JPH01188645A - 酸化物分散強化型一方向凝固Ni基合金及びその製造法 - Google Patents
酸化物分散強化型一方向凝固Ni基合金及びその製造法Info
- Publication number
- JPH01188645A JPH01188645A JP955088A JP955088A JPH01188645A JP H01188645 A JPH01188645 A JP H01188645A JP 955088 A JP955088 A JP 955088A JP 955088 A JP955088 A JP 955088A JP H01188645 A JPH01188645 A JP H01188645A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- based alloy
- oxide
- oxide dispersion
- solidified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 60
- 239000000956 alloy Substances 0.000 title claims abstract description 60
- 229910001175 oxide dispersion-strengthened alloy Inorganic materials 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 19
- 238000007711 solidification Methods 0.000 claims description 16
- 230000008023 solidification Effects 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000004881 precipitation hardening Methods 0.000 abstract description 17
- 239000011812 mixed powder Substances 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000005728 strengthening Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 13
- 239000006104 solid solution Substances 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は酸化物分散強化型一方向凝固Ni基合金に関し
、特にガスタービンのタービン動・静翼用材料、高温ブ
ロアーの動翼用材料及びその他高温部品用材料に有利に
適用される同合金に関する。
、特にガスタービンのタービン動・静翼用材料、高温ブ
ロアーの動翼用材料及びその他高温部品用材料に有利に
適用される同合金に関する。
従来の超高温合金の主流はγ′(Nis(Al、Ti)
)析出硬化型耐熱合金である。しかし、γ′相は高温(
概ね900°C以上)で長時間使用すると、凝集粗大化
あるいは基質に固溶し、高温強度が低下する。そこで、
高温でも安定な酸化物微粒子を基質に均一に分散させた
酸化物分散強化型耐熱合金が開発され注目されている。
)析出硬化型耐熱合金である。しかし、γ′相は高温(
概ね900°C以上)で長時間使用すると、凝集粗大化
あるいは基質に固溶し、高温強度が低下する。そこで、
高温でも安定な酸化物微粒子を基質に均一に分散させた
酸化物分散強化型耐熱合金が開発され注目されている。
高温で使用される部材の主な破壊形態は作用応力に直角
な方向の粒界での破壊である。そこで、γ′析出硬化型
合金による作用方向に直角な方向の粒界のない一方向凝
固合金が開発された。
な方向の粒界での破壊である。そこで、γ′析出硬化型
合金による作用方向に直角な方向の粒界のない一方向凝
固合金が開発された。
しかしながら、このTI析出硬化型一方向凝固合金にお
いても、高温(概ね900°C)での凝集粗大化が起き
る。そのためγ′析出硬化型合金による高温強度向上は
約30°Cに過ぎない。
いても、高温(概ね900°C)での凝集粗大化が起き
る。そのためγ′析出硬化型合金による高温強度向上は
約30°Cに過ぎない。
一方、酸化物分散強化型合金は粉末冶金法で製造される
。焼結後、加工・熱処理(帯域熱処理)によシ再結晶さ
せ、長細い結晶粒(アスベクF比2〜16)を有する材
料が製造される。
。焼結後、加工・熱処理(帯域熱処理)によシ再結晶さ
せ、長細い結晶粒(アスベクF比2〜16)を有する材
料が製造される。
前述のγ′析出硬化型一方向凝固超耐熱合金は、普通鋳
造合金に比べ約30℃の強度向上が図れるものの、γ′
に高温強度を依存しているため自づと限界がある。
造合金に比べ約30℃の強度向上が図れるものの、γ′
に高温強度を依存しているため自づと限界がある。
又、前述の酸化物分散強化型超耐熱合金は、粉末冶金法
によシ製造されており、製品形状は例えば丸型、角型、
仮型に限定され、この素材を用いて例えばガスタービン
翼を鍛造・熱処理を行なった場合、翼長手方向に再結晶
が起きる保証はない。又素材製造においても歩留が悪く
、複雑な製造工程により作られているため、この合金は
非常に高価な材料となる。
によシ製造されており、製品形状は例えば丸型、角型、
仮型に限定され、この素材を用いて例えばガスタービン
翼を鍛造・熱処理を行なった場合、翼長手方向に再結晶
が起きる保証はない。又素材製造においても歩留が悪く
、複雑な製造工程により作られているため、この合金は
非常に高価な材料となる。
本発明は上記技術水準に艦み、従来の超耐熱合金の優れ
た点を兼ね備えた合金を提供しようとするものである。
た点を兼ね備えた合金を提供しようとするものである。
本発明は
(1) 重量比で、酸化物:0.3〜5%、 Cr:
12〜25%、Co:10〜18%、 Ti: 1〜
6%。
12〜25%、Co:10〜18%、 Ti: 1〜
6%。
Al: 1〜6 ’A 、 Mo: 2〜5%IW:1
1.5〜λ5%、 C: 0.05−(12%、 B
: (1003〜0.,08%、 Hf: 2%以下、
残部実質的にNiからなることを特徴とする酸化物分散
強化型一方向凝固Ni基合金及び (2) 平均粒径が1ooi〜5μmの酸化物粒子を
重量比で0.,3〜5%と、Cr:12〜25%。
1.5〜λ5%、 C: 0.05−(12%、 B
: (1003〜0.,08%、 Hf: 2%以下、
残部実質的にNiからなることを特徴とする酸化物分散
強化型一方向凝固Ni基合金及び (2) 平均粒径が1ooi〜5μmの酸化物粒子を
重量比で0.,3〜5%と、Cr:12〜25%。
Co: 1 0〜18%、Ti:1〜6% 、Al:
1〜6% 、Mo: 2〜5% 、W:0.5〜
2.5% 、C: α05〜CL2% 、B : II
Lo 03〜0.o 8%。
1〜6% 、Mo: 2〜5% 、W:0.5〜
2.5% 、C: α05〜CL2% 、B : II
Lo 03〜0.o 8%。
Hf: 2%以下残部実質的にNiからなるNi合金粉
末とを混合し、Ni基合金の溶融温度以上に加熱後、3
0〜500簡/hourの凝固速度で一方向凝固させる
ことを特徴とする酸化物分散強化型一方向凝固Ni基合
金の製造法 である。
末とを混合し、Ni基合金の溶融温度以上に加熱後、3
0〜500簡/hourの凝固速度で一方向凝固させる
ことを特徴とする酸化物分散強化型一方向凝固Ni基合
金の製造法 である。
本発明における酸化物分散強化型一方向凝固Ni基合金
の成分、すなわち、酸化物粒径及びその添加量、合金元
素の範囲につき以下説明する。
の成分、すなわち、酸化物粒径及びその添加量、合金元
素の範囲につき以下説明する。
酸化物粒径:酸化物の粒径は材料強度、及び溶解・凝固
過程における浮上・凝集の点から100A〜3μmとす
べきである。材料強度の観点からは、これよシ細かいと
転位の移動阻止の役割をせず、添加した効果が認められ
ない。又5μ未満であると合金は著しく脆く延性に欠は
高温材料として適さない。
過程における浮上・凝集の点から100A〜3μmとす
べきである。材料強度の観点からは、これよシ細かいと
転位の移動阻止の役割をせず、添加した効果が認められ
ない。又5μ未満であると合金は著しく脆く延性に欠は
高温材料として適さない。
なお、溶解・凝固過程における酸化物粒子の浮上につい
ては、ストークスの式 %式% ここで、■:終末速度(m/3ec)・/IL:Ni基
合金融液の比重量(i3)、Pに酸化物の比重量(ゆ7
m3)、 D0二酸化物の粒径(m) p : Ni基合金融液の粘性係数(kli’・sec
/m’ )を用いて計算すると、Ni基超耐熱合金に1
00;、〜3μmのy、o3を添加した場合、■は9.
2×10−11〜a !Ix 10−’m/secとな
シ、本発明合金を一方向凝固させる凝固速度30〜50
0 m /hour (l13X10−’ 〜1.4
X10−’ m/5ec)よシ十分小さく、酸化物は浮
上することはない。
ては、ストークスの式 %式% ここで、■:終末速度(m/3ec)・/IL:Ni基
合金融液の比重量(i3)、Pに酸化物の比重量(ゆ7
m3)、 D0二酸化物の粒径(m) p : Ni基合金融液の粘性係数(kli’・sec
/m’ )を用いて計算すると、Ni基超耐熱合金に1
00;、〜3μmのy、o3を添加した場合、■は9.
2×10−11〜a !Ix 10−’m/secとな
シ、本発明合金を一方向凝固させる凝固速度30〜50
0 m /hour (l13X10−’ 〜1.4
X10−’ m/5ec)よシ十分小さく、酸化物は浮
上することはない。
又、溶解前にあらかじめ均一に分散させておけば問題と
なるほどの凝集は起きない。
なるほどの凝集は起きない。
酸化物の添加量;α3〜5%
前述のとおシ、酸化物(”j08 + ”403 #
La1O1,ZrO2等)は高温でも安定で、概ね95
0℃以上の高温で優れた強度を得るためには絶対必要で
ある。
La1O1,ZrO2等)は高温でも安定で、概ね95
0℃以上の高温で優れた強度を得るためには絶対必要で
ある。
0.3%未満では要求強度を満足することはできない。
又あまり多量に添加すると合金が脆くなり延性を阻害す
る。したがって5%以下とした。
る。したがって5%以下とした。
Cr:12〜25 %
産業用ガスタービンでは高温における耐食性が必要であ
り、Cr量を多く添加する程その効果は顕著である。C
r Jlが12%未満ではその効果は少なく十分でない
ので、12%以上必要である。一方Ni基合金ではCr
量をあまり多く添加するとσ相などの金属間化合物が高
温(概ね750〜950℃)で使用中に析出し、金属組
織的に不安定となり高温強度や延性が低下するので25
%以下とした。
り、Cr量を多く添加する程その効果は顕著である。C
r Jlが12%未満ではその効果は少なく十分でない
ので、12%以上必要である。一方Ni基合金ではCr
量をあまり多く添加するとσ相などの金属間化合物が高
温(概ね750〜950℃)で使用中に析出し、金属組
織的に不安定となり高温強度や延性が低下するので25
%以下とした。
Co: 10〜18%
T1やAlなどの析出硬化型Ni基合金において、溶体
化処理でTi、Alを十分に基質中に固溶させ、時効処
理においてγ′相(Nis(A/、、Ti))として微
細均一に析出させることによシ良好な高温強度が得られ
る。COはこのTi、AAなどを高温で基質に固溶させ
る限度(固溶限)を大きくする作用がある。本発明合金
に必要なTi、AA量ではCO量は1096以上必要で
ある。一方、COは高価な成分であるので不必要に添加
する必要はなく18%以下とした。
化処理でTi、Alを十分に基質中に固溶させ、時効処
理においてγ′相(Nis(A/、、Ti))として微
細均一に析出させることによシ良好な高温強度が得られ
る。COはこのTi、AAなどを高温で基質に固溶させ
る限度(固溶限)を大きくする作用がある。本発明合金
に必要なTi、AA量ではCO量は1096以上必要で
ある。一方、COは高価な成分であるので不必要に添加
する必要はなく18%以下とした。
T1:1〜10%
Tiは析出硬化型Ni基合金の高温強度を上げるための
析出相(r’相)の析出に必要な元素である。Tiが1
%未満では要求強度を満足することができない。文あま
り多量に添加すると延性を阻害するので、6%以下とし
た。
析出相(r’相)の析出に必要な元素である。Tiが1
%未満では要求強度を満足することができない。文あま
り多量に添加すると延性を阻害するので、6%以下とし
た。
Al:1〜6%
AlはTiと同様の効果があシ、γ′相を生成して高温
強度を上げるとともに、高温での耐食性(特に、耐酸化
性)に寄与する。その量は1%以上必要であり、あまり
多いと延性を阻害し、その効果は飽和するので6%以下
とした。
強度を上げるとともに、高温での耐食性(特に、耐酸化
性)に寄与する。その量は1%以上必要であり、あまり
多いと延性を阻害し、その効果は飽和するので6%以下
とした。
MO:2〜5%
Moは基質中に固溶して高温強度を上昇させる効果(固
溶体強化)があると同時に、時効処理中に炭化物(Cr
lIMoW(4、(Mob)@ Cなど)を生成し、弱
析出強化の効果により高温強度向上に寄与する。その効
果は2%未満では少なく、又あまり多く添加すると延性
を阻害するので596以下とした。
溶体強化)があると同時に、時効処理中に炭化物(Cr
lIMoW(4、(Mob)@ Cなど)を生成し、弱
析出強化の効果により高温強度向上に寄与する。その効
果は2%未満では少なく、又あまり多く添加すると延性
を阻害するので596以下とした。
W:15〜2.55%
WはMOと同様に固溶体強化と弱析出強化の作用があり
、高温強度を上昇させる。その効果はn、sx未満では
少ない。又Wは比重が大きい元素であるため、あまり多
く添加すると合金の比重が大きくなシ、遠心力の働くタ
ービン動翼では不利で又コスト的にも高くなるので2.
5%以下とした。
、高温強度を上昇させる。その効果はn、sx未満では
少ない。又Wは比重が大きい元素であるため、あまり多
く添加すると合金の比重が大きくなシ、遠心力の働くタ
ービン動翼では不利で又コスト的にも高くなるので2.
5%以下とした。
C;α05〜12%
Cは炭化物を形成し、特に結晶粒界、樹枝状境界に析出
し、粒界や樹枝状境界を強化し高温強度を上昇させるの
で、aosx以上必要である。しかし、あまシ多く添加
すると炭化物の析出が多くなシ、延性を阻害するので1
2%以下とした。
し、粒界や樹枝状境界を強化し高温強度を上昇させるの
で、aosx以上必要である。しかし、あまシ多く添加
すると炭化物の析出が多くなシ、延性を阻害するので1
2%以下とした。
B;α05〜12%%
Bは基質を強化して高温強度を上昇させるので、0.O
O3%以上必要であるが、あまり多く添加するとその効
果は飽和し、かえって延性を阻害する恐れがあるので、
0.08%以下とした。
O3%以上必要であるが、あまり多く添加するとその効
果は飽和し、かえって延性を阻害する恐れがあるので、
0.08%以下とした。
Hf;2%以下
Hfは、粒界炭化物の析出形態に作用し、Hf添加によ
り粒界強化に寄与し、高温強度、延性向上に有効である
。あまり多すぎると返って延性を低下させるので電大2
%とした。
り粒界強化に寄与し、高温強度、延性向上に有効である
。あまり多すぎると返って延性を低下させるので電大2
%とした。
なお、Ni基合金には不純物元素として原材料より8i
、 Mn、 Fe、 P、 8. Cuが混入し、また
MY、 Ca、 Srなどは酸素との結合力が多く、本
発明合金製錬上、脱酸剤として最大0.2%まで添加す
ることがある。
、 Mn、 Fe、 P、 8. Cuが混入し、また
MY、 Ca、 Srなどは酸素との結合力が多く、本
発明合金製錬上、脱酸剤として最大0.2%まで添加す
ることがある。
また、上記の元素と加えてZr0.IX以下、Ta
2%以下を含有させてもよい。Zrは本発明合金におい
て必ずしも必要ではないが、Zrは靭性(衝撃値)や延
性の向上に11X以下の添加は有効である。Ta も本
発明合金に必ずしも必要ではないが、Taは固溶体強化
及び一部TI影形成よる析出強化並びに耐酸化性向上に
2%以下の添加に有効である。
2%以下を含有させてもよい。Zrは本発明合金におい
て必ずしも必要ではないが、Zrは靭性(衝撃値)や延
性の向上に11X以下の添加は有効である。Ta も本
発明合金に必ずしも必要ではないが、Taは固溶体強化
及び一部TI影形成よる析出強化並びに耐酸化性向上に
2%以下の添加に有効である。
次に本発明の酸化物分散強化型一方向凝固Ni基合金の
製造法について説明する。
製造法について説明する。
100A〜3μm粒径の酸化物(Yj 03 @ A4
ol +La103. Zr01)を、r’(Ni3
(Al、Ti月析出硬化型合金粉末又は上記量的範囲の
金属混合粉末と予め均一に混合し、この混合物を真空中
で容器に充填密封し、高温等圧ブv ス(Hot Is
ostaticPressing: HIPという)に
よシ焼結し、焼結後容器を除去し、焼結材を適当な速度
で一方向凝固させる。
ol +La103. Zr01)を、r’(Ni3
(Al、Ti月析出硬化型合金粉末又は上記量的範囲の
金属混合粉末と予め均一に混合し、この混合物を真空中
で容器に充填密封し、高温等圧ブv ス(Hot Is
ostaticPressing: HIPという)に
よシ焼結し、焼結後容器を除去し、焼結材を適当な速度
で一方向凝固させる。
一方向凝固材の凝固速度は合金の特性、装置の性能及び
コストの面から決定される。凝固速度があまり遅いと樹
枝状組織が著しく粗くな択高温強度が得がたくなると共
に鋳造欠陥が出やすくなシ、コスト高となる。したがっ
て凝固速度の下限は30m/hourとすべきである。
コストの面から決定される。凝固速度があまり遅いと樹
枝状組織が著しく粗くな択高温強度が得がたくなると共
に鋳造欠陥が出やすくなシ、コスト高となる。したがっ
て凝固速度の下限は30m/hourとすべきである。
一方、凝固速度があまシ速いと一方向凝固組織が得がた
くなるので凝固速度の上限は500m/hourとすべ
きである。
くなるので凝固速度の上限は500m/hourとすべ
きである。
以上のように、Y、O,の粒径、添加量、合金元素の配
合割合及び凝固速度を制御することによシ、γ′析出硬
化と酸化物強化を兼備し、かつMo、W等の固溶体強化
及び炭化物の析出強化がもたらされた高温強度の優れた
Ni基合金が得られる。本発明の酸化物分散強化型一方
向Ni基合金の強化要因のグラフを第1図に示す。第1
図において実線■はγ′相析出強化+(固溶強化、炭化
物析出硬化)の、また実線■は酸化物分散強化の温度と
高温強化の度合のグラフ、破線■は■のγ′相析出強化
+(固溶強化、炭化物析出硬化)と■の酸化物分散強化
を有する鍛造Ni基合金の温度と高温強化の度合のグラ
フ、鎖線■は■のγ′相析出強化+(固溶強化、炭化物
析出硬化)と■の酸化物分散強化を有する本発明の一方
向凝固Ni基合金の温度と高温強化の度合のグラフであ
る。この第1図ニジ本発明の酸化物分散強化型一方向凝
固Ni基合金の高温強度が如何に優れているかy判る。
合割合及び凝固速度を制御することによシ、γ′析出硬
化と酸化物強化を兼備し、かつMo、W等の固溶体強化
及び炭化物の析出強化がもたらされた高温強度の優れた
Ni基合金が得られる。本発明の酸化物分散強化型一方
向Ni基合金の強化要因のグラフを第1図に示す。第1
図において実線■はγ′相析出強化+(固溶強化、炭化
物析出硬化)の、また実線■は酸化物分散強化の温度と
高温強化の度合のグラフ、破線■は■のγ′相析出強化
+(固溶強化、炭化物析出硬化)と■の酸化物分散強化
を有する鍛造Ni基合金の温度と高温強化の度合のグラ
フ、鎖線■は■のγ′相析出強化+(固溶強化、炭化物
析出硬化)と■の酸化物分散強化を有する本発明の一方
向凝固Ni基合金の温度と高温強化の度合のグラフであ
る。この第1図ニジ本発明の酸化物分散強化型一方向凝
固Ni基合金の高温強度が如何に優れているかy判る。
酸化物分散強化型一方向凝固Ni基合金の製造プロセス
を第2図及び第3図に示す。まず、第1表に示す化学成
分の析出硬化型Ni基合金の粉末(粒度ニー80メツシ
ユ(即ち粒径175μm以下))をAr ガスによるガ
ス噴霧法で製造した。
を第2図及び第3図に示す。まず、第1表に示す化学成
分の析出硬化型Ni基合金の粉末(粒度ニー80メツシ
ユ(即ち粒径175μm以下))をAr ガスによるガ
ス噴霧法で製造した。
次に酸化物粒子(平均粒径約200大〜400大)と合
金粉末を第2表の割合に配合し、ボーμミルで予備混合
した。続いて、アトリッター(ハイ・エネルギーミA/
)によシ混合し、均一に混合していることを混合粉末の
硬さと磁化値によシ確認した。
金粉末を第2表の割合に配合し、ボーμミルで予備混合
した。続いて、アトリッター(ハイ・エネルギーミA/
)によシ混合し、均一に混合していることを混合粉末の
硬さと磁化値によシ確認した。
混合粉末を容器に真空中で充填、密封し、高温等圧プレ
スにより焼結し、焼結後、容器を除去し、40φ■の棒
材にした。
スにより焼結し、焼結後、容器を除去し、40φ■の棒
材にした。
この棒材をマスターメタルとして、一方向凝固炉によシ
鋳込み温度:1600℃、鋳型加熱温度:1550°C
2凝固材引下げ速度:200g/hourなる条件で一
方向凝固材を製作した。
鋳込み温度:1600℃、鋳型加熱温度:1550°C
2凝固材引下げ速度:200g/hourなる条件で一
方向凝固材を製作した。
製作した一方向凝固材の断面マクロ組織は第4図の写真
(×15倍)に示すとおり、結晶粒は一方向に成畏して
おシ、良好な一方向凝固材であった。
(×15倍)に示すとおり、結晶粒は一方向に成畏して
おシ、良好な一方向凝固材であった。
次に、製作した一方向凝固材より試験片を採取し、温度
980°C1応力11.2kg/−でクリープ破断試験
を行なった。そして酸化物粒子を含まない一方向凝固材
との比率を併せて第2表に示した。酸化物粒子を添加す
ることによシフリープ破断時間が増加することがわかる
。
980°C1応力11.2kg/−でクリープ破断試験
を行なった。そして酸化物粒子を含まない一方向凝固材
との比率を併せて第2表に示した。酸化物粒子を添加す
ることによシフリープ破断時間が増加することがわかる
。
第1表 γ′析出硬化型Ni基合金の化学組成 (vr
t%)第2表 酸化物添加量とクリープ破断強度の比*
980℃X11.2′に9/−の条件下での破断時間
の比率〔発明の効果〕 酸化物微粒子(100A〜3μm)をγ′析出硬化型N
i基合金粉末(−80メツシユ以下)にあらかじめ均一
に混合させた材料を製作後、この材料を50〜500■
/hour凝固速度で一方向凝固させることにより、酸
化物分散強化型一方向凝固合金が製作でき、本発明合金
は、高温で安定な酸化物が均一に分散しているため、従
来のTI析出硬化型一方向凝固合金に比べ、概ね100
0℃以上ですぐれた高温強度が得られる。
t%)第2表 酸化物添加量とクリープ破断強度の比*
980℃X11.2′に9/−の条件下での破断時間
の比率〔発明の効果〕 酸化物微粒子(100A〜3μm)をγ′析出硬化型N
i基合金粉末(−80メツシユ以下)にあらかじめ均一
に混合させた材料を製作後、この材料を50〜500■
/hour凝固速度で一方向凝固させることにより、酸
化物分散強化型一方向凝固合金が製作でき、本発明合金
は、高温で安定な酸化物が均一に分散しているため、従
来のTI析出硬化型一方向凝固合金に比べ、概ね100
0℃以上ですぐれた高温強度が得られる。
第1図は本発明の一実施例としての酸化物分散強化型一
方向凝固Ni基合金の強化要因を示すグラフ、第2図及
び第3図は本発明の一実施例としての酸化物分散強化型
一方向凝固合金の製作プロセス図第4図は本発明の一実
施例としての試作した酸化物□分散強化型一方向凝固N
i基合金の金属組織を示す写真である。 温度−一 第4図
方向凝固Ni基合金の強化要因を示すグラフ、第2図及
び第3図は本発明の一実施例としての酸化物分散強化型
一方向凝固合金の製作プロセス図第4図は本発明の一実
施例としての試作した酸化物□分散強化型一方向凝固N
i基合金の金属組織を示す写真である。 温度−一 第4図
Claims (2)
- (1)重量比で、酸化物:0.3〜5%、Cr:12〜
25%、Co:10〜18%、Ti:1〜6%、Al:
1〜6%、Mo:2〜5%、W:0.5〜2.5%、C
:0.05〜0.2%、B:0.003〜0.08%、
Hf:2%以下、残部実質的にNiからなることを特徴
とする酸化物分散強化型一方向凝固Ni基合金。 - (2)平均粒径が100Å〜3μmの酸化物粒子を重量
比で0.3〜5%と、Cr:12〜25%、Co:10
〜18%、Ti:1〜6%、Al:1〜6%、Mo:2
〜5%、W:0.5〜2.5%、C:0.05〜0.2
%、B:0.003〜0.08%、Hf:2%以下残部
実質的にNiからなるNi合金粉末とを混合し、Ni基
合金の溶融温度以上に加熱後、30〜500mm/ho
urの凝固速度で一方向凝固させることを特徴とする酸
化物分散強化型一方向凝固Ni基合金の製造法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP955088A JPH01188645A (ja) | 1988-01-21 | 1988-01-21 | 酸化物分散強化型一方向凝固Ni基合金及びその製造法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP955088A JPH01188645A (ja) | 1988-01-21 | 1988-01-21 | 酸化物分散強化型一方向凝固Ni基合金及びその製造法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01188645A true JPH01188645A (ja) | 1989-07-27 |
Family
ID=11723386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP955088A Pending JPH01188645A (ja) | 1988-01-21 | 1988-01-21 | 酸化物分散強化型一方向凝固Ni基合金及びその製造法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01188645A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225536A (ja) * | 1988-07-14 | 1990-01-29 | Daido Steel Co Ltd | Ni基耐熱合金 |
US5712050A (en) * | 1991-09-09 | 1998-01-27 | General Electric Company | Superalloy component with dispersion-containing protective coating |
JP2013181213A (ja) * | 2012-03-01 | 2013-09-12 | Hokkaido Univ | 酸化物分散強化型ニッケル基超合金 |
CN114214554A (zh) * | 2021-11-17 | 2022-03-22 | 哈尔滨工业大学(威海) | 一种镍基高温合金粉末及应用于空心涡轮叶片的制备方法 |
CN118166240A (zh) * | 2024-05-09 | 2024-06-11 | 成都先进金属材料产业技术研究院股份有限公司 | 含大尺寸共晶相γ+γ'高温合金铸锭及其组炉均质化处理方法 |
-
1988
- 1988-01-21 JP JP955088A patent/JPH01188645A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225536A (ja) * | 1988-07-14 | 1990-01-29 | Daido Steel Co Ltd | Ni基耐熱合金 |
US5712050A (en) * | 1991-09-09 | 1998-01-27 | General Electric Company | Superalloy component with dispersion-containing protective coating |
JP2013181213A (ja) * | 2012-03-01 | 2013-09-12 | Hokkaido Univ | 酸化物分散強化型ニッケル基超合金 |
CN114214554A (zh) * | 2021-11-17 | 2022-03-22 | 哈尔滨工业大学(威海) | 一种镍基高温合金粉末及应用于空心涡轮叶片的制备方法 |
CN118166240A (zh) * | 2024-05-09 | 2024-06-11 | 成都先进金属材料产业技术研究院股份有限公司 | 含大尺寸共晶相γ+γ'高温合金铸锭及其组炉均质化处理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112813309B (zh) | 钴基合金层叠造型体的制造方法 | |
JP2778705B2 (ja) | Ni基超耐熱合金およびその製造方法 | |
JP3184882B2 (ja) | Ni基単結晶合金とその製造方法 | |
WO2014142089A1 (ja) | 耐熱性Ni基合金及びその製造方法 | |
CN106636759B (zh) | 一种铂族元素强化的高热稳定性高强度镍基单晶高温合金 | |
KR102273787B1 (ko) | 하이엔트로피 합금을 포함하는 복합 구리 합금 및 그 제조 방법 | |
CN108441741B (zh) | 一种航空航天用高强度耐腐蚀镍基高温合金及其制造方法 | |
JPWO2007122931A1 (ja) | Ni基超合金とその製造方法 | |
CN110408850B (zh) | 纳米金属间化合物析出强化的超级钢及其制备方法 | |
JP4719583B2 (ja) | 強度、耐食性及び耐酸化特性に優れた一方向凝固用ニッケル基超合金及び一方向凝固ニッケル基超合金の製造方法 | |
JP3774758B2 (ja) | TiB粒子強化Ti2AlNb金属間化合物基複合材料とその製造方法 | |
JP2014237884A (ja) | Ni基鍛造合金並びにこれを用いたタービンディスク、タービンスペーサ及びガスタービン | |
US3551143A (en) | Aluminum base alloys having improved high temperature properties and method for their production | |
JP3084764B2 (ja) | Ni基超合金部材の製造方法 | |
JPS6299433A (ja) | イツトリヤ粒子分散型γ′相析出強化ニツケル基耐熱合金 | |
JPH01188645A (ja) | 酸化物分散強化型一方向凝固Ni基合金及びその製造法 | |
JP2005060731A (ja) | 強度、耐食性及び耐酸化特性に優れた単結晶Ni基超合金 | |
CN109554580A (zh) | 一种镍基合金、其制备方法与制造物品 | |
CN109554579A (zh) | 一种镍基合金、其制备方法与制造物品 | |
US4830679A (en) | Heat-resistant Ni-base single crystal alloy | |
JPH05222476A (ja) | 酸化物分散硬化した析出硬化型ニッケル−クロム系合金 | |
TWI663263B (zh) | 高抗潛變等軸晶鎳基超合金 | |
JP2008050628A (ja) | 強度、耐食性、耐酸化特性に優れたニッケル基単結晶超合金及びその製造方法 | |
JPS6353232A (ja) | 酸化物分散強化超耐熱合金 | |
CN115874085B (zh) | 一种纳米相增强的无钨钴镍基高温合金及其制备方法 |