 12...p-GaAsm (a) 13...
・Zn ion implantation layer 14...Zn ion 15=Au/Ti film 16...Zu ion implantation layer 17 annealed at low temperature
=Au/AuGe alloy layer 18... Collector layer identified ■ Agent Patent attorney Noriyuki Chika Yudo Mitsuyuki Matsuyama Figure 1

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体層上に電極となる金属薄膜を形成する化
合物半導体装置の製造方法において、化合物半導体層上
に不純物原子をイオン注入する工程と、該化合物半導体
層を150〜400℃の低温で熱処理する工程と、熱処
理後のイオン注入領域の表面に金属薄膜を被着する工程
と、金属薄膜及び化合物半導体層を300〜450℃で
熱処理する工程とを具備することを特徴とする化合物半
導体装置の製造方法。
A method for manufacturing a compound semiconductor device in which a metal thin film serving as an electrode is formed on a compound semiconductor layer, which includes a step of ion-implanting impurity atoms onto the compound semiconductor layer, and a step of heat-treating the compound semiconductor layer at a low temperature of 150 to 400°C. A method for manufacturing a compound semiconductor device, comprising the steps of: depositing a metal thin film on the surface of the ion-implanted region after heat treatment; and heat treating the metal thin film and the compound semiconductor layer at 300 to 450°C. .
JP3851188A 1988-02-23 1988-02-23 Manufacture of compound semiconductor device Pending JPH01214161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3851188A JPH01214161A (en) 1988-02-23 1988-02-23 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3851188A JPH01214161A (en) 1988-02-23 1988-02-23 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH01214161A true JPH01214161A (en) 1989-08-28

Family

ID=12527294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3851188A Pending JPH01214161A (en) 1988-02-23 1988-02-23 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH01214161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045896A (en) * 2001-07-26 2003-02-14 Honda Motor Co Ltd Manufacturing method for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045896A (en) * 2001-07-26 2003-02-14 Honda Motor Co Ltd Manufacturing method for semiconductor device

Similar Documents

Publication Publication Date Title
US5093280A (en) Refractory metal ohmic contacts and method
KR900005560B1 (en) Semiconductor device and manufacturing method thereof
JPH01214161A (en) Manufacture of compound semiconductor device
US5514606A (en) Method of fabricating high breakdown voltage FETs
JP2904156B2 (en) Method of manufacturing ohmic electrode
KR100249819B1 (en) Formation method of the n-type ohmic contacts to iii-v compound semiconductor
JP2548801B2 (en) Field effect transistor and method of manufacturing the same
JPH08191055A (en) Compound semiconductor device and manufacture thereof
JP3442498B2 (en) Compound semiconductor device and method of manufacturing the same
JP2728427B2 (en) Field effect transistor and its manufacturing method
JPH0434824B2 (en)
JPH0797568B2 (en) <III>-<V> Group compound semiconductor device manufacturing method
JPH03280552A (en) Manufacture of field effect transistor
JPH0216008B2 (en)
JP4364628B2 (en) Manufacturing method of semiconductor device
JPS63115384A (en) Manufacture of semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS6377113A (en) Manufacture of semiconductor device
JPH0373540A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH0354851B2 (en)
JPH04346223A (en) Manufacture of ohmic electrode
JPH02232940A (en) Manufacture of semiconductor device
JPS63161675A (en) Semiconductor device
JPH01130572A (en) Manufacture of compound semiconductor device
JPS6074684A (en) Manufacture of fet