JPS63166257A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63166257A
JPS63166257A JP61309034A JP30903486A JPS63166257A JP S63166257 A JPS63166257 A JP S63166257A JP 61309034 A JP61309034 A JP 61309034A JP 30903486 A JP30903486 A JP 30903486A JP S63166257 A JPS63166257 A JP S63166257A
Authority
JP
Japan
Prior art keywords
region
type well
transistor
type
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61309034A
Other languages
Japanese (ja)
Inventor
Hiroki Fukui
福井 広己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61309034A priority Critical patent/JPS63166257A/en
Publication of JPS63166257A publication Critical patent/JPS63166257A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the number of steps by constructing a bi-polar transistor using the source region, drain region and well contact region of an MOS transistor formed in the well region respectively as an emitter region, collector region and base region, thereby maintaining the gate electrode in a predetermined bias relative to the opposite conductivity type well. CONSTITUTION:Into a region on a substrate in which transistors 11, 12, 14 are to be formed, phosphorus is introduced to form a region 2. Then boron is introduced into a region in the region 2 and a region in which a transistor 13 is to be formed, forming a region 3. An oxide film 4 is formed between the region 2 and the P-type well region 3, insulating and isolating the respective ones. And after forming polysilicon 5, arsenic is introduced to form an N-type source.drain region 15 and an N-type well contact region 16, and these are formed as an emitter region 19, a collector region 20 and a base region 21. Similarly, boron is introduced to form a P-type source.drain region 17 and a P-type well contact region 18, and these are formed as an emitter region 22, a collector region 23 and a base region 24. With this, coexistence with a bi-polar transistor is enabled without increasing the manufacturing steps of C-MOS elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にバイポーラ素子とC−
MOS素子を同一基板上に形成する半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices, and particularly to bipolar devices and C-
The present invention relates to a semiconductor device in which MOS elements are formed on the same substrate.

〔従来の技術〕[Conventional technology]

従来、バイポーラ素子とC−MOS素子を同一基板上に
混在させる場合、例えば第5図に示す構造がとられてい
る。この例ではP型半導体基板51上にN型埋込領域5
2及びP型埋込領域53を形成し、かつ前記P型半導体
基板51上にN型エピクキシャル層54を成長しこのエ
ピタキシャル層に素子分離を兼ねてP型不純物領域55
を形成するとともに、バイポーラ素子56と、Nチャネ
ルMOSトランジスタ57及びPチャネルMOSトラン
ジスタ58からなるC−MOS素子59を形成していた
Conventionally, when bipolar elements and C-MOS elements are mixed on the same substrate, a structure shown in FIG. 5, for example, has been adopted. In this example, an N-type buried region 5 is formed on a P-type semiconductor substrate 51.
2 and a P-type buried region 53 are formed, and an N-type epitaxial layer 54 is grown on the P-type semiconductor substrate 51, and a P-type impurity region 55 is formed in this epitaxial layer for element isolation.
At the same time, a bipolar element 56, and a C-MOS element 59 consisting of an N-channel MOS transistor 57 and a P-channel MOS transistor 58 were formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したバイポーラ素子とC−MOS素子を同一基板に
混在させた場合、バイポーラ素子を形成するためにN型
埋込領域52.P型埋込領域53及びN型エピタキシャ
ル層54更にP型不純物領域55が必要であり、またN
PN トランジスタのベース領域を形成するためのP型
不純物領域が必要となる等、C−MOS素子のみを形成
する場合に比較して工程数が増え、構造が複雑となり、
拡散歩留の低下を生じるという問題がある。
When the above-mentioned bipolar element and C-MOS element are mixed on the same substrate, the N-type buried region 52. is used to form the bipolar element. A P-type buried region 53 and an N-type epitaxial layer 54 are also required, as well as a P-type impurity region 55.
Compared to forming only a C-MOS element, the number of steps increases and the structure becomes more complex, such as the need for a P-type impurity region to form the base region of the PN transistor.
There is a problem in that the diffusion yield is reduced.

すなわち、従来の工程では、バイポーラ素子固有の工程
である前記各領域を形成する工程は、C−Mos素子を
形成する工程と共用することができず、バイポーラ素子
固有の工程が必要となって工程数が増加することになる
That is, in the conventional process, the process of forming each region, which is a process specific to a bipolar element, cannot be shared with the process of forming a C-Mos element, and a process specific to a bipolar element is required. The number will increase.

また、C−MOS素子のみを形成する工程において、N
チャネルMOSトランジスタをラテラルN P N ト
ランジスタとし、またPチャネルMOSトランジスタを
ラテラルPNP l−ランジスタとすることが考えられ
るが、単にこの構成ではシリコンとゲート酸化膜界面の
表面再結合のために、NPNトランジスタのコレクタ電
流の低電流領域でのhF、低下が生じるという問題があ
る。
Furthermore, in the step of forming only the C-MOS element, N
It is conceivable to use the channel MOS transistor as a lateral N P N transistor and the P channel MOS transistor as a lateral PNP l-transistor, but in this configuration, simply because of the surface recombination between the silicon and the gate oxide film interface, the NPN transistor There is a problem in that the collector current hF decreases in the low current region.

本発明はC−MOS素子の製造工程を増やすことなく、
またバイポーラトランジスタのコレクタ電流に対するh
F!特性の低下を生じることがなくC−MOS素子と混
在させることができる半導体装置を提供することを目的
としでいる。
The present invention does not increase the manufacturing process of C-MOS elements,
Also, h for the collector current of a bipolar transistor
F! It is an object of the present invention to provide a semiconductor device that can be mixed with a C-MOS element without deteriorating its characteristics.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体装置は、半導体基板に形成した−4電型
ウェル領域内の一部に逆導電型ウェルを形成し、この逆
導電型ウェル内に形成したMOSトランジスタのソース
領域、ドレイン領域及びウェルコンタクト領域を夫々エ
ミッタ領域、コレクタ領域及びベース領域としてバイポ
ーラトランジスタを構成し、かつ前記MOSトランジス
タのゲート電極を前記逆導電型ウェルに対して所定のバ
イアスに保持する構成としている。
In the semiconductor device of the present invention, a reverse conductivity type well is formed in a part of a -4 conductivity type well region formed in a semiconductor substrate, and a source region, a drain region, and a well of a MOS transistor formed in this reverse conductivity type well are provided. A bipolar transistor is constructed with contact regions as an emitter region, a collector region, and a base region, respectively, and the gate electrode of the MOS transistor is maintained at a predetermined bias with respect to the well of the opposite conductivity type.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

(第1実施例) 第1図は本発明の第1実施例の断面図であり、ここでは
眉間膜及びコンタクト等のメタライズ層等の図示は省略
している。
(First Embodiment) FIG. 1 is a cross-sectional view of a first embodiment of the present invention, and illustrations of the glabellar membrane, metallized layers such as contacts, etc. are omitted here.

第1図において、P型半導体基板1上のNPNトランジ
スタ11及びPNP I−ランラスタ12更にPチャネ
ルMOSトランジスタ14を形成する領域に、リンを1
.0X10”cm−”の濃度でイオン注入しかつ120
0℃、数時間の熱処理でN型ウェル領域2を形成する。
In FIG. 1, 1 phosphorus is applied to a region on a P-type semiconductor substrate 1 where an NPN transistor 11, a PNP I-run raster 12, and a P-channel MOS transistor 14 are to be formed.
.. Ions were implanted at a concentration of 0x10"cm-" and
N-type well region 2 is formed by heat treatment at 0° C. for several hours.

次に、NPN トランジスタ11を形成するNウェル領
域2内の領域及びNチャネルMO3I−ランジスタ13
を形成する領域にポロンを1.OX10I3cm−”の
濃度でイオン注入しかつ1200℃、数時間の熱処理で
P型ウェル領域3を形成する。
Next, a region in the N-well region 2 forming the NPN transistor 11 and an N-channel MO3I-transistor 13 are shown.
1. Place poron in the area where it will be formed. P-type well region 3 is formed by ion implantation at a concentration of OX10I3cm-'' and heat treatment at 1200° C. for several hours.

これらN型ウェル領域2やP型ウェル領域3の境界部及
び素子領域以外の領域に膜厚1μmの酸化膜4を形成し
、夫々を絶縁分離する。
An oxide film 4 having a thickness of 1 μm is formed at the boundaries of these N-type well regions 2 and P-type well regions 3 and in regions other than the element regions to isolate them from each other.

そして、既存のプロセスによりゲート電極としてのポリ
シリコン5を形成後、砒素を5.0x10+5cm−2
の濃度でイオン注入してN型ソース・ドレイン領域15
及びN型ウェルコンタクト領域16を形成し、これをN
PN トランジスタ11のエミッタ領域19.コレクタ
領域20及びPNPトランジスタ12のベース領域21
として形成する。
After forming polysilicon 5 as a gate electrode using an existing process, arsenic was added at 5.0x10+5cm-2.
N-type source/drain regions 15 are formed by ion implantation at a concentration of
and an N-type well contact region 16, which is
Emitter region 19 of PN transistor 11. Collector region 20 and base region 21 of PNP transistor 12
form as.

同様に、ボロンを5.0X10”cm−”濃度でイオン
注入してP型ソース・ドレイン領域17及びP型ウェル
コンタクト領域18を形成し、これをPNPトランジス
タ12のエミッタ領域22.コレクタ23及びNPN 
トランジスタ11のベース領域24として形成する。
Similarly, boron is ion-implanted at a concentration of 5.0 x 10"cm-" to form a P-type source/drain region 17 and a P-type well contact region 18, which are then connected to the emitter region 22 of the PNP transistor 12. Collector 23 and NPN
It is formed as the base region 24 of the transistor 11.

これにより、PNP トランジスタ11及びNPNトラ
ンジスタ12のバイポーラ素子と、NチャネルMOSト
ランジスタ13及びPチャネルMOSトランジスタ14
からなるC−MOS素子をC−MOS素子の製造工程を
そのまま利用して同一基板上に形成することができ、製
造工程の増加を防止できる。
As a result, the bipolar elements of the PNP transistor 11 and the NPN transistor 12, the N channel MOS transistor 13 and the P channel MOS transistor 14
A C-MOS device consisting of the following can be formed on the same substrate using the manufacturing process of the C-MOS device as is, and an increase in the manufacturing process can be prevented.

更に、Nウェルコンタクト領域を回路構成上の最高電位
、例えば電源電圧に保持することによりN P N ト
ランジスタ11は他の素子とP−N分離され、電気的に
vA縁骨分離れることになる。
Further, by holding the N-well contact region at the highest potential in the circuit configuration, for example, the power supply voltage, the N P N transistor 11 is isolated from other elements by P-N, and electrically isolated by VA.

また、NPN トランジスタ11に形成されているゲー
トポリシリコン5を負電位1例えばP型ウェル領域3よ
りも0.2V負電位に保持している。
Further, the gate polysilicon 5 formed in the NPN transistor 11 is held at a negative potential 1, for example, 0.2 V more negative potential than the P-type well region 3.

同様に、PNP トランジスタ12に形成されているゲ
ートポリシリコン5を正電位、例えばNウェル領域2よ
りも0.1V正電位に保持している。
Similarly, the gate polysilicon 5 formed in the PNP transistor 12 is held at a positive potential, for example, 0.1 V more positive than the N well region 2.

なお、保持する電圧はソース領域及びドレイン領域の接
合深さ及びNウェル領域、Pウェル領域の表面濃度によ
り最適化が図られる。
Note that the voltage to be maintained is optimized depending on the junction depth of the source region and drain region and the surface concentration of the N well region and the P well region.

第2図(a)及び(b)は第1図の一部をその平面パタ
ーンとともに示す図であり、ここではN型ウェル領域2
を7μmの接合深さ、P型ウェル3を3μmの接続深さ
としている。そして、ここにNチャネルMOSトランジ
スタ13及びNPNバイポーラトランジスタ11を形成
している。また、PSG等の眉間絶縁膜6を形成した上
で、ベース電極7.エミッタ電極8及びコレクタ電極9
をソース・ドレイン電極と兼用するように形成している
FIGS. 2(a) and 2(b) are diagrams showing a part of FIG. 1 together with its planar pattern;
has a junction depth of 7 μm, and a P-type well 3 has a connection depth of 3 μm. An N-channel MOS transistor 13 and an NPN bipolar transistor 11 are formed here. Further, after forming a glabellar insulating film 6 such as PSG, a base electrode 7. Emitter electrode 8 and collector electrode 9
are formed so as to double as source/drain electrodes.

このような構成において、例えば前記したようにNチャ
ネルMOSトランジスタ13のゲートポリシリコン5の
幅を1.6μmとした上で、これをP型ウェル領域3す
なわちベース領域よりも0.2V負電位に保持したとき
の、hrt  Ic特性の電圧依存性を第3図に示す。
In such a configuration, for example, as described above, the width of the gate polysilicon 5 of the N-channel MOS transistor 13 is set to 1.6 μm, and then the gate polysilicon 5 is set to a potential 0.2 V more negative than that of the P-type well region 3, that is, the base region. FIG. 3 shows the voltage dependence of the hrt Ic characteristics when held.

このゲートポリシリコン5に印加したバイアスにより、
ベース電流の表面再結合を抑制でき、コレクタ電流の変
化によるhr!依存性を、ゲートポリシリコン5が無バ
イアスの場合に比較して40%から90%に改善するこ
とができる。
Due to the bias applied to this gate polysilicon 5,
Surface recombination of base current can be suppressed, and hr! due to changes in collector current! The dependence can be improved from 40% to 90% compared to when gate polysilicon 5 is not biased.

また、同様にN型ウェル領域2に形成したPNPトラン
ジスタにおいて、ゲートポリシリコン5をNウェルすな
わちベース領域よりも0.IV正電位に保持することに
より、コレクタ電流の変化によるh1依存性をゲートポ
リシリコンが無バイアスの場合に比較して20%から6
0%に改善できる。
Similarly, in a PNP transistor formed in the N-type well region 2, the gate polysilicon 5 is 0.0. By keeping the IV positive potential, the h1 dependence due to changes in collector current can be reduced from 20% to 6% compared to when the gate polysilicon is unbiased.
It can be improved to 0%.

(第2実施例) 第4図は本発明の第2実施例を示す断面図である。(Second example) FIG. 4 is a sectional view showing a second embodiment of the present invention.

本実施例ではN型半導体基板31上のPNPトランジス
タ42及びNPNトランジスタル1更にNチャネルMO
Sトランジスタ43を形成する領域に、ボロンを1.0
xlO13c m−”の濃度でイオン注入し、1200
℃、数時間の熱処理でP型ウェル領域33を形成する。
In this embodiment, a PNP transistor 42 and an NPN transistor 1 on an N-type semiconductor substrate 31 and an N-channel MO
1.0% boron is added to the region where the S transistor 43 is to be formed.
Ion implantation was performed at a concentration of 1200
A P-type well region 33 is formed by heat treatment at .degree. C. for several hours.

同様に、P型ウェル領域33内のPNPトランジスタ4
2を形成する領域及びPチャネルMOSトランジスタ4
4を形成する領域にリンを1.0X10”cm−”の濃
度でイオン注入し、1200℃、数時間の熱処理でN型
ウェル領域32を形成する。
Similarly, PNP transistor 4 in P-type well region 33
2 and the region forming P channel MOS transistor 4
Phosphorus is ion-implanted at a concentration of 1.0.times.10"cm@-" into the region where 4 is to be formed, and an N-type well region 32 is formed by heat treatment at 1200.degree. C. for several hours.

以下、第1実施例1と同様の工程により、酸化膜34及
びゲートポリシリコン35を形成し、更にN型ソース・
ドレイン領域36.N型ウェルコンタクト領域37及び
P型ソース・ドレイン領域33及びP型ウェルコンタク
ト領域39を形成し、これらを夫々エミッタ領域、コレ
クタ領域及びベース領域として構成し、N P N ト
ランジスタ41及びPNP トランジスタ42のバイポ
ーラ素子とNチャネルM OS トランジスタ43及び
PチャネルMOSトランジスタ44からなるC−MO3
素子を同一基板上に形成することができる。
Thereafter, an oxide film 34 and a gate polysilicon 35 are formed by the same steps as in the first embodiment 1, and an N-type source and gate polysilicon 35 are formed.
Drain region 36. An N-type well contact region 37, a P-type source/drain region 33, and a P-type well contact region 39 are formed, and these are configured as an emitter region, a collector region, and a base region, respectively. C-MO3 consisting of a bipolar element, an N-channel MOS transistor 43, and a P-channel MOS transistor 44
The elements can be formed on the same substrate.

また、NPNトランジスタ41に形成されているゲート
ポリシリコン35を負電位に、PNP トランジスタ4
2に形成されているゲートポリシリコン35に正電位を
保持することも第1実施例と。
In addition, the gate polysilicon 35 formed in the NPN transistor 41 is set to a negative potential, and the PNP transistor 4
It is also the same as the first embodiment that a positive potential is maintained in the gate polysilicon 35 formed in the second embodiment.

同じである。It's the same.

この第2実施例によっても第1実施例と同様に製造工程
数の増加を招くことな(コレクタ電流に対するhFE特
性の大幅な改善を実現できる。
Similarly to the first embodiment, this second embodiment also allows a significant improvement in the hFE characteristics with respect to the collector current without increasing the number of manufacturing steps.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板に設けたウェ
ル領域内に形成したMOSトランジスタのソース領域、
ドレイン領域及びウェルコンタクト領域を夫々エミッタ
領域、コレクタ領域及びベース領域としてバイポーラト
ランジスタを構成し、かつMOSトランジスタのゲート
電極を前記逆導電型ウェルに対して所定のバイアスに保
持しているので、C−MO3素子の製造工程をそのまま
利用して、工程を増加することなくバイポーラトランジ
スタを製造でき、かつこのバイポーラトランジスタにお
けるコレクタ電流の変化に対するhFE依存性をゲート
電極に無バイアスの場合に比較して大幅に改善すること
が可能となる。
As explained above, the present invention provides a source region of a MOS transistor formed in a well region provided in a semiconductor substrate;
Since a bipolar transistor is configured with the drain region and well contact region as the emitter region, collector region, and base region, respectively, and the gate electrode of the MOS transistor is maintained at a predetermined bias with respect to the opposite conductivity type well, C- Bipolar transistors can be manufactured using the manufacturing process of MO3 elements without increasing the number of steps, and the dependence of hFE on changes in collector current in this bipolar transistor can be significantly reduced compared to when there is no bias on the gate electrode. It becomes possible to improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の縦断面図、第2図(a)
はその一部の完成状態における平面レイアウト図、第2
図(b)はそのAA線に沿う断面図、第3図はhFE 
 t、c特性図、第4図は本発明の第2実施例の縦断面
図、第5図は従来構造の縦断面図である。 ■・・・型半導体基板、2・・・N型ウェル領域、3・
・・P型ウェル領域、4・・・酸化膜、5・・・ゲート
ポリシリコン、6・・・層間箱11膜、7・・・ベース
電極、8・・・エミッタ電極、9・・・コレクタ電極、
11・・・NPN トランジスタ、12・・・PNP 
l−ランジスタ、13・・・Nチ七ネルMOSトランジ
スタ、14・・・PチャネルMOSトランジスタ、15
・・・N型ソース・ドレイン領域、16・・・N型コン
タクト領域、17・・・P型ソース・ドレイン領域、1
8・・・P型コンタクト領域、19・・・N型エミッタ
領域、20・・・N型コレクタ領域、21・・・N型ベ
ース領域、22・・・P型エミッタ領域、23・・・P
型コレクタ領域、24・・・P型ベース領域、31・・
・N型半導体基板、32・・・N型ウェル領域、33・
・・P型ウェル領域、34・・・酸化膜、35・・・ゲ
ートポリシリコン、36・・・N型ソース・ドレイン領
域、37・・・N型コンタクト領域、38・・・P型ソ
ース・ドレイン領域、39・・・P型コンタクト領域、
41・・・NPN トランジスタ、42・・・PNPト
ランジスタ、43・・・NチャネルMOSトランジスタ
、44・・・PチャネルMO3I−ランジスタ51・・
・N型半導体基板、52・・・N型埋込領域、53・・
・P型埋込領域、54・・・N型エピタキシャル成長層
、55・・・P型不純物領域、56・・・バイポーラ素
子、57・・・NチャネルMOSトランジスタ、5日・
・・PチャネルMOSトランジスタ、59・・・C−M
O3素子。 代理人 弁理士  鈴 木 章 夫1()、、、i第2
図 IGFAI 第5図 、。
FIG. 1 is a vertical sectional view of the first embodiment of the present invention, FIG. 2(a)
is a plan layout diagram of a part of the completed state, the second
Figure (b) is a cross-sectional view along the AA line, and Figure 3 is the hFE.
FIG. 4 is a vertical cross-sectional view of the second embodiment of the present invention, and FIG. 5 is a vertical cross-sectional view of the conventional structure. ■... type semiconductor substrate, 2... N type well region, 3...
... P-type well region, 4... Oxide film, 5... Gate polysilicon, 6... Interlayer box 11 film, 7... Base electrode, 8... Emitter electrode, 9... Collector electrode,
11...NPN transistor, 12...PNP
l-transistor, 13... N-channel seven-channel MOS transistor, 14... P-channel MOS transistor, 15
...N type source/drain region, 16...N type contact region, 17...P type source/drain region, 1
8... P type contact region, 19... N type emitter region, 20... N type collector region, 21... N type base region, 22... P type emitter region, 23... P
Type collector area, 24...P type base area, 31...
・N-type semiconductor substrate, 32...N-type well region, 33.
...P type well region, 34...Oxide film, 35...Gate polysilicon, 36...N type source/drain region, 37...N type contact region, 38...P type source/ drain region, 39...P-type contact region,
41...NPN transistor, 42...PNP transistor, 43...N channel MOS transistor, 44...P channel MO3I-transistor 51...
・N-type semiconductor substrate, 52...N-type buried region, 53...
・P type buried region, 54...N type epitaxial growth layer, 55...P type impurity region, 56...bipolar element, 57...N channel MOS transistor, 5th day・
...P channel MOS transistor, 59...C-M
O3 element. Agent Patent Attorney Akio Suzuki 1st (), 2nd
Figure IGFAI Figure 5.

Claims (2)

【特許請求の範囲】[Claims] (1)バイポーラ素子とC−MOS素子とを同一半導体
基板上に形成する半導体装置において、前記半導体基板
に形成した一導電型ウェル領域内の一部に逆導電型ウェ
ルを形成し、この逆導電型ウェル内に形成したMOSト
ランジスタのソース領域、ドレイン領域及びウェルコン
タクト領域を夫々エミッタ領域、コレクタ領域及びベー
ス領域としてバイポーラトランジスタを構成し、かつ前
記MOSトランジスタのゲート電極を前記逆導電型ウェ
ルに対して所定のバイアスに保持することを特徴とする
半導体装置。
(1) In a semiconductor device in which a bipolar element and a C-MOS element are formed on the same semiconductor substrate, an opposite conductivity type well is formed in a part of one conductivity type well region formed in the semiconductor substrate, and the opposite conductivity type well is A bipolar transistor is constructed by using the source region, drain region, and well contact region of the MOS transistor formed in the type well as the emitter region, collector region, and base region, respectively, and the gate electrode of the MOS transistor is connected to the opposite conductivity type well. 1. A semiconductor device characterized in that the semiconductor device is maintained at a predetermined bias.
(2)P型半導体基板にN型ウェル領域を形成し、かつ
この一部にP型ウェル領域を形成し、このP型ウェル領
域にNチャネルMOSトランジスタを構成してこれをN
PNバイポーラトランジスタとして構成し、更に前記N
チャネルMOSトランジスタのゲート電極をP型、ウェ
ル領域よりも負電位にバイアス保持してなる特許請求の
範囲第1項記載の半導体装置。
(2) An N-type well region is formed in a P-type semiconductor substrate, and a P-type well region is formed in a part of the P-type well region, and an N-channel MOS transistor is configured in this P-type well region.
It is configured as a PN bipolar transistor, and the N
2. The semiconductor device according to claim 1, wherein the gate electrode of the channel MOS transistor is of P type and is held biased at a more negative potential than the well region.
JP61309034A 1986-12-27 1986-12-27 Semiconductor device Pending JPS63166257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309034A JPS63166257A (en) 1986-12-27 1986-12-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309034A JPS63166257A (en) 1986-12-27 1986-12-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63166257A true JPS63166257A (en) 1988-07-09

Family

ID=17988083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309034A Pending JPS63166257A (en) 1986-12-27 1986-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63166257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215175A (en) * 1988-07-04 1990-01-18 Nippon Chem Ind Co Ltd Stable electroless plating powder
US6229379B1 (en) 1997-11-17 2001-05-08 Nec Corporation Generation of negative voltage using reference voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215175A (en) * 1988-07-04 1990-01-18 Nippon Chem Ind Co Ltd Stable electroless plating powder
US6229379B1 (en) 1997-11-17 2001-05-08 Nec Corporation Generation of negative voltage using reference voltage

Similar Documents

Publication Publication Date Title
EP0093304B1 (en) Semiconductor ic and method of making the same
KR950006479B1 (en) Laieral transistor
JP3308505B2 (en) Semiconductor device
JPS62277745A (en) Semiconductor integrated circuit
JPS60210861A (en) Semiconductor device
JPH01155653A (en) High voltage incorporating bipolar/cmos integrated circuit
JPH065706B2 (en) Method for manufacturing BiCMOS device
US20040053439A1 (en) Method for producing low-resistance ohmic contacts between substrates and wells in CMOS integrated circuits
JPS63166257A (en) Semiconductor device
US3959812A (en) High-voltage semiconductor integrated circuit
EP0792514B1 (en) Method of making an integrated circuit with complementary isolated bipolar transitors
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
US6337252B1 (en) Semiconductor device manufacturing method
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JPH07283408A (en) Semiconductor device
KR940001257B1 (en) Method of making semiconductor device
JPH03227054A (en) Complementary type bipolar transistor compatible with cmos process
KR970009032B1 (en) Power semiconductor and its manufacturing method
JPH0387059A (en) Semiconductor integrated circuit
KR100273132B1 (en) The fabrication method of power ic device with reverse well structure
KR100275755B1 (en) High power bipolar transistor and method for fabricating thereof
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH03222357A (en) Semiconductor device and manufacture thereof
JPS61276359A (en) Semiconductor device and manufacture thereof
KR940010913B1 (en) High voltage bipolar transistor and manufacturing method thereof