JPH01276663A - Mis semiconductor device - Google Patents

Mis semiconductor device

Info

Publication number
JPH01276663A
JPH01276663A JP63104819A JP10481988A JPH01276663A JP H01276663 A JPH01276663 A JP H01276663A JP 63104819 A JP63104819 A JP 63104819A JP 10481988 A JP10481988 A JP 10481988A JP H01276663 A JPH01276663 A JP H01276663A
Authority
JP
Japan
Prior art keywords
region
well region
type
breakdown strength
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104819A
Other languages
Japanese (ja)
Inventor
Akira Fujisawa
藤沢 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63104819A priority Critical patent/JPH01276663A/en
Publication of JPH01276663A publication Critical patent/JPH01276663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high breakdown strength by a method wherein at least one well region selected among two or more well regions is also formed in the drain region of a first MIS semiconductor device. CONSTITUTION:Impurity ions are implanted into one main surface of a P-type semiconductor substrate 101 to form the deepest N-type well region 103 of a P-type channel high breakdown strength part. Then the N-type well region 104 of a lower breakdown strength part which is shallower than the formed N-type well region 103 and a P-type well region 105 are formed. Then the oxide film 107 of an isolation region is formed by a conventional LOCOS method and a gate film 108 is formed over the whole surface by, for instance, a thermal oxidation method. After that, a gate electrode 111 made of, for instance, polycrystalline silicon is formed by an ordinary method and the parts 112 and 116 which are brought into contact with the source and drain of a high breakdown strength transistor and the source and drain regions 113 and 117 of a low breakdown strength transistor are formed. With this constitution, the joint part between the offset region and the high impurity concentration diffused region of the drain of the high breakdown strength element is covered with the drain region which has the depth and impurity concentration nearly the same as those of the well region, so that a high breakdown strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、M I S型半導体装置、特に高耐圧へII
s型半導体素子のm造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to MIS type semiconductor devices, especially to high voltage breakdown devices.
This invention relates to the m-structure of an s-type semiconductor device.

〔従来の技術〕[Conventional technology]

従来の高耐圧M I S型半導体装置を第2図に示すよ
うに、P型基板201表面に形成された、Nチャンネル
の高耐圧素子209と基板表面からイオン注入によって
形成されたP型の不純物ウェル領域207の表面に形成
されたNチャンネルの低耐圧素子、及び基板表面からイ
オン注入によって形成されたN型の不純物ウェル領域2
02表面に形成されたPチャンネルの高耐圧素子と基板
表面からイオン注入によって形成されたN型の不純物ウ
ェル領域208の表面に形成されたPチャンネルの低耐
圧素子、の以上計4種類のM I S型トランジスタで
構成されていた。
As shown in FIG. 2, a conventional high-voltage MIS type semiconductor device includes an N-channel high-voltage element 209 formed on the surface of a P-type substrate 201 and a P-type impurity formed by ion implantation from the substrate surface. An N-channel low breakdown voltage element formed on the surface of the well region 207 and an N-type impurity well region 2 formed by ion implantation from the substrate surface.
There are a total of four types of M Is: a P-channel high breakdown voltage element formed on the surface of the 02 surface, and a P-channel low breakdown voltage element formed on the surface of the N-type impurity well region 208 formed by ion implantation from the substrate surface. It was made up of S-type transistors.

高耐圧素子については、高電圧が印加される拡散領域2
03.204の周囲に、該拡散領域と同電型を有する低
不純物濃度のオフセラ1〜領域205.206がそれぞ
れ設けられており、耐圧の確保がなされていた。
For high voltage elements, the diffusion region 2 to which high voltage is applied
Around 03 and 204, low impurity concentration offset regions 1 to 205 and 206 having the same electric type as the diffusion region were provided to ensure a breakdown voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、該従来ti43Mで、横方向が数ミクロン程度
のオフセット領域を有するNチャンネルの高耐圧素子で
は、数十ボルト程度でオフセット領域が完全に空乏化し
、拡散領域203とオフセット領域205の継目て゛ブ
レイクダウンを起こす、それ故、100ボルト程度の耐
圧を必要とする螢光表示管駆動用には、数十ミクロン程
度のオフセット領域が必要となり、素子の微細化が困難
となった。
However, in the conventional Ti43M N-channel high voltage element having an offset region of about several microns in the lateral direction, the offset region is completely depleted at about several tens of volts, and the joint between the diffusion region 203 and the offset region 205 breaks. Therefore, for driving a fluorescent display tube which requires a withstand voltage of about 100 volts, an offset region of about several tens of microns is required, making it difficult to miniaturize the device.

また、Nチャンネル高耐圧トランジスタの拡散領域20
3と基板201のPN接合部においてはその急峻な濃度
勾配のために多数のホラI・キャリアが発生し、寄生バ
イポーラが作動し、オン耐圧特性に悪影響を与えていた
In addition, the diffusion region 20 of the N-channel high voltage transistor
Due to the steep concentration gradient, a large number of Hola I carriers are generated at the PN junction between No. 3 and the substrate 201, which causes parasitic bipolar operation and adversely affects the on-voltage characteristics.

本発明はこのような問題点を解決するためのもので、そ
の目的とするところは、高耐圧化が可能で、m細な半導
体装置を提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a thin semiconductor device that can have a high breakdown voltage.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、一導電型の半導体基板に、該基
板と逆導電型を有するすくなくとも2種以上の深さと濃
度の異なる不純物ウェル領域と前記基板表面に形成され
た前記基板と逆導電型の第一のMrS型半導体装置と前
記ウェル領域表面上に形成された、前記基板と同一導電
型の第二のMIs型半導体装置をそなえた相補型MIS
型半導体装置において、前記2種以上のウェルのなかか
ら選択した少なくとも1種以上のウェル領域が、前記第
一のMIS型半導体装置のすくなくともドレイン領域に
も形成していることを特徴とする。
The semiconductor device of the present invention includes a semiconductor substrate of one conductivity type, at least two impurity well regions having different depths and concentrations and having a conductivity type opposite to that of the substrate, and an impurity well region having a conductivity type opposite to that of the substrate formed on the surface of the substrate. A complementary MIS comprising a first MrS type semiconductor device and a second MIs type semiconductor device formed on the surface of the well region and having the same conductivity type as the substrate.
The MIS type semiconductor device is characterized in that at least one type of well region selected from the two or more types of wells is also formed in at least a drain region of the first MIS type semiconductor device.

〔実 施 例〕〔Example〕

第1図(a)−(d)は、本発明のMIS型半導体装置
の製造方法における実施例である。以下第1図にもとす
いて、本発明の実施例を具体的にしめした0図中の10
1は例えばシリコン基板であり、説明の都合上P型基板
を例にとる。
FIGS. 1(a) to 1(d) show examples of the method for manufacturing an MIS type semiconductor device of the present invention. Below, reference numeral 10 in Figure 1 specifically shows an embodiment of the present invention.
1 is a silicon substrate, for example, and for convenience of explanation, a P-type substrate will be taken as an example.

第1図(a)本発明の第一の工程は、まず、P型の半導
体基板の一生表面にイオン注入により、最も深いPチャ
ンネル高耐圧部のN型ウェル領域を形成することにある
0例えば、基板101の表面に厚い酸化膜102を形成
した後、予定のウェル領域上の酸化膜を部分的にエツチ
ング除去して基板101を露出させ、リン等のN型不純
物のイオンl主入を、たとえば100KEVで7X10
”〈朋−2程度、仝而に行ない酸化膜をマスクとして選
択的に不純物を注入する。注入された不純物は、例えば
酸素雰囲気中で1180℃、50時間、加熱処理して基
板101内に拡散して所定のウェル領域103を形成す
る。
FIG. 1(a) The first step of the present invention is to first form an N-type well region, which is the deepest P-channel high breakdown voltage region, by ion implantation into the surface of a P-type semiconductor substrate. After forming a thick oxide film 102 on the surface of the substrate 101, the oxide film on the intended well region is partially etched away to expose the substrate 101, and ions of N-type impurities such as phosphorus are mainly introduced. For example, 100KEV is 7X10
``For about 1-2 minutes, impurities are selectively implanted using the oxide film as a mask.The implanted impurities are heat-treated for 50 hours at 1180°C in an oxygen atmosphere to diffuse into the substrate 101. Then, a predetermined well region 103 is formed.

第1図(b)本発明の第二の工程は、第一の工程で形成
したN型のウェル領域よりも浅い、低耐圧部のN型つェ
ル顛域及びP型のウェル領域を形成することにある。ま
ず、第一の工程のように所定の領域にリン等のN型の不
純物を100KEVで8 X 1012am−’程度の
イオン注入をする。このとき、Nチャンネル高面(圧部
のドレイン領域にも第二以上のウェル領域からiX択し
た少なくとも一種以上のウェル領域を形成する0次に、
同じく第一の工程のように所定の領域にボロン等のP型
の不純物を60KEYで2 X 10 ”am−’程度
のイオン注入をする。注入された不純物は、例えば酸素
雰囲気中で1200℃、5時間、加熱処理して基板10
1内に拡散して所定のウェル領域104.105とNチ
ャンネル高耐圧トランジスタのドレイン領域106を形
成する。ここでは説明上ドレイン領域のみを形成したが
、もちろんソース領域を加えて形成してもよい。
FIG. 1(b) The second step of the present invention is to form an N-type well region and a P-type well region in the low breakdown voltage part, which are shallower than the N-type well region formed in the first step. It's about doing. First, as in the first step, an N-type impurity such as phosphorus is ion-implanted into a predetermined region at 100 KEV in an amount of about 8.times.10.sup.12 am.sup.-'. At this time, at least one type of well region selected from the second or more well regions is formed in the drain region of the N channel high surface (0-order) in the pressure part.
Similarly, as in the first step, a P-type impurity such as boron is ion-implanted into a predetermined region at 60 KEY at a rate of about 2 x 10 "am-". After heat treatment for 5 hours, the substrate 10
1 to form predetermined well regions 104 and 105 and a drain region 106 of an N-channel high voltage transistor. For the sake of explanation, only the drain region is formed here, but of course a source region may also be formed.

第1図(c)しかるのちに分離領域の酸化膜107を従
来のLOCO3法で、例えば水蒸気雰囲気中で1100
℃、50分の熱処理で1500OA程、形成し、全面に
ゲート膜108を、例えば熱酸化法により250OA形
成する0図中の109.110は、高耐圧トランジスタ
のオフセット領域となるN−及びP−の拡散層であり、
LOGO8酸化前に、それぞれリン、ボロンをイオン注
入することにより形成する。
FIG. 1(c) After that, the oxide film 107 in the isolation region is removed using the conventional LOCO3 method, for example, in a water vapor atmosphere.
A gate film 108 of about 1500 OA is formed by heat treatment at 50 minutes at 50 minutes, and a gate film 108 of 250 OA is formed on the entire surface by, for example, thermal oxidation. is the diffusion layer of
These are formed by ion implantation of phosphorus and boron, respectively, before oxidation of LOGO8.

第1図(d)その後通常の方法でゲート電極l11を例
えはポリシリコンで、400OA、気相成長法より形成
し、それから高耐圧トランジスタのソース及びドレイン
とコンタク1〜を形成する部分112.116と低耐圧
トランジスタのソース、ドレイン領域113.117を
例えばイオン注入法により形成する。この後、従来技術
により、1−聞納縁膜114、アルミニュウム配線型4
iIi!115等を形成し、本発明の構造を得る。
FIG. 1(d) Thereafter, a gate electrode l11 is formed using a conventional method, for example, polysilicon, 400 OA, by vapor phase growth, and then parts 112 and 116 for forming contacts 1 to the source and drain of the high voltage transistor. The source and drain regions 113 and 117 of the low breakdown voltage transistor are formed by, for example, ion implantation. After that, according to the conventional technology, 1-container edge film 114, aluminum wiring type 4
iIi! 115 etc. to obtain the structure of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上のごとく製造された本発明の相補型MIS半導体装
置では、高耐圧素子のオフセット領域とドレインの濃い
拡散のつなぎ目が、ウェル領域と同程度の深さと濃度の
ドレイン領域でおおわれているため、従来と同じオフセ
ット長でも高耐圧となる。またドレイン領域のPN接合
部の濃度勾配が緩やかになるためON耐圧特性が向上す
る。
In the complementary MIS semiconductor device of the present invention manufactured as described above, the joint between the offset region of the high breakdown voltage element and the dense diffusion of the drain is covered with the drain region having the same depth and concentration as the well region. Even with the same offset length as , high withstand voltage is achieved. Furthermore, since the concentration gradient at the PN junction in the drain region becomes gentle, the ON breakdown voltage characteristics are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) −(d)は、本発明の実施例による半導
体装置の製造工程断面図である。 第2図は、従来技術による半導体装置の主要断面図であ
る。 101・・・P型基板 102・・・酸化膜 103・・・高耐圧PチャンネルトランジスタのN型ウ
ェル 104・・・低耐圧NチャンネルトランジスタのP型ウ
ェル 105・・・低耐圧PチャンネルトランジスタのN型ウ
ェル 106・・・高耐圧Nチャンネルトランジスタのドレイ
ン領域 107・・・LOCO3 108・・・ゲート酸化膜 109・・・高耐圧Nチャンネルトランジスタのオフセ
ット領域 110・・・高耐圧Pチャンネルトランジスタのオフセ
ット領域 111・・・ポリシリコンゲート電極 112・・・高耐圧Nチャンネルトランジスタのコンタ
クト領域 113・・・低耐圧Pチャンネルトランジスタのドレイ
ン、ソース領域 114・・・層間絶縁膜 115・・・アルミニウム配線 116・・・高耐圧Pチャンネルトランジスタのコンタ
クト領域 117・・・低耐圧Nチャンネルトランジスタのドレイ
ン、ソース領域 201・・・P型基板 202・・・高耐圧PチャンネルトランジスタのN型ウ
ェル 203・・・高耐圧Nチャンネルトランジスタのドレイ
ン領域 204・・・高耐圧Pチャンネルトランジスタのドレイ
ン領域 205・・・高耐圧Nチャンネルトランジスタのオフセ
ット領域 206・・・高耐圧Pチャンネルトランジスタのオフセ
ット領域 207・・・低耐圧NチャンネルトランジスタのP型ウ
ェル 208・・・低耐圧PチャンネルトランジスタのN型ウ
ェル 209・・・高耐圧Nチャンネルトランジスタ 210・・・低耐圧Nチャンネルトランジスタ 211・・・低耐圧Pチャンネルトランジスタ 212・・・高耐圧Pチャンネルトランジスタ 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)悌1凱低) 停FCb) 第1日 (C−) 俸1回 (4) 第20
FIGS. 1(a) to 1(d) are cross-sectional views of the manufacturing process of a semiconductor device according to an embodiment of the present invention. FIG. 2 is a main cross-sectional view of a semiconductor device according to the prior art. 101...P-type substrate 102...Oxide film 103...N-type well of high voltage P-channel transistor 104...P-type well of low-voltage N-channel transistor 105...N of low voltage P-channel transistor Type well 106...Drain region of high voltage N-channel transistor 107...LOCO3 108...Gate oxide film 109...Offset region of high voltage N-channel transistor 110...Offset region of high voltage P-channel transistor 111... Polysilicon gate electrode 112... Contact region of high voltage N-channel transistor 113... Drain and source region of low voltage P-channel transistor 114... Interlayer insulating film 115... Aluminum wiring 116...・Contact region 117 of high voltage P channel transistor...Drain and source region 201 of low voltage N channel transistor...P type substrate 202...N type well 203 of high voltage P channel transistor...High voltage N Drain region of channel transistor 204...Drain region of high voltage P-channel transistor 205...Offset region of high voltage N-channel transistor 206...Offset region of high voltage P-channel transistor 207...Low voltage N-channel transistor P-type well 208...N-type well 209 of low breakdown voltage P-channel transistor...High breakdown voltage N-channel transistor 210...Low breakdown voltage N-channel transistor 211...Low breakdown voltage P-channel transistor 212...High breakdown voltage Applicant for P-channel transistors and above Seiko Epson Co., Ltd. agent Patent attorney Masatoshi Kamiyanagi (1 other person) 1 Kai Low) Suspension FCb) 1st day (C-) 1 salary (4) 20th

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板に、該基板と逆導電型を有
する、すくなくとも2種以上の深さと濃度の異なる不純
物ウェル領域と前記基板表面に形成された前記基板と逆
導電型の第一のMIS型半導体装置と前記ウェル領域表
面上に形成された、前記基板と同一導電型の第二のMI
S型半導体装置をそなえたMIS型半導体装置において
、前記2種以上のウェルのなかから選択した少なくとも
1種以上のウェル領域が、前記第一のMIS型半導体装
置のすくなくともドレイン領域にも形成していることを
特徴とするMIS型半導体装置。
(1) A semiconductor substrate of one conductivity type has at least two impurity well regions having a conductivity type opposite to that of the substrate and having different depths and concentrations, and a first impurity well region of a conductivity type opposite to that of the substrate formed on the surface of the substrate. a second MIS type semiconductor device formed on the surface of the well region and having the same conductivity type as the substrate;
In an MIS type semiconductor device including an S type semiconductor device, at least one type of well region selected from the two or more types of wells is also formed at least in a drain region of the first MIS type semiconductor device. An MIS type semiconductor device characterized by:
(2)前記2種以上のウェルの中からより浅いウェル領
域を選択して、前記第一のMIS型半導体装置のすくな
くともドレイン領域にも形成していることを特徴とする
請求項1記載の半導体装置。
(2) A semiconductor according to claim 1, characterized in that a shallower well region is selected from the two or more types of wells and is also formed in at least a drain region of the first MIS type semiconductor device. Device.
JP63104819A 1988-04-27 1988-04-27 Mis semiconductor device Pending JPH01276663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104819A JPH01276663A (en) 1988-04-27 1988-04-27 Mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104819A JPH01276663A (en) 1988-04-27 1988-04-27 Mis semiconductor device

Publications (1)

Publication Number Publication Date
JPH01276663A true JPH01276663A (en) 1989-11-07

Family

ID=14391012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104819A Pending JPH01276663A (en) 1988-04-27 1988-04-27 Mis semiconductor device

Country Status (1)

Country Link
JP (1) JPH01276663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730305A1 (en) * 1995-02-28 1996-09-04 STMicroelectronics S.r.l. High voltage N-channel MOSFET in CMOS-type technology and relating manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730305A1 (en) * 1995-02-28 1996-09-04 STMicroelectronics S.r.l. High voltage N-channel MOSFET in CMOS-type technology and relating manufacturing process
US5850360A (en) * 1995-02-28 1998-12-15 Sgs-Thomson Microelectronics, S.R.L. High-voltage N-channel MOS transistor and associated manufacturing process

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5359219A (en) Silicon on insulator device comprising improved substrate doping
KR920009745B1 (en) Manufacturing method of semiconductor
US4345366A (en) Self-aligned all-n+ polysilicon CMOS process
JPH01101662A (en) Manufacture of cmos device
KR890005853A (en) Fabrication of semiconductor device and formation method of high breakdown voltage buried insulating film
KR920008120B1 (en) Mos type field effect transistor
JPH01276663A (en) Mis semiconductor device
JPS62298130A (en) Element isolation method
JPH05235346A (en) Semiconductor device and manufacture thereof
JPS61251166A (en) Manufacture of semiconductor device
JPS60226168A (en) Complementary mos semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JP2876626B2 (en) Method of manufacturing vertical MOS field effect transistor
JPH0387059A (en) Semiconductor integrated circuit
KR910008978B1 (en) Manufacturing method of semiconductor device
KR940010928B1 (en) Mosfet and manufacturing method thereof
JPS63169059A (en) Semiconductor device and its manufacture
JPS60235437A (en) Manufacture of semiconductor device
KR930001290B1 (en) Mos transistor with high junction voltage and its manufacturing method
JP2002313948A (en) Mos semiconductor device and its manufacturing method
JPS61203679A (en) Mos transistor of high withstand voltage
JP3297102B2 (en) Method of manufacturing MOSFET
JPS63228662A (en) Manufacture of complementary type mos semiconductor device
JPS61239669A (en) Semiconductor integrated circuit