JP2844688B2 - Method for producing Co-based alloy - Google Patents

Method for producing Co-based alloy

Info

Publication number
JP2844688B2
JP2844688B2 JP17361889A JP17361889A JP2844688B2 JP 2844688 B2 JP2844688 B2 JP 2844688B2 JP 17361889 A JP17361889 A JP 17361889A JP 17361889 A JP17361889 A JP 17361889A JP 2844688 B2 JP2844688 B2 JP 2844688B2
Authority
JP
Japan
Prior art keywords
hardness
less
alloy
aging treatment
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17361889A
Other languages
Japanese (ja)
Other versions
JPH0339455A (en
Inventor
望 河部
照幸 村井
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17361889A priority Critical patent/JP2844688B2/en
Publication of JPH0339455A publication Critical patent/JPH0339455A/en
Application granted granted Critical
Publication of JP2844688B2 publication Critical patent/JP2844688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Co基合金、特に、高価な添加元素が少な
く、かつ熱処理が簡易なため安価に得られ、しかも、切
削工具に要求される硬度と靭性を兼ね備えたCo基合金の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is required for a cutting tool because it can be obtained at a low cost due to a small amount of expensive additional elements and a simple heat treatment. The present invention relates to a method for producing a Co-based alloy having both hardness and toughness.

〔従来の技術と発明の課題〕[Conventional technology and problems of the invention]

一般にステライトと称されるCo基合金は、硬度が低い
ため、一部の種類を除いて切削工具には使われていな
い。
Co-based alloys generally called stellite are not used in cutting tools except for some types because of their low hardness.

即ち、切削工具として使われているのは、ステライト
No.100(商品名)等で、その組成が重量比でCr:26%、
W:15%、C:2.5%、残Coと云う高タングステン、高炭素
合金などに限られている。
In other words, stellite is used as a cutting tool.
No.100 (trade name), whose composition is Cr: 26% by weight,
W: 15%, C: 2.5%, Co is limited to high tungsten and high carbon alloys such as Co.

切削工具材としての適正を得るために、特公昭54−22
171号公報に示されるように、ステライトNo.100相当成
分にNb、Ta、V、Zr等を添加して靭性等の特性を向上さ
せたものもあるが、いずれにしても、これ等の合金は加
工が極めて困難なため、鋳造材をそのまゝ使用せざるを
得ず、多様な形式の工具に対応できないのが難点であ
る。
To obtain the appropriateness as a cutting tool material,
As shown in Japanese Patent No. 171, Nb, Ta, V, Zr, etc. are added to components corresponding to stellite No. 100 to improve properties such as toughness, but in any case, these alloys However, since it is extremely difficult to work, it is necessary to use the cast material as it is, and it is difficult to cope with various types of tools.

このため、ステライト系合金でW、Cの含有比を高め
る代わりに時効処理等で高硬度化を計ることも試みられ
ている。例えば、特公昭63−4904〜4906号、同63−5464
号公報には、応力を負荷したまゝで、或いは変形(永久
歪)を付与した後に700〜1000℃で時効処理して硬度を
高めることが示されている。
Therefore, instead of increasing the content ratio of W and C in the stellite-based alloy, it has been attempted to increase the hardness by aging treatment or the like. For example, Japanese Patent Publication Nos. 63-4904-4906 and 63-5546
The publication discloses that the hardness is increased by applying an aging treatment at 700 to 1000 ° C. while applying a stress or after applying a deformation (permanent strain).

しかし、これ等の方法では、Fe、Niの含有量を多くし
て変形し易い成分系にしているため、時効処理後もビッ
カース硬度がHv250から300程度に上昇しているのみで切
削工具の要求硬度が得られていない。
However, in these methods, since the content of Fe and Ni is increased to make the component system easily deformable, the Vickers hardness increases from Hv250 to about 300 even after the aging treatment, and cutting tools are required. Hardness has not been obtained.

また、添加元素を加えて時効処理することも報告され
ているが(特公昭49−41219号、特公称55−43062号)、
前者の公報に開示された合金は、硬度がHv300を僅かに
上回るぐらいで切削工具には利用できない。また、後者
の公報に示される方法によると硬度は充分に高まるが、
靭性が下がるため、切削工具としての応用範囲が狭く、
コストも高い。
It has also been reported that aging treatment is performed by adding an additional element (Japanese Patent Publication No. 49-21919, Japanese Patent Publication No. 55-43062).
The alloy disclosed in the former publication has a hardness slightly higher than Hv300 and cannot be used for cutting tools. According to the method disclosed in the latter publication, the hardness is sufficiently increased,
Because the toughness decreases, the application range as a cutting tool is narrow,
Cost is high.

このように、Co系合金で切削工具として使用できるの
は、ステライトNo.100又はその改良品に限られている
が、これ等は、切削工具の重要要求特性である硬度や靭
性が他の合金系の改良材に比べて劣る。例えば、ステラ
イトに比して高速度鋼は硬度は同等で靭性に優れ、超硬
合金は、硬度が優れ、靭性は同等になってきており、そ
のため、Co系合金の切削工具材としての需要は伸び悩む
傾向にある。
As described above, Co-based alloys that can be used as cutting tools are limited to Stellite No. 100 or its improved products. It is inferior to the system improvement material. For example, compared to stellite, high-speed steel has the same hardness and excellent toughness, and cemented carbide has excellent hardness and toughness, so the demand for Co-based alloys as cutting tool materials is increasing. It tends to be sluggish.

そこで、Co系合金については、他の合金系材料に対し
て優位差をもたせるために、硬度、靭性の向上、もしく
は片方の特性を維持しながらの他方の特性の向上が望ま
れている。しかし、硬度と靭性は相反する特性であるこ
とから、要望に応えきっていないのが実情である。
Therefore, for a Co-based alloy, it is desired to improve hardness and toughness or to improve one property while maintaining one property in order to give a superior difference to other alloy-based materials. However, since the hardness and the toughness are contradictory properties, the actual situation has not been satisfied with the demand.

この発明は、かゝる問題点の打開策として有効なCo基
合金の製造方法を提供しようとするものである。
An object of the present invention is to provide a method for producing a Co-based alloy, which is effective as a solution to such a problem.

〔課題を解決するための手段〕[Means for solving the problem]

この発明の方法で製造する合金は、重量比でCr:26.0
〜33.0%、W:3.0〜13.0%、C:0.9〜2.0%、Fe+Ni:5%
以下を含有し、残部は実質的にCoの組成である。
The alloy produced by the method of the present invention has a weight ratio of Cr: 26.0
~ 33.0%, W: 3.0 ~ 13.0%, C: 0.9 ~ 2.0%, Fe + Ni: 5%
It contains the following, with the balance being substantially the composition of Co.

この合金は、従来法で作ると中途半端な硬さになって
冷間加工ができない。
When this alloy is made by a conventional method, it has an incomplete hardness and cannot be cold worked.

このため、この発明では、特定の処理工程を経て先ず
冷間加工を可能にし、この冷間加工と溶体化及び時効処
理により切削工具として通用する特性を付与する。その
ための工程は以下の通りである。
For this reason, according to the present invention, cold working is firstly enabled through a specific processing step, and the properties usable as a cutting tool are imparted by the cold working, solution treatment and aging treatment. The steps for that are as follows.

(1) 急冷凝固等の方法で材料合金中の析出炭化物の
粒径を5μm以下に制御する。
(1) The particle size of precipitated carbide in the material alloy is controlled to 5 μm or less by a method such as rapid solidification.

(2) 次に、材料合金を1000℃以上、融点以下で溶体
化する。
(2) Next, the material alloy is solutionized at a temperature of 1000 ° C. or more and a melting point or less.

(3) その後、10%以上の減面率の冷間加工を施す。(3) After that, cold working with a reduction rate of 10% or more is performed.

(4) しかる後、550〜650℃の加熱雰囲気中に30分以
上、2時間以内保持して時効となす。
(4) After that, it is kept in a heating atmosphere at 550 to 650 ° C. for 30 minutes or more and 2 hours or less to effect aging.

なお、以上の工程を経て得られる合金で切削工具を作
る場合には、(3)と(4)の工程の間で目的工具形状
となすための粗研削、切断加工を行うのが望ましい。
When a cutting tool is made from the alloy obtained through the above steps, it is desirable to perform rough grinding and cutting between the steps (3) and (4) to obtain the target tool shape.

〔作用〕[Action]

加工硬化、時効硬化は金属一般に見られる現象であ
る。この発明によれば、Fe+Niの量が少ない組成では望
めなかった加工硬化のための冷間加工が上記(1)、
(2)の工程により可能になり、この冷間加工で表面部
の蓄積歪が中心部のそれより多くなるため、表面部硬度
が中心部硬度よりも高まる。また、これを時効処理する
と表面部硬度は更に高まり、切削部となる表面部は高硬
度、中心部は低硬度で高靭性と云う切削工具の要求特性
が満たされる。
Work hardening and age hardening are phenomena commonly found in metals. According to the present invention, the cold working for work hardening, which could not be expected with a composition having a small amount of Fe + Ni, is performed in the above (1),
This is made possible by the process (2), and since the accumulated strain at the surface portion is larger than that at the center portion in the cold working, the surface portion hardness is higher than the center portion hardness. Further, when this is subjected to aging treatment, the hardness of the surface portion is further increased, and the required characteristics of the cutting tool such as high hardness in the surface portion serving as the cutting portion, low hardness in the center portion and high toughness are satisfied.

なお、高硬度化の目的達成のためには、冷間加工後、
従来よりも低い温度で時効処理を施すことが重要であ
り、この工程が逆、或いは時効温度が従来(700〜1000
℃)と同程度である場合には目的の硬度が得られない。
In order to achieve the purpose of high hardness, after cold working,
It is important to perform aging treatment at a lower temperature than before, and this process is reversed, or the aging temperature is
° C), the desired hardness cannot be obtained.

以下、成分含有量、処理条件等の限定理由を整理して
記す。
Hereinafter, the reasons for limiting the component content, the processing conditions, and the like will be summarized and described.

(イ) 成分: Cr、W:炭化物を形成し、又はマトリクス中に溶けて硬度
を高める。重量比(以下全て同じ)でCr<26%、W<3
%ではその効果が不足し、Cr>33%、W>12%では硬く
なり過ぎて冷間加工が困難。
(A) Ingredients: Cr, W: form carbides or dissolve in the matrix to increase hardness. Cr <26%, W <3 in weight ratio (the same applies hereinafter)
%, The effect is insufficient, and if Cr> 33%, W> 12%, it becomes too hard and cold working is difficult.

C:Cr、Wの炭化物を形成し、硬度を高める。このCの含
有量が0.9%以下では添加の効果が薄く、2%を越すと
合金硬度が過剰になって冷間加工が妨げられる。
C: Form carbides of Cr and W and increase hardness. When the content of C is 0.9% or less, the effect of addition is small, and when it exceeds 2%, the alloy hardness becomes excessive and cold working is hindered.

Fe+Ni:不純物として含まれる。不要な元素であるが含
有量を無理に減らすと製造コストが高くなる。一方、こ
れ等の量が5%以上では硬度が充分に高まらない。
Fe + Ni: included as an impurity. Although it is an unnecessary element, the production cost increases when the content is forcibly reduced. On the other hand, when these amounts are 5% or more, the hardness is not sufficiently increased.

Co:マトリックスであり、高温強度に優れる。Co: Matrix, excellent in high-temperature strength.

(ロ) 炭化物粒径を5μm以下に制御 このための方法としては、下記の方法があり、そのい
ずれを利用してもよい。
(B) Controlling the carbide particle size to 5 μm or less As a method for this, the following methods are available, and any of them may be used.

1) 急冷粉末の熱間静水圧加圧成形(HIP法)。1) Hot isostatic pressing of quenched powder (HIP method).

2) 急冷粉末の熱間押出し成形。2) Hot extrusion of quenched powder.

3) 銅鋳型等の冷却能の大きい鋳型への鋳込み。3) Casting into a mold with a large cooling capacity such as a copper mold.

4) 溶湯をガスで噴霧し、噴霧粒子を末凝固のまゝ受
け皿に連続的に付着し、受皿上で凝固させる液滴鋳造
法。
4) A drop casting method in which the molten metal is sprayed with a gas, and the spray particles are continuously adhered to a receiving pan while solidifying and solidified on the receiving pan.

この炭化物はマトリックスのCoに比して非常に硬く、
合金の変形時に変形し難いため、粒径が大きいとマトリ
ックスとの界面に剥離、割れが生じる。
This carbide is very hard compared to the matrix Co,
Since the alloy is difficult to deform when deformed, if the particle size is large, separation and cracking occur at the interface with the matrix.

しかし、その粒径が5μm以下であれば、マトリック
スが変形し易くなり、全体の変形量を吸収するので割れ
が起こらない。
However, if the particle size is 5 μm or less, the matrix is easily deformed and absorbs the entire amount of deformation, so that no crack occurs.

(ハ) 溶体化温度 1000℃以下では充分な溶体化が進まず、10%以上の冷
間伸線加工ができない。
(C) When the solution temperature is 1000 ° C or less, sufficient solution does not proceed, and cold drawing of 10% or more cannot be performed.

(ニ) 冷間加工量 減面率10%以下では、この後、いかなる時効処理を施
しても切削工具の要求硬度にならない。
(D) Amount of cold work If the surface reduction rate is 10% or less, the hardness of the cutting tool will not reach the required hardness after any aging treatment.

(ホ) 時効処理 550℃以下、650℃以上では共に硬度が充分に高まらな
い。処理時間が30分以下、2時間以上でも同様である。
(E) Aging treatment When the temperature is 550 ° C or lower and 650 ° C or higher, the hardness is not sufficiently increased. The same applies when the processing time is 30 minutes or less and 2 hours or more.

例えば、通常の処理温度800℃を用いると、硬度は冷
間加工後よりも下がる。
For example, when a normal processing temperature of 800 ° C. is used, the hardness is lower than that after cold working.

なお、工具化する場合の粗研削、切断を時効処理前に
実施するのが望ましいとした理由は、時効前のまだ充分
に硬くならないうちが加工し易く、最終工程では若干の
仕上代を加工すれば済むことと、事前の粗加工により時
効処理時の大きな変形が防止されることによる。
The reason that it is desirable to perform rough grinding and cutting before aging treatment when turning into a tool is that it is easy to work before it is not sufficiently hard before aging, and it is necessary to process some finishing allowance in the final process. This is due to the fact that large deformation at the time of aging treatment is prevented by pre-roughing.

〔実施例〕〔Example〕

第1表の組成の供試材を用意し、下記1〜5の実験を
行った。
Test materials having the compositions shown in Table 1 were prepared, and the following experiments 1 to 5 were performed.

(実験1) 第1表の〜の成分の材料を用いて、粉末HIP法
(温度1150℃、成形圧1000kg/cm2)、粉末押出し法(加
熱温度1200℃、押出し比12)、液滴鋳造法(出湯温度14
70℃、ガス圧15kg/cm2)で約3kgずつのインゴットを作
った。
(Experiment 1) Powder HIP method (temperature 1150 ° C, molding pressure 1000kg / cm 2 ), powder extrusion method (heating temperature 1200 ° C, extrusion ratio 12), droplet casting, using the materials of the components in Table 1 Method (bath temperature 14
An ingot of about 3 kg was made at 70 ° C. and a gas pressure of 15 kg / cm 2 ).

そして、そのインゴットをそれぞれ熱間圧延により7m
mの丸棒まで加工したところ材は硬くなり過ぎて加工
不可能であった。
Then, each ingot is hot rolled to 7m
When processed to a round bar of m, the material became too hard and could not be processed.

また、〜材は、それぞれの成分ではHIP材、押出
材、鋳造材ともに析出炭化物の大きさは5μm以下でほ
ゞ均一であったので、以後の実験にはHIP材のみを用
い、これ等を冷間加工前に1150℃で溶体化処理した。
In each of the components, the HIP material, the extruded material, and the cast material had a substantially uniform size of precipitated carbide of 5 μm or less. Therefore, in the subsequent experiments, only the HIP material was used. Before cold working, solution treatment was performed at 1150 ° C.

その結果、溶体化しなかった材料合金は、いずれも、
次工程の冷間加工時に減面率10%未満で割れが発生した
が、溶体化したものはそのトラブルが全くなかった。
As a result, any material alloy that did not solution,
Cracks were generated at the area reduction rate of less than 10% at the time of cold working in the next step, but no trouble was found in the case of solution.

(実験2) 実験1で20%の冷間加工を行ったHIPの〜材を600
℃×30分の熱処理に供した。これによって得られた合金
の諸特性を第2表に示す。なお、同表のは通常の溶解
鋳造材である。
(Experiment 2) 600% of the HIP that had been cold worked 20% in Experiment 1
It was subjected to a heat treatment at 30 ° C. for 30 minutes. Table 2 shows the properties of the alloy thus obtained. In the table, is a normal molten cast material.

同表から判るように、この発明の組成を満足している
、材は表面硬度が高く、また、他の特性も優れ、切
削工具として使用可能である。
As can be seen from the table, the material that satisfies the composition of the present invention has a high surface hardness and also has excellent other properties, and can be used as a cutting tool.

(実験3) の焼鈍材、溶体化後の加工硬化材(加工量5%、10
%、20%、40%の4種)の各々について時効特性を調べ
た。結果を第1図に示す。
(Experiment 3) Annealed material, work hardened material after solution heat treatment (processing amount 5%, 10%
%, 20% and 40%) were examined for aging characteristics. The results are shown in FIG.

これから、加工量10%以上、時効処理温度550〜650℃
で合金の表面が高硬度を示すことが判る。
From now on, processing amount 10% or more, aging treatment temperature 550 ~ 650 ℃
It can be seen that the surface of the alloy shows high hardness.

(実験4) 材の20%冷間加工品を600℃で時効処理し、時間変
化による表面硬度の変化を調べた。第2図がその結果で
ある。この結果から、30分〜2時間の間で合金の表面部
が充分な硬さになることが判る。
(Experiment 4) A 20% cold-worked material was aged at 600 ° C., and the change in surface hardness with time was examined. FIG. 2 shows the result. From this result, it can be seen that the surface portion of the alloy becomes sufficiently hard between 30 minutes and 2 hours.

(実験5) 材を溶体化処理後、直径8mmから7mmに冷間加工し
(減面率23.4%)、次いで、エンドミルにするための粗
溝加工を施した。その後、600℃で40分間時効処理した
後、仕上げ加工してソリッドエンドミルを得た。
(Experiment 5) After the solution treatment, the material was cold-worked from 8 mm to 7 mm in diameter (23.4% reduction in area), and then subjected to rough groove processing for forming an end mill. Then, after aging treatment at 600 ° C. for 40 minutes, finishing was performed to obtain a solid end mill.

この試作エンドミルと従来のCo基合金エンドミルで同
一被削材を切削して性能を比較したところ、この発明の
合金で作った試作エンドミルは非常に良好な切削が可能
であり、切削性能、耐久性とも従来エンドミルに勝って
いた。
When comparing the performance of this prototype end mill with the conventional Co-based alloy end mill by cutting the same work material, the prototype end mill made of the alloy of the present invention can perform very good cutting, cutting performance, durability Both were superior to conventional end mills.

さらに、高速度鋼SKH51のエンドミルとの比較では、
1.5倍の切削速度が可能であった。
Furthermore, in comparison with the high-speed steel SKH51 end mill,
1.5 times cutting speed was possible.

〔効果〕〔effect〕

以上説明したように、この発明は、材料合金中の析出
炭化物の粒径制御と溶体化処理により同一組成の合金で
は従来望めなかった加工硬化による表面の高硬度化を計
り、この後、従来は硬化するとは考えられなかった温度
で時効処理して表面硬度を更に高めるようにしたので、
切削工具として理想の特性を持った合金、即ち、表面は
高硬度、内部は高靭性のCo基合金を安価に製造して提供
することができる。
As described above, the present invention measures the hardness of the surface by work hardening, which was not previously expected with alloys of the same composition, by controlling the grain size of precipitated carbides in the material alloy and by solution treatment, and thereafter, Since the aging treatment was performed at a temperature that was not considered to be hardened, the surface hardness was further increased,
An alloy having ideal properties as a cutting tool, that is, a Co-based alloy having high hardness on the surface and high toughness on the inside can be manufactured and provided at low cost.

また、この方法によれば、時効処理前に粗加工してお
くことにより、硬さに起因した加工規制を緩和できるの
で、得られる合金の種々の形態の切削工具への利用も可
能になる。
Further, according to this method, by performing rough processing before aging treatment, processing restrictions due to hardness can be relaxed, and thus, the obtained alloy can be used for various types of cutting tools.

なお、この発明の方法で得られる合金は、最適用途は
切削工具であるが、これと似た特性が要求される機械要
素や構造材等にも利用できる。例えば、耐摩耗、耐折損
の信頼性が要求される回転軸、摺動軸等の材料としても
有効である。
The alloy obtained by the method of the present invention is most suitable for a cutting tool, but can also be used for a mechanical element or a structural material requiring similar characteristics. For example, it is effective as a material for a rotating shaft, a sliding shaft, and the like that require reliability of wear resistance and breakage resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、効果の確認実験に用いた供試材の中の1つの
時効特性(事前加工量及び時効温度と硬度との関係)を
示すグラフ、第2図は20%冷間加工材の時効特性(600
℃で時効時間と硬度との関係)を示すグラフである。
FIG. 1 is a graph showing the aging characteristics (the relationship between the pre-processed amount and the aging temperature and the hardness) of one of the test materials used in the effect confirmation experiment, and FIG. Aging characteristics (600
4 is a graph showing the relationship between aging time and hardness at ° C.).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691B 691C 694 694A (56)参考文献 特開 昭62−202066(JP,A) 特公 昭63−4905(JP,B2) 特公 昭55−4828(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22F 1/10 C22C 19/07────────────────────────────────────────────────── 6 Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 691 C22F 1/00 691B 691C 694 694A (56) References JP-A-62-202066 (JP, A) 63-4905 (JP, B2) JP 55-4828 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22F 1/10 C22C 19/07

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比でCr:26.0〜33.0%、W:3.0〜13.0
%、C:0.9〜2.0%、Fe+Ni:5%以下を含有し、残部は実
質的にCoから成る材料合金の析出炭化物粒径を下記1)
〜4)のいずれかの方法で5μm以下に制御し、この材
料合金を1000℃以上、融点以下で溶体化し、次いで、減
面率10%以上の冷間加工を施し、その後、550〜650℃の
加熱雰囲気中に30分以上、2時間以内保持して時効処理
することを特徴とするCo基合金の製造方法。 1) 急冷粉末の熱間静水圧加圧成形(HIP法)。 2) 急冷粉末の熱間押出し成形。 3) 銅鋳型等の冷却能の大きい鋳型への鋳込み。 4) 溶湯をガスで噴霧し、噴霧粒子を末凝固のまゝ受
け皿に連続的に付着し、受皿上で凝固させる液滴鋳造
法。
(1) Cr: 26.0-33.0%, W: 3.0-13.0 by weight ratio
%, C: 0.9-2.0%, Fe + Ni: 5% or less, with the balance being the following: 1)
To 4 μm or less by any one of the methods described in (1) to (4), the material alloy is solution-treated at a temperature of 1000 ° C. or higher and a melting point or lower, and then subjected to cold working at a surface reduction rate of 10% or higher. Aging treatment for 30 minutes or more and 2 hours or less in a heating atmosphere. 1) Hot isostatic pressing of quenched powder (HIP method). 2) Hot extrusion of quenched powder. 3) Casting into a mold with a large cooling capacity such as a copper mold. 4) A drop casting method in which the molten metal is sprayed with a gas, and the spray particles are continuously adhered to a receiving pan while solidifying and solidified on the receiving pan.
【請求項2】冷間加工後、時効処理を施す前に目的工具
となすための粗加工を施す請求項(1)記載のCo基合金
の製造方法。
2. The method for producing a Co-based alloy according to claim 1, wherein after the cold working and before the aging treatment, a rough working for forming a target tool is performed.
JP17361889A 1989-07-04 1989-07-04 Method for producing Co-based alloy Expired - Fee Related JP2844688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17361889A JP2844688B2 (en) 1989-07-04 1989-07-04 Method for producing Co-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17361889A JP2844688B2 (en) 1989-07-04 1989-07-04 Method for producing Co-based alloy

Publications (2)

Publication Number Publication Date
JPH0339455A JPH0339455A (en) 1991-02-20
JP2844688B2 true JP2844688B2 (en) 1999-01-06

Family

ID=15963953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17361889A Expired - Fee Related JP2844688B2 (en) 1989-07-04 1989-07-04 Method for producing Co-based alloy

Country Status (1)

Country Link
JP (1) JP2844688B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075427A (en) * 2002-03-19 2003-09-26 백응률 An controlling method in producing a specific stellite 6 B alloy

Also Published As

Publication number Publication date
JPH0339455A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
EP0248757B1 (en) Nickel base superalloy articles and method for making
US5190603A (en) Process for producing a workpiece from an alloy containing dopant and based on titanium aluminide
US4579602A (en) Forging process for superalloys
US4110131A (en) Method for powder-metallurgic production of a workpiece from a high temperature alloy
EP3257963A1 (en) METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
US5746846A (en) Method to produce gamma titanium aluminide articles having improved properties
EP0519849B1 (en) Cr-bearing gamma titanium aluminides and method of making same
JPS60228659A (en) Malleable improvement for nickel base superalloy
JP2000135543A (en) Titanium system metal forging method, engine valve manufacturing method and engine valve
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP2009215631A (en) Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
US4077811A (en) Process for &#34;Black Fabrication&#34; of molybdenum and molybdenum alloy wrought products
US6805759B2 (en) Shaped part made of an intermetallic gamma titanium aluminide material, and production method
US10232442B2 (en) Method of making machine component with aluminum alloy under temperature-limited forming conditions
JP4194926B2 (en) Steel for machine structure, method of hot forming of parts made of this steel, and parts thereby
JP2844688B2 (en) Method for producing Co-based alloy
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
JPS60149751A (en) Metal composition
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JP7318282B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees