JPH01200532A - 電子放出素子及びその製造方法 - Google Patents

電子放出素子及びその製造方法

Info

Publication number
JPH01200532A
JPH01200532A JP63102485A JP10248588A JPH01200532A JP H01200532 A JPH01200532 A JP H01200532A JP 63102485 A JP63102485 A JP 63102485A JP 10248588 A JP10248588 A JP 10248588A JP H01200532 A JPH01200532 A JP H01200532A
Authority
JP
Japan
Prior art keywords
electron
insulating layer
fine particles
emitting device
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63102485A
Other languages
English (en)
Other versions
JPH07114104B2 (ja
Inventor
Tetsuya Kaneko
哲也 金子
Ichiro Nomura
一郎 野村
Toshihiko Takeda
俊彦 武田
Yoshikazu Sakano
坂野 嘉和
Hidetoshi Suzuki
英俊 鱸
Kojiro Yokono
横野 幸次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10248588A priority Critical patent/JPH07114104B2/ja
Priority to EP88111232A priority patent/EP0299461B1/en
Priority to DE3853744T priority patent/DE3853744T2/de
Priority to US07/218,203 priority patent/US5066883A/en
Publication of JPH01200532A publication Critical patent/JPH01200532A/ja
Priority to US08/366,430 priority patent/US5532544A/en
Priority to US08/479,000 priority patent/US5759080A/en
Priority to US08/474,324 priority patent/US5749763A/en
Priority to US08/487,559 priority patent/US5872541A/en
Publication of JPH07114104B2 publication Critical patent/JPH07114104B2/ja
Priority to US08/657,385 priority patent/US5661362A/en
Priority to US09/384,326 priority patent/USRE40566E1/en
Priority to US09/570,375 priority patent/USRE39633E1/en
Priority to US09/587,249 priority patent/USRE40062E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子詳しくは表面伝導形電子放出素子
及びその製造方法に関するものである。
[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム アイ エリンソン (M、I。
Elinson)等によって発表された冷陰極素子が知
られている。[ラジオ エンジニアリング エレクトロ
ン 74ジ4−/ス(Radio Eng、 Elec
tron。
Phys、 )第10巻、 1290〜129ft頁、
 1965年]これは、基板上に形成された小面積の薄
膜に、膜面に平行に電流を流すことにより、電子放出が
生ずる現象を利用するもので、一般には表面伝導形放出
素子と呼ばれている。
この表面伝導形放出素子としては、前記エリンソン等に
より開発された5n02(Sb)薄膜を用いたもの、A
u9膜によるもの[ジー・ディトマー°“スイン ソリ
ド フィルムス”(G、Dittmer:  ”Th1
nSolid Films ” )、9巻、317頁、
 (1972年)]。
ITO薄膜によるものしエム ハートウェル アンド 
シー ジー フォンスタッド“アイ イーイー イー 
トランス′°イー デイ−コンファレンス(M、 )l
artwell and C,G、Fonstad: 
“IEEETrans、 ED Conf、” )51
9頁、 (1975年)]、カーボン薄膜によるもの[
荒木久他: “真空°゛、第2第26第、第122頁、
 (1983年)]などが報告されている。
これらの表面伝導形放出素子の典型的な素子構成を第1
1図に示す。同第11図において、16および17は電
気的接続を得る為の電極、18は電子放出材料で形成さ
れる薄膜、19は基板、20は電子放出部を示す。
従来、これらの表面伝導形放出素子に於いては、電子放
出を行う前にあらかじめフォーミングと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
16と電極17の間に電圧を印加する事により、薄膜1
8に通電し、これにより発生するジュール熱で薄膜18
を局所的に破壊、変形もしくは変質せしめ、電気的に高
抵抗な状態にした電子放出部20を形成することにより
電子放出機能を得ている。
上述、電気的に高抵抗状態とは、薄膜18の一部に0.
5H〜5pmの亀裂を有し、且つ亀裂内が所謂島構造を
有する不連続状態膜を云う。島構造とは一般に数十Aか
ら数μm径の微粒子が基板18にあり、各微粒子は空間
的に不連続で電気的に連続な膜を云う。
従来、表面伝導形電子放出素子は上述高抵抗不連続膜に
電極18.17により電圧を印加し、素子表面に電流を
流すことにより、上述微粒子より電子放出せしめるもの
である。
[発明が解決しようとする課題] しかしながら、上記の様な従来の通電加熱によるフォー
ミング処理は、本質的には通電のジュール熱による膜の
部分的な破壊又は変質そのものなので、以下のような欠
点があった。
1)電子放出部となる島構造の設計が不可能な為、素子
の改良が難しく、素子間のバラツキも生じやすい。
2)島構造の寿命が短かく且つ安定性が悪く、また外界
の電磁波ノイズにより素子破壊も生じやすい。
3)フォーミング工程の際に生じるジュール熱が大きい
為、基板が破壊しやすくマルチ化が難しい。
4)島の材料が金、銀、5n02 +’ ITO等に限
定され仕事関数の小さい材料が使えない為、大電流を得
ることができない。
5)素子製造にフォーミング工程を有する為に素子形状
が限定される。
[発明の目的] 以上のような問題点があるため、表面伝導形放出素子は
、素子構造が簡単であるという利点があるにもかかわら
ず、産業上積極的に応用されるには至っていなかった。
本発明は、上記の様な従来例の欠点を除去するためにな
されたものであり、前記の如き従来のフォーミングと呼
ばれる処理を施すことなく、フォーミング処理により得
られる電子放出素子と同等以上の品質を有し、特性のば
らつきが少なく、シかも特性の制御が可能であり、かつ
電子放出部の位置も制御できる新規な構造を有する電子
放出素子及び該素子の製造方法を提供することを目的と
するものである。
[課題を解決するための手段および作用]本発明は、対
向する電極間に絶縁層が形成されており、さらに微粒子
が該絶縁層中に含有され、かつ、分散配置されている素
子構造に特徴を有している電子放出素子を提供するもの
である。
本発明の電子放出素子において、該電極間に電流を流す
と、導電性の微粒子より電子が放出されるのである。
ただし、現在のところ4本発明において電極間に電流が
流れるメカニズムは解明されていないが、絶縁体膜の表
面を流れる説、または絶縁体中に存在する不純物準位の
ホッピング説などが考えられる。
上述のような本発明の素子構造をとることにより、前述
従来例の問題点を解決するばかりでなく、低電力で高密
度の放出電流が得られる電子放出素子を提供できる。
以下、本発明を図面に基づいて詳細に説明する。
第1図は、本発明による電子放出素子の第一実施形態を
示す斜視図である。
同図においてガラス等の基板1上に絶縁M6、更にその
上に電圧印加用の低抵抗体からなる電極2および3が微
小間隔をおいて設けられ、その間に微粒子5が分散され
た不連続な電子放出部4が形成されている。また不図示
であるが、電子放出部の上面に間隔を取って、放出され
た電子を引き出す為の引き出し電極を設けである。真空
中で電極2.3間に電圧を印加する(この電圧をVfと
する)ことにより、電極間に電流が流れ(1,f)、引
き出し電極を+側として電圧を印加すると、電子放出部
4よりほぼ紙面に垂直方向に電子を放出するものである
。(この電子放出の電流をIeとする。) 第2図及び第3図は第1図のAB力方向模式的断面図で
ある。同図において、基板1上の微粒子は粒径が数10
A〜数pmで、さらに各微粒子間の間隔が数10A〜数
μmの範囲内で形成されるとよい。
本発明で用いられる微粒子の材料は非常に広い範囲にお
よび通常の金属、半金属、半導体といった導電性材料の
殆ど全てを使用可能である。なかでも低仕事関数で高融
点かつ低蒸気圧という性質をもつ通常の陰極材料や、ま
た従来のフォーミング処理で表面伝導形電子放出素子を
形成するfiM材料や、2次電子放出係数の大きな材料
などが好適である。
こうした材料から必要とする目的に応じて適宜材料を選
んで微粒子として用いることにより、所望の電子放出素
子を形成することができる。
具体的にはLaB6 、 CeBb 、 YB4 、 
GaO2などの硼化物、TiC,ZrC,HfC,Ta
g、 Sin、 Weなどの炭化物、TiN、 ZrN
、 HfNなどの窒化物、Nb、 Mo、 Rh。
Hf、 Ta、 W、 Re、 Ir、 Pt、 Ti
、 Au、 Ag、 Cu、 Cr。
All、 Go、 Ni、 Fe、 Pb、 Pd、 
Cs、 Baなどの金属、+11203 、5n02 
、 Sb203などの金属酸化物、Si、 Geなどの
半導体、カーボン、 AgMgなどを一例として挙げる
ことができる。なお本発明は上記材料に限定されるもの
ではない。さらに、また、本発明では上述の材料のうち
異なる物質を選び、目的に応じて、少なくとも2種以上
の異なる物質の微粒子を分散させてもよい。
次に第1図で示した素子の製造方法を以下に示す。
第4図■〜■に各製造工程中の素子断面図を示してある
■ ガラス、セラミック等から成る基板lの表面の脱脂
及び洗節を行う。
■ 基板1の表面に液体コーティング焼成法や印刷焼成
法、真空堆積法等により、低融点ガラスから成る絶縁層
6を成膜する。低融点ガラス材としては、基板lの材料
の歪点温度よりも軟化点温度が低く、かつ基板と熱膨張
係数が近似しているものがよい。一般に酸化鉛系の低融
点ガラスは軟化点が400°C前後にあり熱膨張係数も
一般的に使用されるソーダライムガラス基板のana+
張係数に近似している。該絶縁層6の厚みはa10八か
ら数10gm程度の範囲で形成されるとよい。
■ ■で得た絶縁層の上に真空堆積法及びフォトリソエ
ツチング法又はリフトオフ法、あるいは印刷法等により
電極2,3を形成する。電極材としては、一般的な導電
性材料、Au、 Pt、 Ag等の金属の他5n02.
 ITO等の酸化物導電性材料でも使用できる。電極2
,3の厚みは数100Aから数ILm程度が適当である
が、この数値に限るものではない。また電極間隔りの寸
法は電極対向間隔が数10OAから数10pmが適当で
あり、間隔幅Wは数4mから数mff1程度が適当であ
る。しかしこの寸値に限るものではない。
■ 次に■で得た電極ギャップ部へ微粒子5を塗布する
。塗布には微粒子の分散液を用いる。酢酸ブチルやアル
コール等から成る有機溶剤に微粒子及び微粒子の分散を
促進する添加剤を加え、攪拌等により、微粒子の分散液
を調整する。この微粒子分散液を試料表面にディッピン
グやスピンコード等の方法により塗布し、溶媒等が蒸発
する温度、例えば250℃で10分程度仮焼成を行う。
これにより微粒子が電極間隔り中の絶縁層6の表面に配
置される。もちろん微粒子5は試料全面に配置されるが
、電子放出に際し電極間隔り部具外の微粒子5は実質的
に電圧が印加されないため、何ら支障をきたさない。
従って図面上図示していない。微粒子5の配置密度は塗
布条件、及び微粒子分散液の調整により変化し、これに
合わせて電極間隔りに流れる電流量も変化する。■で得
た電極ギャップ部へ微粒子5を分散させる方法としては
、上述の塗布形成の他にも、例えば有機金属化合物の溶
液を基板上に塗布した後、熱分解によって金属粒子を形
成する手法もある。また蒸着可能な材料については、基
板温度等の蒸着条件の制御やマスク蒸着等の蒸着的手法
によっても微粒子を形成することができる。
■ この後■までの工程で得られた試料を絶縁層6であ
る低融点カラスの軟化点以上の温度、例えば酸化鉛系の
低融点ガラスであれば450℃に加熱、約20分収度焼
成を行う。これにより低融点ガラスから成る絶縁層6上
に配置された微粒子5は低融点ガラス内に侵入し、結果
として絶縁層6に包含されるか又は少なくとも一部が絶
縁層6より露出する程度に侵入、固定される。
微粒子5を絶縁層6中に全て包含した状態にするか、又
は表面は露出した状態で、一部のみ絶縁層6中に侵入し
た状態にするかは、工程■における焼成温度を選択する
ことによって調整することができる。
焼成温度が高い程微粒子5は絶縁層6内に深く侵入し包
含、固定されやすい。また焼成温度が低いと、微粒子5
は絶縁層6内に侵入しにくく、露出した形で固定されや
すい。
Pd等前述の具体例で示した材料には、前記工程■で加
熱した結果、該材ネ′Iの表面が酸化膜でおおわれてし
まい、その結果、電極間隔りに流れる電流量が減少して
しまう場合もあるので、必要に応じて酸洗いをし、酸化
膜を除去する工程を導入してもよい。
さらに本発明では微粒子5を絶縁層6内に完全に含有さ
せた後、エツチング処理を行い微粒子の一部を露出させ
て素子を形成してもよい。
第4図で示す作成工程で形成した素子の他にも、以下に
述べる方法で形成した素子も従来のフォーミング処理が
ほどこされた素子に比べかなり改善された電子放出素子
とすることができる。
その1例を第5図および第6図(a)、(b)に示す。
第5図の製造工程を説明する。
基板l上に電極2.3を形成し、その上に微粒子分散液
、又は有機金属化合物溶液に低融点フリットガラスを混
合調整した分散液を電極間隔部り付近に塗布し、低融点
フリットガラスの軟化点温度以上で焼成を行い、微粒子
を低融点ガラスから成る絶縁層7に包含または、少なく
とも一部を露出させ固定する。この時、焼成温度を高く
設定(例えば650℃)すると絶縁層7は平坦化し、連
続した膜とすることができる。
該図においては、絶縁層7の膜厚は数1OA−数μm程
度で形成されるのが好ましい。
この時、低融点フリットガラスの代りに液体コーティン
グ絶縁層(例えば、東京応化OCO。
5i02絶縁層)を用いてもよい。
また、液体コーティング絶縁層を用いる場合、本発明の
電子放出素子を以下のようにして得ることもできる。ま
ずガラスやセラミックス等から成る基板1上に微粒子5
を含んだ絶縁層6を液体コーティング法により堆積させ
る。つまり微粒子を液体コーティング剤等に混合、分散
させて基板上にスピンコード又はデインピングコート等
により塗布、焼成することによって得られる。
次に絶縁層6上に真空堆積性等前述の方法で電極を形成
して電子放出素子とする。
該方法によると、微粒子は、絶縁膜を得る液体コーティ
ング剤等に混合、分散した状態で、基板上に塗布される
ため、塗布、焼成後も絶縁膜を得る液体コーティング剤
の塗布膜中に良好に分散されたままである。従って微粒
子は、凝東が少なく均一に液体コーティング剤によって
得られる絶縁層中に分散される。
また、本構造では、まず、基板上に微粒子を含む絶縁層
を形成するために、通常絶縁層形成前の基板表面は均−
面であり特別なパターンや凹凸はない。従って均−面に
微粒子を含む絶縁層を塗布、焼成するために、パターン
や凹凸部での塗布むらによる、膜厚や微粒子分散の不均
一性がなく、微粒子が分散された支持体層を基板表面上
へ均一に形成することができる。このように均一な絶縁
層を得ることによって、多数個の電子放出素子を同一基
板上に設けた場合の素子特性のバラツキ等が小さくでき
る。
また、絶縁層を液体コーティング法により堆積させた後
、絶縁層上の表面をエツチングし、第3図に示すように
微粒子の一部を突出させてもよい。ただ、この場合類方
法で微粒子含有絶縁層を形成させていると、微粒子の分
散状態は絶縁層の厚み方向でも均一であるから、エンチ
ング量を変えても基本的に同様な微粒子が突出した面を
得ることができる。従って該エツチング工程で広い範囲
の条件設定が可能となる。
さらに、本構造では例えば液体コーティング剤による酸
化物系絶縁層形成時に、400°C程度以上の空気中熱
処理工程が必要となるが、絶縁層形成熱処理を電極形成
前に行うために、電極自体は熱処理工程を経ない。従っ
て電極の熱酸化や絶縁層との熱拡散等を考慮する必要が
なく、電極材料の選択幅を広げることができる。
つまり、前述の通常使用される電極材料以外でも、例え
ばCu、 AR,Ni、 Pd、 W、 Ta、 No
、 Cr、 Ti等の電極材料で好適に使用可能である
。よって耐電圧性、耐熱性、加工性、耐酸化性、寿命、
比抵抗、取り出せる電流量等の各条件に応じ適宜選択す
ればよい。該絶縁層の材料としては、例えば5i02.
 MgO,TiO2,Ta205. Ai’20+等、
あるいはこれらの積層物や混合物が挙げられる。膜厚は
IOA程度から数μm程度で、微粒子6が分散され固定
される厚みであれば良い。
又、第6図に示す構造を有する電子放出素子でもよい。
第6図の電子放出素子は、絶縁層7の低融点フリットガ
ラスを混合調整した微粒子分散液を塗布した後(ここで
は第5図で説明したのと同様に行う)、焼成温度をやや
低く設定して(例えば500’Cぐらい)、絶縁層8を
不連続な島状の膜とする。
第6図に示す電子放出素子は、図でも示されている通り
、電極間隔部PLを絶縁層8が完全に覆っていないため
に、電極2,3の電極間隔部PL側の電極端、すなわち
最も高電界が発生する部分と絶縁層8の表面及び膜内が
接続された形となっている。このため、電流経路の自由
度が大きくなり、第5図の素子より、より電極間を流れ
る電流量を増加させることができる。
第5図の電子放出素子も第6図の電子放出素子も、絶縁
層と微粒子の形成を同時に行えるので、製造工程の簡易
化が図れるという利点がある。
更に、本発明の電子放出素子は第7図に示される構造を
有する素子であってもよい。
第7図中、1は基板、2.3は電極、5は微粒子、9は
絶縁層を示す。
次に第7図で示した素子の製造方法を以下に示す。
第8図1)〜5)に各製造工程中の素子断面図を示して
ある。
l)ガラス、セラミックス等から成る基板lの表面の脱
脂及び洗浄を行う。
2)第4図の■と同様にして電極2及び3を形成する。
3)第4図の工程■と同様にして微粒子を分散する。
4)絶縁層9をEB蒸着法、スパッタ法やプラズマCV
D法、熱CVD法等の真空堆桔法等の手法により形成さ
せる。該絶縁層9の材料としては、5i02. Aρ2
03の様な酸化物、S i3N4の様な窒化物、Sin
、 Tieの様な炭化物の他、真空堆積又は溶液塗布焼
成で得られるガラスやポリイミドのような有機高分子絶
縁膜等が使用できる。又、数層9の膜厚は数10A〜数
終鵬であるとよい。この時、一般に絶縁層9は微粒子5
の表面にも堆積し、微粒子5の粒径で凸部を作るように
堆積される。
以上、l)〜4)の工程で作製した電子放出素子は、従
来のフォーミング素子に比べ、はるかに優れた特性を有
する素子とすることができる0本発明の電子放出素子は
l)〜4)の工程で得た素子でも充分、良い特性を示す
が、しかし、以下の5)の工程をさらにほどこした素子
は、絶縁層の堆積厚みと、エツチング量の調整により絶
縁層に固定された微粒子の露出程度を調整することがで
き、ひいては電極間の電流制御、並びに電子放出量の制
御が可能となるので、より好ましい。
5)4)で得られた絶縁層9の凸部表面にエツチングを
する。例えば、試料を斜めにセツティングした状態でイ
オンミーリング等を行うと、絶縁層9の凸部表面がエツ
チングされる。すると、エツチングされた部分は絶縁層
9から微粒子5の一部が露出し、かつ絶縁層9で固定さ
れた構造となる。
さらに上記l)〜5)工程において、絶縁層9の材料を
低融点ガラスとし、第8図5)の工程の後、低融点ガラ
スの軟化点温度以上で試料を焼成することにより、微粒
子5をさらに強力に低融点ガラスから成る絶縁層9に固
定することができる。これによりさらに安定した電子放
出素子を提供することができる。
また本発明の電子放出素子は第9図(a)、(b)及び
第1θ図(a)、(b)に示すものであってもよい。
第9図(a)は本発明の電子放出素子を説明する平面図
、第9図(b)は同(a)図の断面図である。
12は多孔質ガラス中にAg、 Ba、 Pb、 W、
 Sn等の金属13あるいはBad、 PbO,5n0
2等の金属酸化物13などを析出せしめた基板である。
lOと11は基板上に設けた電極である。
上記多孔質ガラスはコーニングガラス社のバイコールガ
ラスや旭硝子社の多孔質ガラスMPGが使用でき、その
孔径としては40Aから5μ厘のもの、さらに好ましく
は孔径が10OAから0.5Hのものを用いる。該孔径
と等しいか、又はそれ以下の金属あるいは金属酸化物の
微粒子が孔径内に析出される。また本実施例は多孔質ガ
ラスに限定されるものではなく、ガラス表面を弗化水素
水で粗らしたものや、その他のポーラス状絶縁基板でも
実施できる。
金属を多孔質ガラスの孔中に析出固定させるには、通常
よくつかわれる方法、例えばAgNO3゜Ba(NO3
)2. PbNO3等の硝酸塩水溶液あるいは硫酸水溶
液をポーラスガラスに含浸させ、乾燥後、還元雰囲気中
で焼成させることにより得ることができる。金属酸化物
を析出させるには、析出した金属を酸素雰囲気中で適当
な温度で焼成させれば良い。
多孔質ガラスの表面から金属あるいは金属酸化物を突出
させる時には、ガラス表面を5%弗酸溶液で1分間処理
し、水洗、乾燥させればよい。それにより、所望の基板
12が作成できる。
上記基板12は、多孔質ガラスの表面が粗れている為、
厚さ0.5μm以上形成させるとより好ましい。
第10図(a)は本発明のさらに別の電子放出素子を説
明する平面図、第1O図(b)は同(a)図の断面図で
ある。
14は金、銀、白金等の金属コロイド微粒子15を含有
するガラスで、通称着色ガラスと呼ばれるガラス基板で
ある。10あるいは11は基板上に設けた電極である。
着色ガラス内の金属コロイド微粒子の粒径は20A〜8
000Aが適当で、さらには1OOA〜200OAが望
ましい。又、微粒子の密度は粒径や微粒子の材料にも異
なるが、空間的に離れていて駆動電圧付近で電気的に接
続のある状態が適当である。
このような着色ガラスをつくるには、通常よく使われる
技術、即ち、ガラス主成分中へAuG1’:+ 。
AgNO3の着色剤原料を溶解し、これを温度600°
C〜900°Cで10〜20分間熱処理し、金コロイド
、銀コロイドの微粒子をガラス中に析出させる方法で容
易に製造することができる。このような通常方法でつく
られた基板は金属微粒子がほとんどガラス表面から析出
していないので、電極を形成する基板表面の平滑性は優
れている為、該素子は電極の厚さを薄くできる等の利点
がある。
又、該素子において、金属微粒子をガラス中に析出した
後、前述の第9図で説明した素子と同じように、弗化水
素水により基板表面を処理し、金属コロイドをガラス基
板表面より多数突出させても本発明の目的とする効果は
得られる。
以下、実施例によりさらに詳しく説明する。
[実施例] 実施例1 第1図の構成において、ソーダライムガラス基板l上に
、厚み約1#Lmの酸化鉛系低融点ガラスコーテイング
膜の絶縁層6を形成した。
さらにその上に厚み100OA、 L=0.5gm 、
 W=300μmのpt電極2.3を形成し、該電極間
に微粒子5として直径数10OAのPdを分散配置した
Pd1粒子は有機パラジウム化合物をPd金属換算比率
で0.3%程度含む酢酸ブチル溶液(奥野製薬工業製キ
ャタペース) C0P−4230)を用いてスピンコー
ド(300rpm、5回塗布)して250°Cで加熱処
理した。そして450℃、20分焼成し、微粒子5を絶
縁層6中に含有せしめた。
ここで電極間隔部りに流れる電流量は5gA15V程度
であった。この試料を5%〜10%Vo1%のHCp水
溶液で酸洗いを行うと、電流量は250μA15Vとな
った。
以上の工程により作製された試料を1O−5Torr以
上の真空下に置き、先に述べたように電極2,3間に電
圧を印加すると電流Vfが絶縁層6の表面又は、内部及
び微粒子5を介して流れ、引き出し電極(不図示)を+
側として電圧を印加すると安定した電子放出が確認され
た。さらに酸洗いをしない試料に関しても電子放出は確
認された。
本実施例において作製した電子放出素子の各測定結果を
表1に示す。放出電流のゆらぎはI X 1O−3Hz
以下の放出電流量の変化量ΔIeを放出とする。
表  1 本寿命:放出電流が50%以下になる期間上記結果は、
従来技術であるフォーミングを必要とする170材から
成る表面伝導形電子放出素子の測定結果(素子の駆動電
圧20V、放出電流1.2ILA 、効率5 X 10
−3、寿命35時間、放出電流のゆらぎ20〜60%)
と比較して、以下のようにいえる。
本実施例の電子放出素子は安定で寿命が長く、電子放出
効率が高い特性を示している。
実施例2 実施例1における450℃、20分焼成を490 ’C
2時間完全に焼成することにかえた他は、全て同様の実
験を行った。
上記実験により得られた素子は、微粒子5が絶縁層6中
に全て侵入し、包含された素子(第2図)となる。
この′「[子放出素子に実施例1と同様の測定を行った
ところ、実施例1と同様な電子放出を得ることができた
が、さらに寿命はのびる方向に、放出電流のゆらぎは少
なくなる傾向にあった。
すなわち、本実施例2のように微粒子を絶縁層内に包含
させた電子放出素子では、第1の実施例の効果の他に寿
命及び放出電流のゆらぎがより改善されるという特徴を
有している。
実施例3 実施例1における450°Cl2O分焼成を420°C
210分焼成にかえた他は全て同様の実験を行った。
上記実験により得られた素子は、第3図に示す素子とな
る。このように微粒子を絶縁層内にわずかに侵入させ、
露出させた電子放出素子では、第1の実施例の効果の他
に放出電流及び放出電流効率(Ie/If)がより改善
された電子放出素子が得られた。
実施例4 実施例2で得られた電子放出素子の電極間隔り部の絶縁
層6の表面を5VolXHF水溶液でエツチングするこ
とにより、微粒子5を絶縁層6から露出させ、前記実施
例3と同様な構造を有する素子を得ることができた。
実施例5 孔径80A〜100OAの多孔質ガラスに金微粒子を、
素子抵抗がIMΩからIOMΩとなるように析出させた
基板12を用い、本発明の電子放出素子とした。(第9
図) 該素子の測定を実施例1と同様にして行った。
結果を表2に示す。
表  2 本寿命:放出電流が50%以下になる期間上記結果によ
り本発明の電子放出素子は、従来の金のフォーミング素
子と比べて(素子の駆動電圧16V、放出電流0.8μ
A、効率!、2 Xl0−5、寿命35時間、ゆらぎ2
0〜60%)、きわめて安定(放出電流のゆらぎが小さ
い)で、寿命が長く、電子放出効率が高い電子放出素子
となることがわかった。又、電子放出実験後、走査形電
子顕微鏡で素子劣化の程度を確認したが、電極間に存在
する金の微粒子の径や分布にはほとんど変化が見られな
かったが、金のフォーミング素子は上述、従来例で述べ
た高抵抗部の劣化が著しかった。
又、本実施例5は、一基板上に多数の素子を作成しても
個々の素子のバラツキが少なく簡易に集積できるもので
あった。
実施例6 第1θ図において、金コロイドを有する着色ガラス(全
赤ガラス)基板14からなる電子放出素子を得た。
該電子放出素子に実施例1と同様の測定を行った。結果
を表3に示す。
表  3 本寿命:放出電流が50%以下になる期間表3からも明
らかなように、本実施例の電子放出素子はきわめて安定
(放出電流のゆらぎが小さい)で、寿命が長く、電子放
出効率が高い。又、電子放出実験後、走査形電子顕微鏡
で素子劣化の程度を確認したが、電極間に存在する金の
微粒子の径や分布にはほとんど変化が見られなかった。
それに比べ従来のITOのフォーミング素子は高抵抗部
が著しく劣化する。
又、金属微粒子をガラス中に析出させた後、弗化水素水
により基板表面を処理し、金属コロイドをガラス基板表
面より多数突出させて、本発明の電子放出素子としても
、同様の効果が得られた。
実施例7 清浄な厚み約1+amの石英ガラス基板上に5i02液
体コーティング剤(東京応化工業製0CD)に有機パラ
ジウム化合物を含む有機溶媒(奥野製薬工業製ギヤタペ
ース) CCP)を混合し、5i02: Pdのモル比
を約5:1に調製した溶液を作り、スピンナーにより回
転塗布した。その後約400℃で1時間焼成し、膜厚的
100OAのPd微粒子5を含んだS i02絶縁層6
を得た。この後絶縁層6表面をフッ酸水溶液でエツチン
グし、微粒子5を絶縁層5より突出させた。(第2図参
照) 次に、5i02絶縁層6上にフォトリングラフィにより
、電極間隔りとなる形状にフォトレジストを厚み約0.
8H程度で形成する。さらにS i02絶縁層6及び該
フォトレジスト上に電極形状を得るマスクEB蒸着によ
ってNi薄膜をl0QOA厚みで堆積した。その後、フ
ォトレジストを剥離し、フォトレジスト上の不要な旧薄
膜を取り除くリフトオフ工程を行う。これによって第1
2図に示す電極2゜3、電極間隔りの形状が形成できる
。この際第12図に示す各寸法をL = 0.5H、W
 == 300gm 、 A =2mmとした。
以上の工程で得られた電子放出素子の電子放出特性を測
定した結果、素子の駆動電圧Vf= 30Vで放出電流
1e= 1μA、放出効率α= 5 X 10−3程度
の電子放出が得られた。なお、寿命、放出電流のゆらぎ
は、実施例1とほぼ同程度であった。
実施例8 実施例7の有機パラジウム化合物を粒径が平均100 
Aの5n02微粒子に変えた他は同様の電子放出素子と
し、同様の実験を行った。結果は、実施例1とほぼ同程
度の電子放出が得られた。
[発明の効果] 以上、説明したように相対向する電極間に、絶縁層が形
成されており、さらに、導電性の微粒子が該絶縁層中に
含有され、かつ分散配置されている素子構造に特徴を有
する電子放出素子にすることで、従来フォーミング工程
を有する表面伝導形電子放出素子と比べ、つぎのような
効果がある。
1、微粒子が絶縁層に固定されている為、動作中に微粒
子が移動することなく、安定で寿命を延ばすのに効果が
ある。
2、微粒子の密度を適当に調整することにより、電子放
出効率を向上させるのに効果がある。
3、フォーミング工程がない為、素子を多数に集積化す
ることができる。
4、フォーミング工程がない為、素子形状が自由に設計
できる。
【図面の簡単な説明】
第1図は本発明の電子放出素子を説明する一実施例斜視
図、 第2図及び第3図は第1図の素子の断面図、第4図■〜
■は第1図に示す電子放出素子の製造工程を説明する図
、 第5図、第6図(a)、(b) 、第7図、第9図(a
)。 (b)、第10図(a)、(b)は、それぞれ本発明の
電子放出素子を説明する他の実施例模式図、第8図1)
〜5)は、第7図に示す電子放出素子の製造工程を説明
する図、 第11図は従来の電子放出素子の平面図、第12図は実
施例7及び8を説明する図である。

Claims (19)

    【特許請求の範囲】
  1. (1)対向する電極間に絶縁層が形成されており、該絶
    縁層の層中に微粒子が分散配置されている素子構造を有
    することを特徴とする電子放出素子。
  2. (2)前記微粒子が前記絶縁層中に完全に包含されてい
    る構造を有する請求項1記載の電子放出素子。
  3. (3)前記微粒子が前記絶縁層中に1部含有され、かつ
    、1部露出している構造を有する請求項1記載の電子放
    出素子。
  4. (4)前記微粒子が硼化物、炭化物、窒化物、金属、金
    属酸化物、半導体あるいはカーボンである請求項1記載
    の電子放出素子。
  5. (5)前記微粒子を塗布によって電極間に分散させた請
    求項1記載の電子放出素子。
  6. (6)前記微粒子を蒸着によって電極間に分散させた請
    求項1記載の電子放出素子。
  7. (7)前記微粒子を有機金属化合物の熱分解によって分
    散させた請求項1記載の電子放出素子。
  8. (8)基板上に対向する電極が形成され、該電極間に絶
    縁層が形成されており、該絶縁層の層中に微粒子が分散
    配置されている素子構造を有する請求項1記載の電子放
    出素子。
  9. (9)基板上に絶縁層を形成する手段と、該絶縁層上に
    対向する電極を形成する手段と、該電極間に微粒子を分
    散する手段と、焼成して微粒子を絶縁層中に含有せしめ
    る手段とを有する請求項8記載の電子放出素子。
  10. (10)前記絶縁層が低融点ガラスである請求項9記載
    の電子放出素子。
  11. (11)前記絶縁層の膜厚が数10オングストロームか
    ら数10ミクロンである請求項9記載の電子放出素子。
  12. (12)基板上に電極を形成する手段と、該電極間に前
    記微粒子と絶縁体との混合液を塗布し焼成することによ
    り、該微粒子含有絶縁層を形成する手段とを有する請求
    項8記載の電子放出素子。
  13. (13)基板上に電極を形成する手段と、該電極間に微
    粒子を分散する手段と、前記分散してある微粒子上に絶
    縁層を形成させる手段とを有する請求項8記載の電子放
    出素子。
  14. (14)前記絶縁層が酸化物、窒化物、炭化物あるいは
    有機高分子の層である請求項13記載の電子放出素子。
  15. (15)前記絶縁層の膜厚が数10オングストローム〜
    数ミクロンである請求項14記載の電子放出素子。
  16. (16)多孔質ガラス中に金属あるいは金属酸化物が析
    出した基板を有する請求項1記載の電子放出素子。
  17. (17)金属コロイド微粒子を含有する着色ガラスを有
    する請求項1記載の電子放出素子。
  18. (18)前記微粒子を絶縁層中に完全に包含させる手段
    と、完全に包含されている微粒子をエッチングにより1
    部絶縁層から露出させる手段とを有する請求項1記載の
    電子放出素子。
  19. (19)基板上に微粒子含有絶縁層を塗布しさらに焼成
    する工程及び該絶縁層上に電極を形成する工程とを有す
    ることを特徴とする電子放出素子の製造方法。
JP10248588A 1987-07-15 1988-04-27 電子放出素子及びその製造方法 Expired - Fee Related JPH07114104B2 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP10248588A JPH07114104B2 (ja) 1987-10-09 1988-04-27 電子放出素子及びその製造方法
EP88111232A EP0299461B1 (en) 1987-07-15 1988-07-13 Electron-emitting device
DE3853744T DE3853744T2 (de) 1987-07-15 1988-07-13 Elektronenemittierende Vorrichtung.
US07/218,203 US5066883A (en) 1987-07-15 1988-07-13 Electron-emitting device with electron-emitting region insulated from electrodes
US08/366,430 US5532544A (en) 1987-07-15 1994-12-30 Electron-emitting device with electron-emitting region insulated from electrodes
US08/487,559 US5872541A (en) 1987-07-15 1995-06-07 Method for displaying images with electron emitting device
US08/474,324 US5749763A (en) 1987-07-15 1995-06-07 Display device with electron-emitting device with electron-emitting region insulted from electrodes
US08/479,000 US5759080A (en) 1987-07-15 1995-06-07 Display device with electron-emitting device with electron-emitting region insulated form electrodes
US08/657,385 US5661362A (en) 1987-07-15 1996-06-03 Flat panel display including electron emitting device
US09/384,326 USRE40566E1 (en) 1987-07-15 1999-08-26 Flat panel display including electron emitting device
US09/570,375 USRE39633E1 (en) 1987-07-15 2000-05-12 Display device with electron-emitting device with electron-emitting region insulated from electrodes
US09/587,249 USRE40062E1 (en) 1987-07-15 2000-06-02 Display device with electron-emitting device with electron-emitting region insulated from electrodes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25506387 1987-10-09
JP62-255063 1987-10-09
JP10248588A JPH07114104B2 (ja) 1987-10-09 1988-04-27 電子放出素子及びその製造方法

Publications (2)

Publication Number Publication Date
JPH01200532A true JPH01200532A (ja) 1989-08-11
JPH07114104B2 JPH07114104B2 (ja) 1995-12-06

Family

ID=26443212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10248588A Expired - Fee Related JPH07114104B2 (ja) 1987-07-15 1988-04-27 電子放出素子及びその製造方法

Country Status (1)

Country Link
JP (1) JPH07114104B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536732A1 (en) 1991-10-08 1993-04-14 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
WO1995015002A1 (fr) * 1993-11-24 1995-06-01 Tdk Corporation Element source d'electrons de cathode froide et son procede de production
US5530314A (en) * 1991-10-08 1996-06-25 Canon Kabushiki Kaisha Electron-emitting device and electron beam-generating apparatus and image-forming apparatus employing the device
US5818403A (en) * 1993-01-07 1998-10-06 Canon Kabushiki Kaisha Electron beam-generating apparatus, image-forming apparatus, and driving methods thereof
US6296896B1 (en) 1995-04-03 2001-10-02 Canon Kabushiki Kaisha Manufacturing method for electron-emitting device, electron source, and image-forming apparatus
US6445114B1 (en) 1997-04-09 2002-09-03 Matsushita Electric Industrial Co., Ltd. Electron emitting device and method of manufacturing the same
US6593950B2 (en) 1991-10-08 2003-07-15 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
JP2019029193A (ja) * 2017-07-31 2019-02-21 シャープ株式会社 電子放出素子、電子放出素子の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593950B2 (en) 1991-10-08 2003-07-15 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
US5530314A (en) * 1991-10-08 1996-06-25 Canon Kabushiki Kaisha Electron-emitting device and electron beam-generating apparatus and image-forming apparatus employing the device
US5645462A (en) * 1991-10-08 1997-07-08 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
EP0536732A1 (en) 1991-10-08 1993-04-14 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
US5818403A (en) * 1993-01-07 1998-10-06 Canon Kabushiki Kaisha Electron beam-generating apparatus, image-forming apparatus, and driving methods thereof
US5860844A (en) * 1993-11-24 1999-01-19 Tdk Corporation Cold cathode electron source element and method for making
US5760536A (en) * 1993-11-24 1998-06-02 Tdk Corporation Cold cathode electron source element with conductive particles embedded in a base
WO1995015002A1 (fr) * 1993-11-24 1995-06-01 Tdk Corporation Element source d'electrons de cathode froide et son procede de production
US6296896B1 (en) 1995-04-03 2001-10-02 Canon Kabushiki Kaisha Manufacturing method for electron-emitting device, electron source, and image-forming apparatus
US6506440B2 (en) 1995-04-03 2003-01-14 Canon Kabushiki Kaisha Manufacturing method for electron-emitting device, electron source, and image-forming apparatus
US6946159B2 (en) 1995-04-03 2005-09-20 Canon Kabushiki Kaisha Manufacturing method for electron-emitting device, electron source, and image-forming apparatus
US6445114B1 (en) 1997-04-09 2002-09-03 Matsushita Electric Industrial Co., Ltd. Electron emitting device and method of manufacturing the same
US6827624B2 (en) 1997-04-09 2004-12-07 Matsushita Electric Industrial Co., Ltd. Electron emission element and method for producing the same
JP2019029193A (ja) * 2017-07-31 2019-02-21 シャープ株式会社 電子放出素子、電子放出素子の製造方法

Also Published As

Publication number Publication date
JPH07114104B2 (ja) 1995-12-06

Similar Documents

Publication Publication Date Title
US5532544A (en) Electron-emitting device with electron-emitting region insulated from electrodes
US5661362A (en) Flat panel display including electron emitting device
US4954744A (en) Electron-emitting device and electron-beam generator making use
JP2715304B2 (ja) Mim形電子放出素子
JPH0687392B2 (ja) 電子放出素子の製造方法
JP2608295B2 (ja) 電子放出素子
JPH01200532A (ja) 電子放出素子及びその製造方法
JP2000311586A (ja) 電子放出素子およびこれを用いた電子源およびこれを用いた画像形成装置
JP2632883B2 (ja) 電子放出素子
JP2946140B2 (ja) 電子放出素子、電子源及び画像形成装置の製造方法
JP2630983B2 (ja) 電子放出素子
USRE40566E1 (en) Flat panel display including electron emitting device
JP2631007B2 (ja) 電子放出素子及びその製造方法と、該素子を用いた画像形成装置
JP2678757B2 (ja) 電子放出素子およびその製造方法
JP2727193B2 (ja) 電子放出素子の製造方法
JPH06231678A (ja) 電子放出膜及び電子放出素子の作製方法
JPS63184230A (ja) 電子放出素子
JP2646236B2 (ja) 電子放出素子及びその製造方法
USRE40062E1 (en) Display device with electron-emitting device with electron-emitting region insulated from electrodes
JP2646235B2 (ja) 電子放出素子及びその製造方法
JPH07123023B2 (ja) 電子放出素子およびその製造方法
JPH0193024A (ja) 電子放出素子
JP2630984B2 (ja) 電子放出素子の製造方法
JP3023712B2 (ja) 表面伝導形電子放出素子の製造方法、電子放出装置の製造方法
JPH0494032A (ja) 電子放出素子、電子源、画像形成装置及び、それらの製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees