JPH01187854A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01187854A
JPH01187854A JP1073088A JP1073088A JPH01187854A JP H01187854 A JPH01187854 A JP H01187854A JP 1073088 A JP1073088 A JP 1073088A JP 1073088 A JP1073088 A JP 1073088A JP H01187854 A JPH01187854 A JP H01187854A
Authority
JP
Japan
Prior art keywords
transistor
collector
diffusion
capacity
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073088A
Other languages
Japanese (ja)
Inventor
Tetsuya Ishihara
徹也 石原
Chiharu Moriyama
森山 千春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP1073088A priority Critical patent/JPH01187854A/en
Publication of JPH01187854A publication Critical patent/JPH01187854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a leakage malfunction of the collector of a high breakdown strength transistor, to improve probe yield and to obtain a countermeasure of damaging a high breakdown strength capacity by performing different steps of diffusing one conductivity type impurity in high concentration to lead a collector and diffusing the same conductivity type impurity in a semiconductor substrate for forming a MIS capacity by altering the concentrations. CONSTITUTION:I is a high breakdown strength bipolar n-p-n transistor forming section, II is a high breakdown strength MOS capacity forming section, and III is a C-MOSFET forming section. The n<+> type collector 12 of the transistor reduces a crystal defect (dislocation) generated from the collector by a low concentration impurity diffusion 9, the leakage malfunction of the transistor or the like is decreased, and transistor characteristics and probe yield (approx. 10%) are improved. On the other hand, the impurity layer 8 of the MOS capacity is gate-oxidized for forming a MOS gate oxide film by high concentration impurity diffusion, and necessary thickness (2500-3000Angstrom ) of the oxide film 14 of the capacity is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に高耐圧バイポーラ
C−MO8半導体装置の製造方法において、トランジス
タとMO8容量とを形成する拡散プロセスでの不純物濃
度制御技術に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, particularly a method of manufacturing a high voltage bipolar C-MO8 semiconductor device, in which impurities are removed in a diffusion process for forming a transistor and an MO8 capacitor. Concerning concentration control technology.

〔従来の技術〕[Conventional technology]

高耐圧バイポーラC−MOSプロセスにおいては、np
n)ランジスタが高出力仕様であるために、あらかじめ
半導体基体内に埋め込んであるn+型埋込層からのn 
型コレクタ取出し層のための高濃度リン拡散を他の素子
のn 型領域へのリン拡散と同時に行うのが普通とされ
ている。たとえば■工業調査会発行用1子材料1979
年8月p44〜50のBf−CMOSデバイスにコレク
タとエミッタn+拡散、nチャネルMO8のソース・ド
レインn 拡散と同時にコレクタ取出し拡散を行うこと
が記載されている。
In the high voltage bipolar C-MOS process, np
n) Because the transistor has high output specifications, n+ type buried layer embedded in the semiconductor substrate in advance
It is common practice to perform high-concentration phosphorus diffusion for the type collector extraction layer at the same time as phosphorus diffusion to the n-type region of other elements. For example, ■Ichigo Materials 1979 published by the Industrial Research Council
It is described in August 2008, pages 44-50 that in a Bf-CMOS device, the collector and emitter n+ diffusion and the source/drain n diffusion of an n-channel MO8 are performed simultaneously with the collector extraction diffusion.

さらに、バイポーラC−MO8・ICにおいて同じ基、
板にMO8容量を形成する場合、本出願人においてはn
pn )ランジスタのコレクタ取出しリン拡散と同時に
、高耐圧MO8容童部の半導体部へのリン拡散による高
故度層形成を行っている。
Furthermore, the same group in bipolar C-MO8 IC,
When forming an MO8 capacitor on a plate, the applicant considers n
pn) At the same time as the transistor collector extraction phosphorus diffusion, a high-destruction layer is formed by phosphorus diffusion into the semiconductor part of the high-voltage MO8 converter part.

〔発明が解決しよ5とする課題〕 上述したように高耐圧バイポーラC−MOSプロセスで
は、トランジスタのコレクタ部への不純物元素(リン)
拡散と高耐圧MO5容量部の不純物拡散層形成を同時に
行っていることにより、それぞれの半導体領域の不純物
濃度が同一とならざるを得ない。
[Problems to be solved by the invention 5] As mentioned above, in the high voltage bipolar C-MOS process, an impurity element (phosphorus) is introduced into the collector part of the transistor.
Since the diffusion and the formation of the impurity diffusion layer of the high breakdown voltage MO5 capacitance section are performed simultaneously, the impurity concentration of each semiconductor region must be the same.

しかし、高耐圧MOS容−を部ではあらかじめ半導体領
域表面に高濃度不純物元素を存在させ、この上に酸化膜
を成長させ不純物を吸収させたのちこれを取り除いてク
リーンの状態としているが、上記両者の半導体領域の不
純物濃度が低濃度であるとき、容量部での酸化膜生長速
度が遅く必要な酸化膜が得られない。一方、不純物濃度
がいずれも高線度過ぎるとき、トランジスタのコレクタ
部の半導体領域表面に結晶(St ’)欠陥が発生し、
トランジスタ等のリーク不良を来たす。特に高耐圧トラ
ンジスタでは厚いエピタキシャル層への深い不純物拡散
のため高渥匿長時間の拡散となり、結晶欠陥を助長しや
すい。
However, in the case of high-voltage MOS capacitors, a high concentration impurity element is pre-existed on the surface of the semiconductor region, an oxide film is grown on this to absorb the impurities, and then this is removed to create a clean state. When the impurity concentration in the semiconductor region is low, the growth rate of the oxide film in the capacitor region is slow and the necessary oxide film cannot be obtained. On the other hand, when the impurity concentration is too high, crystal (St') defects occur on the surface of the semiconductor region in the collector part of the transistor.
This causes leakage defects in transistors, etc. In particular, in high-voltage transistors, impurity diffusion is deep into a thick epitaxial layer, resulting in a long diffusion period, which tends to promote crystal defects.

本発明は上記した問題点を克服するためになされたもの
でありて、その目的は、高耐圧バイポーラC−M OS
においてトランジスタの耐圧、歩留りを向上すると同時
に高耐圧MO8容量を確保することにある。
The present invention has been made to overcome the above-mentioned problems, and its purpose is to provide a high-voltage bipolar C-M OS.
The object of the present invention is to improve the breakdown voltage and yield of transistors and at the same time secure a high breakdown voltage MO8 capacity.

本発明の前記ならびにそのほかの目的と新規な特徴は本
明細曹の記述及び添付図面からあきらかになろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち代界的なものの概要
を簡単に説明すれは下記のとおりである。
A brief summary of the most important aspects of the invention disclosed in this application is as follows.

すなわち、一つの半導体基体表面に高耐圧トランジスタ
と高耐圧MO8容量とを形成するプロセスにおいて、ト
ランジスタのコレクタ取出しのためのリン拡散と上記M
O8容量形成のための半導体領域へのリン拡散とを別工
程で濃度を変えて行うものである。
That is, in the process of forming a high breakdown voltage transistor and a high breakdown voltage MO8 capacitor on the surface of one semiconductor substrate, phosphorus diffusion for extracting the collector of the transistor and the above M
Phosphorus diffusion into the semiconductor region for forming an O8 capacitor is performed in a separate process with different concentrations.

〔作用〕[Effect]

上記した手段によれば、異なる機能の半導体頭載に対し
不利初濃度を変えて拡散することにより、それら領域の
機能に適合した拡散層を得ることができ、上記目的を達
成するものである。
According to the above-mentioned means, by diffusing the unfavorable initial concentration for semiconductor heads of different functions by changing them, it is possible to obtain a diffusion layer suitable for the functions of those regions, thereby achieving the above object.

〔実施例〕〔Example〕

第5図は本発明の一実施例を示すものであって、高耐圧
バイポーラC−MOSプロセスの全工程にわたる概略工
程チャート図である。以下、工程順に説明する。
FIG. 5 shows an embodiment of the present invention, and is a schematic process chart covering all steps of a high voltage bipolar C-MOS process. The steps will be explained below in order.

(a)  P型S1基板の表面にn 埋込み拡散を行う
(a) Perform n embedding diffusion on the surface of the P-type S1 substrate.

(bJ  n型エピタキシャル成長を行う。(bJ Perform n-type epitaxial growth.

(c)  素子分離用P型拡散を行う。(c) Perform P-type diffusion for element isolation.

(d)  nチャネルMO8のP−″ウェル拡散。(d) P-'' well diffusion of n-channel MO8.

(e)  容量部にリン拡散。(e) Phosphorus diffusion into the capacitor.

第1図乃至第4図はパワーnpnトランジスタと高耐圧
MO8容量を形成する部分における上記工程の断面図で
ある。
FIGS. 1 to 4 are cross-sectional views of the above-mentioned steps in a portion where a power npn transistor and a high voltage MO8 capacitor are formed.

同図において、■は高耐圧バイボー2npn)ランジス
タ形成部、■は高耐圧MO8容量形成部、■はC−MO
8FET形成部である。
In the same figure, ■ is a high voltage bibor 2npn) transistor forming part, ■ is a high voltage MO8 capacitor forming part, and ■ is a C-MO
This is an 8FET forming section.

1はpmst基板、2はn+埋込層、3はエピタキシャ
ル814.4は素子分離P層、5はP型ウェル、6は表
面酸化膜である。
1 is a pmst substrate, 2 is an n+ buried layer, 3 is an epitaxial layer 814.4 is an element isolation P layer, 5 is a P-type well, and 6 is a surface oxide film.

第1図に示すように一部をマスク部材7で佳い、容置形
成部Uの半専体表面にn 高濃度拡散層8形敢のための
第1回リン・デポジット、又はイオン打込み(5X10
”cm3)を行う(ひきつづいて拡散を行ってもよい。
As shown in FIG. 1, a first phosphorus deposit or ion implantation (5×10
"cm3)" (diffusion may be performed subsequently).

(f)  flN示しない、ホトレジパターンによりバ
イポーラ素子形成h (I)の敵化脹の一部を第2図に
示すように窓開してコレクタ取出しn 低濃度拡散層9
形成のためのm2卸97・デボクシ1ン又はイオン打込
み< 2X10”(M713)を行い、ひきつづいて拡
散する。
(f) Form a bipolar element using a photoresist pattern (not showing flN) A part of the bulge in (I) is opened as shown in FIG. 2 to take out the collector n Low concentration diffusion layer 9
Perform m2 removal or ion implantation <2X10'' (M713) for formation, followed by diffusion.

<g)iA3図km照し、バイポーラ素子のnpn ト
ランジスタ形成領域Iのベース2層、MO8領域■のP
チャネルMO8FETのソースドレインP層11のため
のボロン、イオン打込み、拡散を竹い、次いでnpnト
ランジスタのエミッタn 層12、nチャネルMO8F
ETのソース・ドレインn層13のためのヒ素又はリン
打込み拡散を行う。
<g) Referring to the iA3 figure km, the base 2 layer of the npn transistor formation region I of the bipolar element, and the P of the MO8 region ■
Boron, ion implantation and diffusion for source drain P layer 11 of channel MO8FET, then emitter N layer 12 of npn transistor, n channel MO8F
Perform arsenic or phosphorous implant diffusion for the source/drain n-layer 13 of the ET.

(h)  第4図を参旭し容に都、MOSFETのゲ−
ト部の表面をエッチし、ゲート膜化を行りて、MO8答
′It815の絶縁膜14、MOSFETの絶縁15を
形成する。
(h) Refer to Figure 4 to see if the MOSFET game
The surface of the gate portion is etched to form a gate film, thereby forming an insulating film 14 of the MO8 and an insulating film 15 of the MOSFET.

このあと、コンタクトホトエッチを行い、i蒸着、バタ
ーニング後、絶縁膜上にゲート電極15゜16及び各半
導体領域にオーミック接触するAll他極図示されない
)を形成する。
Thereafter, contact photoetching is performed, and after i-evaporation and patterning, gate electrodes 15 and 16 and All-metal other electrodes (not shown) in ohmic contact with each semiconductor region are formed on the insulating film.

上記実施例から得られる作用効果は下記のとおりである
The effects obtained from the above examples are as follows.

+11  バイポーラトランジスタのn+コレクタ部ハ
低龜度不純物仏敗によりコレクタ部から発生する結晶欠
陥(転位)を低下させ、トランジスタ等のリーク不良を
低減させ、トランジスタ特性、グローブ歩留り(約10
%)を向上させる。
+11 The n+ collector part of a bipolar transistor is reduced in crystal defects (dislocations) generated from the collector part due to low impurity impurities, reducing leakage defects in transistors, etc., improving transistor characteristics and globe yield (approximately 10
%).

+21  他方、高耐圧MO3容量部の不純物層では高
濃度不純物拡散により、MOSゲート酸化膜形成のため
のゲート酸化処理と同時に、高耐圧MO8容量部の酸化
膜を必要な厚さ(2500〜3000X)に確保するこ
とができる。
+21 On the other hand, due to the high concentration impurity diffusion in the impurity layer of the high voltage MO3 capacitor part, the oxide film of the high voltage MO8 capacitor part is grown to the required thickness (2500 to 3000X) at the same time as the gate oxidation treatment for forming the MOS gate oxide film. can be secured.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定されす
その要旨を逸脱しない範囲で種々変更可能である。
Although the invention made by the present inventor has been specifically described above based on examples, the present invention is limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof.

たとえば、MO8容量部の高濃度不純物拡散を2回に分
け、そのうち1回をバイポーラトランジスタのコレクタ
拡散と併用してもよい。
For example, the high concentration impurity diffusion of the MO8 capacitor portion may be divided into two times, and one of the times may be used in combination with the collector diffusion of the bipolar transistor.

本発明は同一拡散で不純物黴度を変えて濃度選択を必要
とする他の半導体装置においても応用することができる
The present invention can also be applied to other semiconductor devices that require concentration selection by changing the degree of impurity in the same diffusion.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、高耐圧トランジスタのコレクタ部のリーク不
良をなくし、プローブ歩留りを向上するとともに、高耐
圧容量部の破壊対策が得られる。
That is, it is possible to eliminate leakage defects in the collector portion of the high voltage transistor, improve the yield of probes, and take measures against destruction of the high voltage capacitor portion.

本実施例では、アルミ(AJ)ゲートを使用するバイポ
ーラC−MOSに適用したが、多結晶シリコン(Po1
y Si)ゲートを使用するバイポーラC−MO8に適
用しても同様な効果が得られる。
In this example, it was applied to a bipolar C-MOS using an aluminum (AJ) gate, but
A similar effect can be obtained even when applied to a bipolar C-MO8 using a ySi) gate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の一笑施例を示すバイボー−
)C−MOS半導体装置の一部工程断面図である。 第5図は本発明によるバイポーラC−MOSプロセスの
全工程チャート図である。 1・・・P型S1基板5.3・・・n型エピタキシャル
層、5・・・Pウェル、6・・・酸化膜、7・・・マス
ク、8・・・高濃度n+拡散層、9・・・低濃度n+拡
散層(コレクタ取出し部) °・7# 代理人 弁理士  小 川 勝 男 ゛ 5:・“′第
5図
FIGS. 1 to 4 are bi-bodies showing a simple embodiment of the present invention.
) is a partial process sectional view of a C-MOS semiconductor device. FIG. 5 is an overall process chart of the bipolar C-MOS process according to the present invention. DESCRIPTION OF SYMBOLS 1... P type S1 substrate 5.3... N type epitaxial layer, 5... P well, 6... Oxide film, 7... Mask, 8... High concentration n+ diffusion layer, 9 ...Low concentration n+ diffusion layer (collector extraction part) °・7# Agent Patent attorney Katsuo Ogawa ゛ 5:・“′Figure 5

Claims (1)

【特許請求の範囲】 1、一つの半導体基体表面に高耐圧トランジスタとMI
S容量とを形成する半導体装置の製造方法でありて、上
記トランジスタのコレクタ取出しのための一導電型不純
物高濃度拡散と上記MIS容量形成のための半導体表面
への同じ導電型不純物濃度拡散とを別工程で濃度を変え
て行うことを特徴とする半導体装置の製造方法。 2、特許請求の範囲第1項に記載の半導体装置の製造方
法において、上記MIS容量形成のための半導体表面へ
の不純物拡散濃度を上記トランジスタのための不純物拡
散濃度より高濃度とする。
[Claims] 1. High breakdown voltage transistor and MI on the surface of one semiconductor substrate
A method for manufacturing a semiconductor device forming an S capacitor, the method comprising: high concentration diffusion of one conductivity type impurity for extracting the collector of the transistor; and diffusion of the same conductivity type impurity concentration into the semiconductor surface for forming the MIS capacitor. A method for manufacturing a semiconductor device, characterized in that the manufacturing method is performed by changing the concentration in a separate process. 2. In the method for manufacturing a semiconductor device according to claim 1, the impurity diffusion concentration into the semiconductor surface for forming the MIS capacitor is higher than the impurity diffusion concentration for the transistor.
JP1073088A 1988-01-22 1988-01-22 Manufacture of semiconductor device Pending JPH01187854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073088A JPH01187854A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073088A JPH01187854A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01187854A true JPH01187854A (en) 1989-07-27

Family

ID=11758409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073088A Pending JPH01187854A (en) 1988-01-22 1988-01-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01187854A (en)

Similar Documents

Publication Publication Date Title
JP3547884B2 (en) Semiconductor device and manufacturing method thereof
KR970703616A (en) METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE WITH BICMOS CIRCUIT
JPH01264253A (en) Manufacture of semiconductor device
JPH01187854A (en) Manufacture of semiconductor device
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPH02283032A (en) Vertical bipolar transistor
JPH03116774A (en) Manufacture of semiconductor device
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH0472771A (en) Mosfet
JP2741807B2 (en) Method for manufacturing semiconductor device
JP3175873B2 (en) Method for manufacturing semiconductor device
JPS59124157A (en) Complementary type semiconductor integrated circuit
KR101024869B1 (en) Semiconductor device and manufacturing method thereof
JPH0387059A (en) Semiconductor integrated circuit
JP3448465B2 (en) Method for manufacturing semiconductor device
JPH05291580A (en) Semiconductor device and manufacture thereof
KR100248807B1 (en) Field effect transistor and method for manufacturing the same
JPH0346371A (en) Manufacture of semiconductor device
KR0151122B1 (en) A method for making a bipolar device
JPS63166257A (en) Semiconductor device
JPS6022358A (en) Semiconductor integrated circuit device
JPH03165522A (en) Semiconductor device
JPS63240058A (en) Manufacture of semiconductor device
JPS62281470A (en) Manufacture of semiconductor integrated circuit device
JPH01276663A (en) Mis semiconductor device