JPH01182667A - Manufacture of piston ring - Google Patents

Manufacture of piston ring

Info

Publication number
JPH01182667A
JPH01182667A JP173588A JP173588A JPH01182667A JP H01182667 A JPH01182667 A JP H01182667A JP 173588 A JP173588 A JP 173588A JP 173588 A JP173588 A JP 173588A JP H01182667 A JPH01182667 A JP H01182667A
Authority
JP
Japan
Prior art keywords
high carbon
medium
metal powder
piston ring
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP173588A
Other languages
Japanese (ja)
Inventor
Tadashi Abe
唯史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP173588A priority Critical patent/JPH01182667A/en
Publication of JPH01182667A publication Critical patent/JPH01182667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Wire Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve abrasion resistance and fatigue strength by forming starting material into such one that compactifies medium-high carbon content metal powder made up of a powder metallurgy process, in the manufacture of a piston ring, which forms a billet into a wire rod by plastic working and, after being refined, performs its bending. CONSTITUTION:Medium-high carbon content metal powder is, in general, manufactured by a water atomizing process, and it is compactified by a hot hydrostatic press and, after obtaining a billet, it is applied to hot working and cold working and finished into a wire rod. If this medium-high carbon metal powder is used for a starting material, an eutectiv carbide is very small and dispersed uniformly so that hot workability is remarkably improved and simultaneously any flaw due to the cold working is conspicuously restrained from occurring, and thus it largely conduces to the shortening of work routing and improvement in ring bending workability. If a piston ring is manufactured from this medium- high carbon content metal powder, a uniform, fine hard carbide can be formed, so that abrasion resistance and fatigue strength both are sharply improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車エンジン等の内燃機関において、燃焼
室の気密性を保持することを主目的として使用されるピ
ストンリングの製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of manufacturing piston rings used in internal combustion engines such as automobile engines, with the main purpose of maintaining airtightness of the combustion chamber. be.

〔従来の技術〕[Conventional technology]

自動車エンジン等におけるピストンリングの発展過程は
、軽量化を目的として鋳鉄リングから薄肉化の可能な溶
製法によるスチール製リングに移行し、例えば特公昭6
1−22131、特公昭57−8302、特公昭58−
46542.特公昭61−21302など多くの材質が
提案されている。
In the development process of piston rings for automobile engines, etc., for the purpose of weight reduction, there was a shift from cast iron rings to steel rings made by a melting process that allowed for thinner walls.
1-22131, Special Publication No. 57-8302, Special Publication No. 58-
46542. Many materials have been proposed, such as Japanese Patent Publication No. 61-21302.

最近になりヂーゼルエンジンやターボチャージャーの普
及にともなう高出力化によりピストンリングに対する要
求特性がさらに厳しくなっており、この対策には耐摩耗
性や耐焼付性向上を図る方法としてシリンダーと摺動す
るリング外周部に金属やセラミツツクの溶射あるいは硬
質粒子を分散させた複合メツキ等の試みが行なわれてい
る。
Recently, the requirements for piston rings have become even more strict due to the increased power output associated with the spread of diesel engines and turbochargers.As a countermeasure to this problem, a ring that slides on the cylinder is used as a way to improve wear resistance and seizure resistance. Attempts have been made to spray metal or ceramic on the outer periphery, or to use composite plating in which hard particles are dispersed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ピストンリングは、内燃機関の重要部品であり、その耐
焼付性、耐摩耗性、機械的性質等の向上は、直接エンジ
ンの高性能化に結びつくため、従来のスチール製ピスト
ンリングに対しても、より特性の高い材質が望まれてい
る。そのためには、基地の強化、硬質炭化物の生成が効
果的であり、かかる材質には高炭素高合金化が有効であ
る。しかし、従来行なわれてきた溶製法では、造塊の凝
固過程で晶出する共晶炭化物がその後の塑性加工中に十
分微細化できず、製品の母材中に巨大炭化物あるいはス
トリンガ−状の炭化物を形成してミクロ偏析となり、ピ
ストンリングとしての要求特性を発揮させることが困難
となるばかりでなく、特に高炭素の場合は冷間加工はも
とより、熱間加工さえ不可能となる。
Piston rings are important parts of internal combustion engines, and improvements in their seizure resistance, wear resistance, mechanical properties, etc. directly lead to higher engine performance, so compared to conventional steel piston rings, Materials with higher properties are desired. For this purpose, it is effective to strengthen the base and generate hard carbides, and high carbon and high alloying is effective for such materials. However, in the conventional melting method, the eutectic carbides that crystallize during the solidification process of ingots cannot be sufficiently refined during the subsequent plastic working, resulting in large carbides or stringer-like carbides in the base material of the product. This results in the formation of micro-segregation, which not only makes it difficult to exhibit the required characteristics as a piston ring, but also makes it impossible to perform cold working or even hot working, especially in the case of high carbon content.

また、塑性加工による線材は、最終的に略HRC38〜
45の硬さに焼入れ焼もどしの後、冷間でリング形状に
曲げ加工されるが、母材中に巨大炭化物やストリンガ−
状炭化物が多く存在すると、曲げ加工時に折損する問題
があり、特別な例として先に本願出願人が提案(特願昭
62−175670) L、た温間で曲げ加工を施す場
合がある。しかし、さらにピストンリングの高性能化を
目的として基地の強化および硬質炭化物量の増加を図ろ
うとしても溶製法による高炭素高合金鋼では、上記の問
題点を回避することには限界がある。
In addition, the wire rod produced by plastic working has a final HRC of approximately HRC38~
After quenching and tempering to a hardness of 45, it is cold bent into a ring shape, but there are no giant carbides or stringers in the base material.
If a large amount of carbides are present, there is a problem of breakage during bending, and as a special example, there is a case where warm bending is performed as previously proposed by the applicant of the present application (Japanese Patent Application No. 175,670/1982). However, even if attempts are made to strengthen the matrix and increase the amount of hard carbides for the purpose of further improving the performance of piston rings, there is a limit to how high carbon high alloy steel manufactured by ingot manufacturing can avoid the above problems.

一方、前述のようなシリンダーと摺動するリング外周部
にセラミックの溶射あるいは硬質粒子を分散させる複合
メツキ等の表面処理を施した場合には、シリンダー内面
の摩耗が激しくなるばかりでなく、表面処理層の剥離や
亀裂が発生しリング材の疲労破壊の原因となる欠点があ
る。
On the other hand, if a surface treatment such as ceramic spraying or composite plating that disperses hard particles is applied to the outer periphery of the ring that slides on the cylinder as described above, not only will the inner surface of the cylinder become more abrasive, but the surface treatment It has the disadvantage that layer separation and cracks occur, causing fatigue failure of the ring material.

本願発明は、かかる問題点を解決するために強靭な基地
中に硬質炭化物を均一微細に分散させて耐摩耗性および
疲労強度に優れ、さらに塑性加工や曲げ加工性に有効な
ピストンリングの製造方法を提供することである。
In order to solve these problems, the present invention has developed a method for manufacturing piston rings that has excellent wear resistance and fatigue strength by uniformly and finely dispersing hard carbides in a strong base, and is also effective in plastic working and bending workability. The goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

本願発明は、かかる問題点を解決するためになされたも
ので、塑性加工により線材となし、これを調質した後曲
げ加工を行うピストンリングの製造方法において、出発
原料が粉末冶金法からなる中高炭素含有金属粉末を圧密
化したものであることを特徴とするピストンリングの製
造方法である。
The present invention has been made in order to solve such problems, and is a piston ring manufacturing method in which a wire rod is made by plastic working, tempered, and then bent. This is a method of manufacturing a piston ring characterized in that it is made of compacted carbon-containing metal powder.

本願発明において、中高炭素含有金属粉末は汎用のダイ
ス鋼および高速度工具鋼でも良いが、従来の溶製法では
塑性加工ができなかった高炭素高合金系についても適用
できるほか、高Crlを用いることができる。
In the present invention, the medium-high carbon-containing metal powder may be general-purpose die steel or high-speed tool steel, but it can also be applied to high-carbon, high-alloy systems that cannot be plastically worked using conventional melting methods. Can be done.

これらの中高炭素含有金属粉末は、一般的には水アトマ
イズまたはガスアトマイズ法で製造し、熱間静水圧プレ
ス(以下HIPと記す)によって圧密化してビレットを
得た後、熱間加工および冷間加工を施して線材に仕上げ
られる。
These medium-high carbon-containing metal powders are generally manufactured by water atomization or gas atomization, and after being consolidated by hot isostatic pressing (hereinafter referred to as HIP) to obtain a billet, hot working and cold working are performed. It is finished into a wire rod by applying

本願発明の目的のひとつは、かかる中高炭素含有金属の
塑性加工性を改善することにある。従来の溶製法によれ
ば、鋳塊に存在する巨大な共晶炭化物が熱間加工性を著
しく害するほか、冷間加工においても疵の発生源となっ
て1パス当りの減面率を小さくする必要があり、また加
工量の限界が低いために、しばしば焼なまし処理を実施
しなければならなかった。これに対して1本願発明の中
高炭素含有金属粉末をスタート材にすると共晶炭化物が
極めて小さく均一に分散するために、熱間加工性が著し
く改善されるほか冷間加工による疵の発生が著しく抑制
され、作業工程の短縮やリングの曲げ加工性向上に大き
く寄与することがわかった。また従来の溶製法では加工
できなかった高炭素含有金属も本願発明の粉末法によっ
て線材の製造が可能になった。
One of the objects of the present invention is to improve the plastic workability of such medium-high carbon content metals. According to the conventional melting method, the huge eutectic carbides present in the ingot significantly impair hot workability, and also become a source of flaws during cold working, reducing the area reduction rate per pass. Due to the necessity and low throughput limits, annealing treatments often had to be carried out. On the other hand, when the medium-high carbon content metal powder of the present invention is used as a starting material, the eutectic carbides are extremely small and uniformly dispersed, so hot workability is significantly improved and the occurrence of flaws due to cold working is significantly reduced. It was found that this greatly contributed to shortening the work process and improving the bending workability of the ring. Furthermore, the powder method of the present invention has made it possible to manufacture wire rods from high carbon-containing metals that could not be processed using conventional melting methods.

本願発明の二つめの目的は、ピストンリングの特性を向
上することにあり、中高炭素含有金属粉末からピストン
リングを製造した場合、従来の溶製法による鋼と比較し
てより多くの均一微細な硬質炭化物を形成できるために
耐摩耗性、疲労強度を著しく改善することができる。
The second purpose of the present invention is to improve the characteristics of piston rings, and when piston rings are manufactured from metal powder containing medium to high carbon, they produce more uniform, fine, hard, Since carbides can be formed, wear resistance and fatigue strength can be significantly improved.

〔実施例〕〔Example〕

以下本願発明の実施例に基づき説明する。 The following description will be given based on examples of the present invention.

第1表に示す化学組成を有するダイス鋼、高速度工具鋼
および高Cr Illを粉末法または溶製法によってイ
ンゴットを得た。
Ingots were obtained from die steel, high speed tool steel, and high Cr Ill having the chemical compositions shown in Table 1 by a powder method or an ingot method.

試料工ないし試料3は、ガスアトマイズ法で粉末鋼を得
た後、これをHIPで圧密化してインゴットを作成した
For sample work to sample 3, powdered steel was obtained by gas atomization and then consolidated by HIP to create an ingot.

HIP処理は、加熱温度1160℃、1000気圧で3
時間保持する条件で行なった。十分な圧密化を得るため
には加熱温度は1000℃以上で材料の溶融温度以下と
し、500気圧以上とすることが必要である。
HIP treatment is performed at a heating temperature of 1160°C and 1000 atm.
The test was carried out under the condition of holding for a certain period of time. In order to obtain sufficient compaction, the heating temperature must be 1000° C. or higher, lower than the melting temperature of the material, and 500 atmospheres or higher.

試料4ないし試料6は、電気炉で大気溶解し、鋳造して
インゴットを得た。
Samples 4 to 6 were melted in the atmosphere in an electric furnace and cast to obtain ingots.

これらのインゴットは熱間鍛造した後、熱間圧延して5
.5nnφのコイルにした。このコイルを伸線したあと
冷間圧延により断面寸法3mm(w)X2mm(1)の
平線に仕上げた。
These ingots are hot-forged and then hot-rolled to
.. It was made into a 5nnφ coil. This coil was drawn and then cold rolled into a flat wire with cross-sectional dimensions of 3 mm (w) x 2 mm (1).

第2表は、それぞれの試料について各製造工程における
塑性加工状況を評価したものである。
Table 2 shows the evaluation of the plastic working conditions in each manufacturing process for each sample.

なお平線に仕上げた各試料の一部を調質して11RC4
2に調整した後、均−伸びを測定し、その結果を第2表
に併記する。
In addition, a part of each sample finished into a flat wire was tempered to 11RC4.
2, the average elongation was measured and the results are also listed in Table 2.

第1表に示す試料工ないし試料3は、本願発明の粉末か
ら製造する方法で、試料1および試料2は、塑性加工の
不可能な高炭素を含有する高速度工具鋼およびダイス鋼
、試料3は溶製から製造可能な高Crステンレス鋼の5
US440Bであり、試料4ないし試料6は従来法の溶
製法から造塊した汎用高速度鋼5KH55、ダイス鋼5
KDIIおよび比較鋼として粉末法の試料3に相当する
高Crステンレス鋼EUS440Bである。
Samples 1 to 3 shown in Table 1 are produced by the method of manufacturing from powder according to the present invention, and Samples 1 and 2 are high-speed tool steel and die steel containing high carbon that cannot be plastically worked. is a high Cr stainless steel that can be manufactured from melting.
US440B, and Samples 4 to 6 are general-purpose high-speed steel 5KH55 and die steel 5 made by ingots using conventional melting methods.
KDII and the comparative steel are high Cr stainless steel EUS440B corresponding to sample 3 of the powder method.

第2表に示すように、試料1および試料2は通常の溶製
法では、鋳塊中6巨大な共晶炭化物のために分塊が不可
能であるのに対して、粉末法の場合は、共晶炭化物が超
微細化するために熱間加工が容易となるだけでなく、冷
間加工においても溶製材の試料4および試料5に比較し
て同等またはより大きな断面減面率の限界を表わすこと
がわかる。
As shown in Table 2, sample 1 and sample 2 cannot be slugged using the normal melting method due to the huge eutectic carbide in the ingot, whereas in the case of the powder method, Because the eutectic carbide becomes ultra-fine, hot working is not only easy, but also exhibits the same or larger limit in cross-sectional area reduction in cold working compared to sample 4 and sample 5, which are ingots. I understand that.

また5US440Bを粉末法と溶製法で比較すると、溶
製法からなる試料6は、連続伸線における減面率の限界
が約40%であるのに対して、粉末法からなる試料3は
約60%になり、伸線作業の短縮に大きな効果の有るこ
とを示している。
In addition, when comparing 5US440B between the powder method and the melting method, sample 6 made by the melting method has a limit of area reduction in continuous wire drawing of about 40%, while sample 3 made by the powder method has a limit of about 60%. , indicating that it is highly effective in shortening the wire drawing work.

前述したように、これらの平線をピストンリング材とし
て使用する場合には1選定する材質にもよるが、一般に
はHRCa8〜45の硬さに調質した後に曲げ加工を施
すが、これは耐摩耗性をより向上させるためには、さら
に高い硬さが要求されるのに対して曲げ加工の点で、こ
れ以上の硬さでは折損するなどの不具合を生じるため、
材料本来の硬さよりかなり低い硬さに調質して使用され
ているのが現状である。
As mentioned above, when these flat wires are used as piston ring materials, they are generally tempered to a hardness of HRCa 8 to 45 and then subjected to bending, although this depends on the material selected. In order to further improve abrasion resistance, even higher hardness is required, but in terms of bending, higher hardness will cause problems such as breakage.
Currently, materials are used after being tempered to a much lower hardness than the original hardness of the material.

第2表に示すように、本願の粉末法から製造して調質さ
れた試料の均−伸びは溶製法から得た試料に比較して大
きいので、より高い硬さに調質して曲げ加工することも
可能となり、ピストンリングの耐摩耗性の向上に寄与す
ることができる。
As shown in Table 2, the uniform elongation of the samples manufactured using the powder method of the present application and tempered is greater than that of the samples obtained from the melting method, so they are tempered to a higher hardness and then bent. This also makes it possible to contribute to improving the wear resistance of the piston ring.

本願発明の製造方法によるピストンリングは。A piston ring manufactured by the manufacturing method of the present invention is as follows.

従来行なわれてきた摺動部のメツキ処理や窒化処理など
の表面処理を施すことができるほか、従来の溶製法によ
る鋼から製造されるピストンリングより耐摩耗性や疲労
強度が一段と向上することから薄肉化も合せて可能とし
たものである。
In addition to being able to perform surface treatments such as plating and nitriding on sliding parts, which have traditionally been done, wear resistance and fatigue strength are further improved compared to piston rings manufactured from steel using conventional melting methods. This also allows for thinner walls.

〔発明の効果〕〔Effect of the invention〕

本願発明の粉末冶金法による中高炭素含有金属粉末を出
発原料とした場合、従来の溶製したスチール製ピストン
リングでは得られない優れた熱間加工性および冷間加工
性を有するばかりでなく、靭性が著しく向上するので、
より高い硬さで曲げ加工が容易になり耐摩耗性や疲労強
度などの向上に寄与するとともに、さらに高炭素高合金
化によってピストンリングの要求特性の改善を図ること
ができ工業上非常に有益なものである。
When medium-high carbon content metal powder produced by the powder metallurgy method of the present invention is used as a starting material, it not only has excellent hot workability and cold workability that cannot be obtained with conventional melted steel piston rings, but also has excellent toughness. is significantly improved, so
The higher hardness makes bending easier, contributing to improvements in wear resistance and fatigue strength, and the high carbon and high alloy properties improve the required characteristics of piston rings, making it extremely useful industrially. It is something.

Claims (1)

【特許請求の範囲】 1 塑性加工により線材となし、これを調質した後曲げ
加工を行うピストンリングの製造方法において、出発原
料が粉末冶金法からなる中高炭素含有金属粉末を圧密化
したものであることを特徴とするピストンリングの製造
方法。 2、中高炭素含有金属粉末がダイス鋼、高速度工具鋼、
高Cr鋼の1種または2種以上である特許請求の範囲第
1項記載のピストンリングの製造方法。
[Scope of Claims] 1. A piston ring manufacturing method in which a wire rod is formed by plastic working, and the wire rod is heat-refined and then bent, in which the starting material is a compacted medium-high carbon-containing metal powder made by powder metallurgy. A method for manufacturing a piston ring, characterized by the following. 2. Medium-high carbon content metal powder is die steel, high speed tool steel,
The method for manufacturing a piston ring according to claim 1, wherein the piston ring is made of one or more types of high Cr steel.
JP173588A 1988-01-07 1988-01-07 Manufacture of piston ring Pending JPH01182667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP173588A JPH01182667A (en) 1988-01-07 1988-01-07 Manufacture of piston ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP173588A JPH01182667A (en) 1988-01-07 1988-01-07 Manufacture of piston ring

Publications (1)

Publication Number Publication Date
JPH01182667A true JPH01182667A (en) 1989-07-20

Family

ID=11509822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP173588A Pending JPH01182667A (en) 1988-01-07 1988-01-07 Manufacture of piston ring

Country Status (1)

Country Link
JP (1) JPH01182667A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020909A (en) * 1973-06-26 1975-03-05
JPS5614043A (en) * 1979-07-13 1981-02-10 Hitachi Metals Ltd Production of hardened piston ring made of steel
JPS5757247B2 (en) * 1977-11-29 1982-12-03 Sumitomo Aluminium Smelting Co
JPS59100263A (en) * 1982-11-29 1984-06-09 Teikoku Piston Ring Co Ltd Plasma-sprayed piston ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020909A (en) * 1973-06-26 1975-03-05
JPS5757247B2 (en) * 1977-11-29 1982-12-03 Sumitomo Aluminium Smelting Co
JPS5614043A (en) * 1979-07-13 1981-02-10 Hitachi Metals Ltd Production of hardened piston ring made of steel
JPS59100263A (en) * 1982-11-29 1984-06-09 Teikoku Piston Ring Co Ltd Plasma-sprayed piston ring

Similar Documents

Publication Publication Date Title
CN1256004C (en) Iron-aluminium metal compound used as stratie
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
JPH0480081B2 (en)
JP3580441B2 (en) Ni-base super heat-resistant alloy
US4255193A (en) Method of manufacture of sintered pressed pieces of iron reinforced by iron oxides
US4923676A (en) Aluminium alloy parts, such as in particular rods, having an improved fatigue strength and production process
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
DE19723392C2 (en) Valve seat
CN1233483C (en) Constant temperature toughness rolling method for GH4049 alloy
JPS62278250A (en) Thread rolling dies made of dispersion-strengthened-type sintered alloy steel
JPH01182667A (en) Manufacture of piston ring
JPH0525591A (en) Wire for piston ring and its manufacture
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JP2003512524A (en) Linear product, method of manufacturing the same, and wear parts manufactured from the product
JPH02147195A (en) Production of cobalt-chromium-based alloy welding material
JPS61238947A (en) Manufacture of al-si alloy blank
JPH04311506A (en) Wire rod for piston ring
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
JP2001150122A (en) Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method
JPS6173867A (en) Hot wear resistant member of dispersion strengthening sintered alloy steel
JP2844688B2 (en) Method for producing Co-based alloy
KR100256363B1 (en) Mo line high speed steel
JP2741256B2 (en) Low thermal expansion sintered alloy, method for producing the same, and compression apparatus
JP2642347B2 (en) Manufacturing method of high hardness member