WO2019193985A1 - Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof - Google Patents

Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof Download PDF

Info

Publication number
WO2019193985A1
WO2019193985A1 PCT/JP2019/011944 JP2019011944W WO2019193985A1 WO 2019193985 A1 WO2019193985 A1 WO 2019193985A1 JP 2019011944 W JP2019011944 W JP 2019011944W WO 2019193985 A1 WO2019193985 A1 WO 2019193985A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
transport aircraft
compressor
intermetallic compound
compressor part
Prior art date
Application number
PCT/JP2019/011944
Other languages
French (fr)
Japanese (ja)
Inventor
泰生 小鉄
杉山 知平
恭平 安藤
卓也 荒山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019193985A1 publication Critical patent/WO2019193985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Definitions

  • the present invention relates to a compressor component for a transport machine made of an aluminum alloy having excellent mechanical properties at high temperatures and a method for manufacturing the same.
  • compressor parts for transport aircraft for example, turbocharger impellers
  • turbocharger impellers are required to have high strength and high rigidity at high temperatures exceeding 10,000 rpm under high temperature conditions of about 150 ° C.
  • weight reduction is also required in order to reduce energy loss.
  • strength that can withstand high-speed rotation is also required.
  • turbocharger impellers are made of 2618 alloy (Cu: 1.9 mass% to 2.7 mass%, Mg: 1.3 mass% to 1.8 mass%, Ni: 0.9 mass% to 1. mass%). 2 mass%, Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, the balance Was manufactured by cutting a cast / forged product made of Al).
  • Patent Document 1 discloses a technique for providing an Al—Cu—Mg-based aluminum alloy extruded material whose strength at a high temperature (160 ° C.) is improved as compared with the prior art. That is, in Patent Document 1, Cu: 3.4 to 5.5% (mass%, hereinafter the same), Mg: 1.7 to 2.3%, Ni: 1.0 to 2.5%, Fe: 0.5-1.5%, Mn: 0.1-0.4%, Zr: 0.05-0.3%, Si: less than 0.1%, Ti: less than 0.1%, the balance A heat-resistant aluminum alloy extruded material excellent in high-temperature strength and high-temperature fatigue characteristics characterized by comprising Al and inevitable impurities is described.
  • turbocharger impellers are required to rotate at higher speeds. Therefore, as an aluminum alloy material constituting turbocharger impellers, even in a higher temperature range than before. What has excellent mechanical properties is desired. Further, as a characteristic required for a compressor part for a transport machine such as a turbocharger impeller, in addition to a static strength, a dynamic strength such as a creep property is required to be excellent.
  • the present invention has been made in view of such a technical background, and an object of the present invention is to provide a compressor component for a transport aircraft excellent in mechanical properties (static strength, creep properties, etc.) at a high temperature and a method for manufacturing the same.
  • the present invention provides the following means.
  • Fe iron
  • V vanadium
  • Mo molybdenum
  • Zr zirconium
  • Ti titanium
  • Cr chromium
  • Mn manganese
  • the compressor part for transport equipment contains an Al—Fe based intermetallic compound, and the average equivalent circle diameter of the Al—Fe based intermetallic compound in the cross-sectional structure of the transport equipment compressor part is 0.1 ⁇ m to A compressor part for a transport aircraft, characterized by being in the range of 3.0 ⁇ m.
  • the Al—Fe intermetallic compound is an Al—Fe—V—Mo intermetallic compound containing at least Al, Fe, V, and Mo.
  • the Al content is 81.60 mass% to 92.37 mass%
  • the Fe content is 2.58 mass% to 10.05 mass%
  • the compressor part for a transport aircraft according to the item 1 or 2 wherein the content is 1.44% by mass to 4.39% by mass and the Mo content is 2.45% by mass to 3.62% by mass.
  • Fe 5.0 mass% to 9.0 mass%
  • V 0.1 mass% to 3.0 mass%
  • Mo 0.1 mass% to 3.0 mass%
  • Zr 0.1 1 to 2% by mass of one or two metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass to 2.0% by mass and Ti: 0.02% by mass to 2.0% by mass
  • the compressor part for transport aircraft contains an Al—Fe intermetallic compound in the compressor part for transport aircraft, and the Al—Fe intermetallic compound of the cross section structure of the compressor part for transport aircraft is
  • the obtained compressor component for a transport machine is suitably used as a compressor component for a transport machine such as an automobile.
  • the compressor component for a transport aircraft includes Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.% by mass. 0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, one or two selected from the group consisting of Cr and Mn
  • the average equivalent circle diameter of the Al—Fe intermetallic compound is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • Fe 5.0 mass% to 9.0 mass%
  • V 0.1 mass% to 3.0 mass%
  • Mo 0.1 mass% to 3.0 mass%
  • Zr 0 0.1% by mass to 2.0% by mass
  • Ti 0.02% by mass to 2.0% by mass
  • one or two metals selected from the group consisting of Cr and Mn are each 0.02%.
  • An aluminum alloy powder is prepared that is contained by mass% to 2.0 mass%, and the balance is Al and inevitable impurities.
  • the method for producing the aluminum alloy powder having the specific composition is not particularly limited, but Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% 1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, selected from the group consisting of Cr and Mn
  • the molten aluminum alloy having the specific composition is prepared by a normal melting method.
  • the obtained molten aluminum alloy is pulverized by an atomizing method.
  • the atomization method is a method in which fine droplets of molten aluminum alloy are atomized and sprayed by a gas flow such as nitrogen gas from a spray nozzle, and the fine droplets are rapidly solidified to obtain a fine aluminum alloy powder.
  • the cooling rate is preferably 10 2 to 10 5 ° C / second. It is preferable to obtain an aluminum alloy powder having an average particle diameter of 30 ⁇ m to 70 ⁇ m. When the thickness is 30 ⁇ m or more, the yield of manufacturing the alloy powder can be remarkably improved, and when the thickness is 70 ⁇ m or less, mixing of coarse oxides and foreign matters can be avoided.
  • the obtained aluminum alloy powder is preferably classified using a sieve.
  • the aluminum alloy powder obtained in the powdering step is compression molded to obtain a green compact (compression molding step).
  • a green compact compression molding step
  • an aluminum alloy powder heated to 250 ° C. to 300 ° C. is filled in a mold heated to 230 ° C. to 270 ° C., and compression molded into a predetermined shape to obtain a green compact.
  • the pressure for the compression molding is not particularly limited, but it is usually preferable to set the pressure to 0.5 ton / cm 2 to 3.0 ton / cm 2 . Further, it is preferable to use a green compact having a relative density of 60% to 90%.
  • the shape of the green compact is not particularly limited, but it is preferably a cylindrical shape or a disk shape in consideration of the next extrusion process.
  • the green compact obtained in the compression molding step is hot-extruded to obtain an extruded material (extrusion step).
  • the green compact is subjected to machining such as chamfering as necessary, and then subjected to degassing treatment and heated to be subjected to an extrusion process.
  • the heating temperature of the green compact before extrusion is preferably 300 to 450 ° C.
  • the green compact is inserted into an extrusion container, pressure is applied by an extrusion ram, and the extrusion die is extruded into, for example, a round bar shape.
  • it is desirable that the extrusion container is heated to 300 ° C. to 400 ° C. in advance.
  • the extrusion pressure is preferably set to 10 MPa to 25 MPa.
  • the extruded material obtained in the extrusion process is cut to obtain a compressor component for a transport machine (cutting process).
  • the extruded material is subjected to a lathe process, and is cut using a cutting tool such as a ball end mill with a 5-axis machine or the like to obtain a compressor part for a transporting machine having a predetermined shape (see FIG. 1).
  • the transport compressor component obtained in the cutting process contains an Al—Fe intermetallic compound in the transport compressor component, and the Al—Fe intermetallic compound is included in the cross-sectional structure of the transport compressor component.
  • the average equivalent circle diameter of the Fe-based intermetallic compound is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • the compressor part 1 for transport aircraft obtained by the method for manufacturing a compressor part for transport aircraft according to the present invention described above has Fe: 5.0 mass% to 9.0 mass%, V: 0.1 Mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%
  • the equivalent circle diameter is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • the compressor component 1 for transport aircraft according to the present invention is not limited to the compressor component for transport aircraft obtained by the above-described production method, and includes those obtained by other production methods.
  • the aluminum alloy contains Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02%. It is an aluminum alloy containing from mass% to 2.0 mass% with the balance being Al and inevitable impurities.
  • the Fe (component) is an element that generates an Al—Fe-based intermetallic compound having a high melting point and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C. to 350 ° C. is there.
  • the Fe content in the aluminum alloy is in the range of 5.0% by mass to 9.0% by mass. When the Fe content is less than 5.0% by mass, the strength of the compressor component for transport aircraft is reduced. When the Fe content exceeds 9.0% by mass, the ductility of the compressor component for transport aircraft is decreased. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures.
  • the Fe content in the aluminum alloy is preferably in the range of 7.0% by mass to 8.0% by mass.
  • V is an element that generates an Al—Fe—V—Mo intermetallic compound and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there.
  • the V content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the V content is less than 0.1% by mass, the strength of the compressor component for transport aircraft is reduced. When the V content exceeds 3.0% by mass, the ductility of the compressor component for transport aircraft is decreased. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures.
  • the V content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
  • the Mo (component) is an element that forms an Al—Fe—V—Mo intermetallic compound and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C. to 350 ° C. is there.
  • the Mo content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. If the Mo content is less than 0.1% by mass, the strength of the compressor component for transport equipment will be reduced. If the Mo content exceeds 3.0% by mass, the ductility of the compressor component for transport equipment will be reduced. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures.
  • the Mo content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
  • the Zr is an element that does not cause coarsening of the Al—Fe—V—Mo intermetallic compound and can realize fine crystallization of the intermetallic compound. Further, by containing Zr, the high temperature strength can be improved, and the self-diffusion of Al in the Al matrix can be suppressed and the creep characteristics can be improved.
  • the Zr content in the aluminum alloy is in the range of 0.1% by mass to 2.0% by mass. When the Zr content is less than 0.1% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited.
  • the Zr content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.5% by mass.
  • the Ti (component) has a role of forming an Al— (Ti, Zr) -based intermetallic compound having an L 12 structure with Al in cooperation with the Zr. Moreover, since Ti has a small diffusion coefficient in the Al matrix, the effect of improving the creep characteristics can be obtained.
  • the Ti content in the aluminum alloy is in the range of 0.02% by mass to 2.0% by mass. When the Ti content is less than 0.02% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited. If the Ti content exceeds 2.0% by mass, the ductility of the compressor parts for transport equipment will decrease and the compressor parts for transport equipment will have excellent mechanical properties (static strength, creep characteristics, etc.) at high temperatures. Can't get. Among them, the Ti content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.0% by mass.
  • the aluminum alloy further contains one or two metals selected from the group consisting of Cr and Mn. That is, the aluminum alloy may further have a composition containing Cr: 0.02% by mass to 2.0% by mass, or may further contain Mn: 0.02% by mass to 2.0% by mass.
  • the composition may be a composition, or may further contain Cr: 0.02 mass% to 2.0 mass% and Mn: 0.02 mass% to 2.0 mass%. Cr (component) and Mn (component) are dissolved in the Al matrix and exert an effect as solid solution strengthening.
  • the extrusion temperature is 500 ° C. or higher, precipitation proceeds and the mechanical properties at high temperatures are likely to be lowered. Therefore, the extrusion temperature is preferably set to less than 500 ° C.
  • the dispersed particles of Cr or / and Mn have the effect of suppressing the grain boundary movement after recrystallization, for example, the coarsening of the average crystal grain size in the ST direction of the parting line structure during the forging process can be suppressed. Further, fine crystal grains and sub-crystal grains can be obtained over the entire aluminum alloy extruded material and forged material of the present invention, and the mechanical characteristics can be further improved.
  • Cr By containing 0.02% by mass or more of Cr, Cr can be dissolved in the Al matrix and mechanical characteristics (particularly fatigue strength at high temperatures) can be improved, and wear resistance can be improved. It is possible to improve and improve the corrosion resistance by solid solution of Cr in the Al matrix, and to improve the temper softening resistance. By adding Cr, the hardenability can be improved and the heat treatment hardness can be improved. . In addition, by setting the Cr content to 2.0 mass% or less, Cr can be dissolved in the Al matrix, and a coarse intermetallic compound containing Cr is produced, resulting in a decrease in mechanical properties. Can be prevented, a decrease in thermal conductivity can be avoided, and the temperature rise of the contact surface due to sliding can be prevented, thereby improving the scuffing resistance. In particular, when Cr is contained, it is more preferable to set the Cr content to 0.05 mass% to 1.5 mass%.
  • Mn 0.02% by mass or more of Mn
  • the effect that Mn can be dissolved in the Al matrix and the mechanical properties (particularly fatigue strength at high temperature) can be improved is obtained. It is done.
  • Mn content 2.0% by mass or less
  • Mn can be dissolved in the Al matrix, and a coarse intermetallic compound containing Mn is generated, resulting in a decrease in mechanical properties. Can be prevented.
  • Mn when Mn is contained, it is more preferable to set the Mn content to 0.05 mass% to 1.5 mass%.
  • the aluminum alloy may further include a composition (composition) containing 0.0001% by mass to 0.03% by mass of B (boron).
  • a composition composition which contained B by the said specific ratio, a crystal grain can be refined
  • the transport aircraft compressor component contains an Al—Fe based intermetallic compound, and an average equivalent circle diameter of the Al—Fe based intermetallic compound is in a cross-sectional structure of the transport aircraft compressor component. It is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • the average equivalent circle diameter of the intermetallic compound is less than 0.1 ⁇ m, the effect of dispersion strengthening cannot be exhibited.
  • the average equivalent circle diameter of the intermetallic compound exceeds 3.0 ⁇ m, a coarse intermetallic compound is formed, and since it breaks from the starting point, the mechanical property is deteriorated.
  • the average equivalent circle diameter of the Al—Fe-based intermetallic compound is preferably in the range of 0.3 ⁇ m to 2.0 ⁇ m in the cross-sectional structure of the compressor component for transport aircraft.
  • the range of 5 ⁇ m is particularly preferable.
  • the Al—Fe based intermetallic compound is not particularly limited, and examples thereof include an Al—Fe—V—Mo based intermetallic compound containing at least Al, Fe, V, and Mo. .
  • the Al content is 81.60 mass% to 92.37 mass%
  • the Fe content is 2.58 mass% to 10.05 mass%
  • the content is preferably from 1.44% by mass to 4.39% by mass
  • the Mo content is preferably from 2.45% by mass to 3.62% by mass.
  • the composition is good at a high temperature range of 200 ° C. or higher. Mechanical properties can be obtained.
  • the equivalent circle diameter of the Al—Fe intermetallic compound is a circle having the same area as the area of the Al—Fe intermetallic compound in the SEM photograph (image) of the cross section of the compressor component 1 for transport equipment. It is a value converted as a diameter.
  • the obtained aluminum alloy powder is preheated to a temperature of 280 ° C., the preheated aluminum alloy powder is filled in a mold heated and held at the same 280 ° C., and the pressure is 1.5 ton / cm 2 .
  • Compression molding was performed to obtain a cylindrical compact (molded body) having a diameter of 210 mm and a length of 250 mm.
  • the obtained green compact was chamfered to a diameter of 203 mm with a lathe to obtain a green compact billet (compression molding process).
  • the obtained billet is heated to 400 ° C., and the heated billet is inserted into an extrusion container having an inner diameter of 210 mm that is heated and maintained at 400 ° C., and an extrusion ratio of 6.4 is obtained by an indirect extrusion method using a die having an inner diameter of 83 mm. Was extruded to obtain an extruded material (extrusion process).
  • the obtained extruded material was subjected to a lathe process and cut using a ball end mill (blade) with a five-axis machine to obtain a compressor part 1 for a transport machine shown in FIG. 1 (cutting) Process).
  • Example 2 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Cr: 0.5% by mass, Al: 85.5% by mass, except that an aluminum alloy containing inevitable impurities was used. Obtained.
  • Examples 3 to 8> A compressor part 1 for a transport aircraft is manufactured in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 1 is used as an aluminum alloy for forming a molten aluminum alloy. Obtained.
  • Examples 9 to 16> A compressor part 1 for a transport aircraft is manufactured in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 2 is used as an aluminum alloy for forming a molten aluminum alloy. Obtained.
  • Examples 17 and 18, Comparative Examples 1 to 6> A compressor component for a transport aircraft is obtained in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 3 is used as an aluminum alloy for forming a molten aluminum alloy. It was.
  • Example 7 A compressor part for a transport aircraft was obtained in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 4 was used as the aluminum alloy for forming the molten aluminum alloy. It was.
  • “average equivalent circle diameter ( ⁇ m) of intermetallic compound” is the Al—Fe—V—Mo intermetallic compound (Al) present in the matrix of each compressor component for transport aircraft. , Fe, V, and Mo, the average equivalent circle diameter ( ⁇ m) of the intermetallic compound.
  • This “average circle equivalent diameter ( ⁇ m) of the intermetallic compound” is a structure having a size of 10 mm in length ⁇ 10 mm in width ⁇ 10 mm in thickness from the main body (shaft) at the center of the compressor component for transport equipment obtained.
  • ⁇ Tensile strength evaluation method at high temperature The obtained compressor part for transport aircraft is processed into a tensile test piece having a distance between gauge points of 20 mm and a parallel part diameter of 4 mm, and a high-temperature tensile test (at 260 ° C.) is performed on the tensile test piece. Tensile strength) was measured. The high temperature tensile test was performed in a measurement environment at 260 ° C. after holding the high temperature tensile test piece at 260 ° C. for 100 hours. Evaluation was made based on the following criteria. (Criteria) “ ⁇ ”: The tensile strength at 260 ° C.
  • the tensile strength at 260 ° C. is 351 MPa or more and 355 MPa or less “ ⁇ ” ...
  • the tensile strength at 260 ° C. is 346 MPa or more and 350 MPa or less “X”: At 260 ° C. Has a tensile strength of 345 MPa or less.
  • ⁇ High-temperature fatigue test method> The obtained compressor part for transport equipment is processed into a fatigue test piece having a distance between gauge points of 30 mm and a parallel part diameter of 8 mm, and the fatigue test piece is subjected to a high temperature fatigue test (at 260 ° C.). Fatigue strength) was measured. In the high temperature fatigue test, the fatigue test piece was held at 260 ° C. for 100 hours, and then the test was conducted 500,000 times under a measurement environment of 260 ° C. under a condition of a repetition rate of 3600 rpm. Evaluation was made based on the following criteria. (Criteria) “ ⁇ ”: the fatigue strength at 260 ° C. is 226 MPa or more “O”: the fatigue strength at 260 ° C.
  • the fatigue strength at 260 ° C. is 216 MPa or more and 220 MPa or less “ ⁇ ”: at 260 ° C. Has a fatigue strength of 215 MPa or less.
  • ⁇ Creep test method at high temperature The obtained compressor part for transport equipment is processed into a creep test piece having a distance between gauge points of 30 mm and a parallel part diameter of 6 mm, and a high temperature creep test is performed on the creep test piece (at 260 ° C.). Creep characteristics) were measured.
  • the high temperature creep test was conducted in a measurement environment at 260 ° C. after the creep test piece was held at 260 ° C. for 100 hours.
  • the creep rupture strength was calculated under the conditions of temperature: 260 ° C. and rupture time of 300 hours, and evaluated based on the following criteria. (Criteria) “ ⁇ ”: Creep rupture strength at 260 ° C. is 216 MPa or more “O” ...
  • Creep rupture strength at 260 ° C. is 211 MPa or more and 215 MPa or less “ ⁇ ” .
  • Creep rupture strength at 260 ° C. is 206 MPa or more and 210 MPa or less “ ⁇ ” ...
  • the creep rupture strength at 260 ° C. is 205 MPa or less.
  • the compressor parts for transport aircraft of Examples 1 to 18 according to the present invention were excellent in various mechanical properties at high temperature (260 ° C.).
  • the compressor parts for transport aircraft according to the present invention and the compressor parts for transport aircraft obtained by the production method of the present invention are excellent in mechanical properties at high temperatures, and therefore suitable as compressor parts for transport aircraft such as automobiles. used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a compressor part for a transport aircraft, the compressor part having excellent mechanical properties at high temperature. This compressor part for a transport aircraft contains: 5.0-9.0 mass% of Fe; 0.1-3.0 mass% of V; 0.1-3.0 mass% of Mo; 0.1-2.0 mass% of Zr; 0.02-2.0 mass% of Ti; and 0.02-2.0 mass% of one or two metals selected from the group consisting of Cr and Mn, with the remainder comprising Al and inevitable impurities. The compressor part for the transport aircraft contains an Al-Fe based intermetallic compound, and the average equivalent circle diameter of the Al-Fe based intermetallic compound in the cross-sectional microstructure of the compressor part for transport aircraft is in the range of 0.1-3.0 μm.

Description

高温における機械的特性に優れた輸送機用圧縮機部品及びその製造方法Compressor parts for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
 本発明は、高温における機械特性に優れたアルミニウム合金製の、輸送機用圧縮機部品及びその製造方法に関する。 The present invention relates to a compressor component for a transport machine made of an aluminum alloy having excellent mechanical properties at high temperatures and a method for manufacturing the same.
 従来の輸送機用圧縮機部品、例えばターボチャージャ用インペラは、150℃程度の高温状況下において10000rpmを超える高速回転が与えられるため、この高温下において高強度および高剛性を備えていることが要求されると共に、エネルギー損失の低減を図るために軽量化も求められている。また、高速回転に耐えることができる強度も要求される。 Conventional compressor parts for transport aircraft, for example, turbocharger impellers, are required to have high strength and high rigidity at high temperatures exceeding 10,000 rpm under high temperature conditions of about 150 ° C. In addition, weight reduction is also required in order to reduce energy loss. In addition, strength that can withstand high-speed rotation is also required.
 従来では、ターボチャージャ用インペラは、2618合金(Cu:1.9質量%~2.7質量%、Mg:1.3質量%~1.8質量%、Ni:0.9質量%~1.2質量%、Fe:0.9質量%~1.3質量%、Si:0.1質量%~0.25質量%、Ti:0.04質量%~0.1質量%を含有し、残部がAlからなる合金)の鋳造・鍛造品を切削加工して製造していた。 Conventionally, turbocharger impellers are made of 2618 alloy (Cu: 1.9 mass% to 2.7 mass%, Mg: 1.3 mass% to 1.8 mass%, Ni: 0.9 mass% to 1. mass%). 2 mass%, Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, the balance Was manufactured by cutting a cast / forged product made of Al).
 しかし、近年における切削加工の高速化により、アルミニウム合金押出材の切削品化が進んできており、切削性の向上、高温強度の改善がさらに必要となってきている。 However, due to the recent increase in cutting speed, the aluminum alloy extruded material has been made into a cut product, and further improvement in machinability and high temperature strength is required.
 例えば、特許文献1には、高温(160℃)での強度が従来よりも向上したAl-Cu-Mg系アルミニウム合金押出材を提供する技術が開示されている。即ち、特許文献1には、Cu:3.4~5.5%(質量%、以下同じ)、Mg:1.7~2.3%、Ni:1.0~2.5%、Fe:0.5~1.5%、Mn:0.1~0.4%、Zr:0.05~0.3%、Si:0.1%未満、Ti:0.1%未満を含み、残部Al及び不可避不純物からなることを特徴とする高温強度及び高温疲労特性に優れた耐熱アルミニウム合金押出材が記載されている。 For example, Patent Document 1 discloses a technique for providing an Al—Cu—Mg-based aluminum alloy extruded material whose strength at a high temperature (160 ° C.) is improved as compared with the prior art. That is, in Patent Document 1, Cu: 3.4 to 5.5% (mass%, hereinafter the same), Mg: 1.7 to 2.3%, Ni: 1.0 to 2.5%, Fe: 0.5-1.5%, Mn: 0.1-0.4%, Zr: 0.05-0.3%, Si: less than 0.1%, Ti: less than 0.1%, the balance A heat-resistant aluminum alloy extruded material excellent in high-temperature strength and high-temperature fatigue characteristics characterized by comprising Al and inevitable impurities is described.
特許第5284935号公報Japanese Patent No. 5284935
 ところで、自動車等の内燃機関の技術分野においてターボチャージャ用インペラは、更なる高速回転化が求められており、従ってターボチャージャ用インペラを構成するアルミニウム合金材としては、従来よりさらに高い温度域においても機械特性に優れたものが希求されている。また、ターボチャージャ用インペラ等の輸送機用圧縮機部品に要求される特性としては、静的強度の他に、クリープ特性等の動的な強度も優れていることが求められている。 By the way, in the technical field of internal combustion engines such as automobiles, turbocharger impellers are required to rotate at higher speeds. Therefore, as an aluminum alloy material constituting turbocharger impellers, even in a higher temperature range than before. What has excellent mechanical properties is desired. Further, as a characteristic required for a compressor part for a transport machine such as a turbocharger impeller, in addition to a static strength, a dynamic strength such as a creep property is required to be excellent.
 本発明は、かかる技術的背景に鑑みてなされたものであって、高温における機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品及びその製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and an object of the present invention is to provide a compressor component for a transport aircraft excellent in mechanical properties (static strength, creep properties, etc.) at a high temperature and a method for manufacturing the same. And
 前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
 [1]Fe(鉄):5.0質量%~9.0質量%、V(バナジウム):0.1質量%~3.0質量%、Mo(モリブデン):0.1質量%~3.0質量%、Zr(ジルコニウム):0.1質量%~2.0質量%、Ti(チタン):0.02質量%~2.0質量%を含有し、Cr(クロム)およびMn(マンガン)からなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl(アルミニウム)及び不可避不純物からなる輸送機用圧縮機部品であって、
 前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品。
[1] Fe (iron): 5.0% by mass to 9.0% by mass, V (vanadium): 0.1% by mass to 3.0% by mass, Mo (molybdenum): 0.1% by mass to 3.% by mass 0 mass%, Zr (zirconium): 0.1 mass% to 2.0 mass%, Ti (titanium): 0.02 mass% to 2.0 mass%, Cr (chromium) and Mn (manganese) 1 or 2 kinds of metals selected from the group consisting of 0.02% by mass to 2.0% by mass, respectively, and the balance of the compressor part for transport aircraft, which consists of Al (aluminum) and inevitable impurities. ,
The compressor part for transport equipment contains an Al—Fe based intermetallic compound, and the average equivalent circle diameter of the Al—Fe based intermetallic compound in the cross-sectional structure of the transport equipment compressor part is 0.1 μm to A compressor part for a transport aircraft, characterized by being in the range of 3.0 μm.
 [2]前記輸送機用圧縮機部品は、さらに、B(ホウ素)を0.0001質量%~0.03質量%含む前項1に記載の輸送機用圧縮機部品。 [2] The compressor component for a transport aircraft according to item 1, wherein the compressor component for a transport aircraft further contains 0.0001 mass% to 0.03 mass% of B (boron).
 [3]前記Al-Fe系金属間化合物は、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物であり、
 前記Al-Fe-V-Mo系金属間化合物における、Alの含有率が81.60質量%~92.37質量%、Feの含有率が2.58質量%~10.05質量%、Vの含有率が1.44質量%~4.39質量%、Moの含有率が2.45質量%~3.62質量%である前項1または2に記載の輸送機用圧縮機部品。
[3] The Al—Fe intermetallic compound is an Al—Fe—V—Mo intermetallic compound containing at least Al, Fe, V, and Mo.
In the Al—Fe—V—Mo intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, 3. The compressor part for a transport aircraft according to the item 1 or 2, wherein the content is 1.44% by mass to 4.39% by mass and the Mo content is 2.45% by mass to 3.62% by mass.
 [4]Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
 前記圧粉体を熱間押出しして押出材を得る押出工程と、
 前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
 前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
[4] Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 1 to 2% by mass of one or two metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass to 2.0% by mass and Ti: 0.02% by mass to 2.0% by mass A compression molding step of obtaining a green compact by compression molding aluminum alloy powder containing ~ 2.0% by mass and the balance being Al and inevitable impurities;
An extruding step of hot extruding the green compact to obtain an extruded material;
A cutting step of cutting the extruded material to obtain a compressor part for a transport aircraft, and
The compressor part for transport aircraft contains an Al—Fe intermetallic compound in the compressor part for transport aircraft, and the Al—Fe intermetallic compound of the cross section structure of the compressor part for transport aircraft is A method for producing a compressor component for a transport aircraft, wherein an average equivalent circle diameter is in a range of 0.1 μm to 3.0 μm.
 [5]Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る粉末化工程と、
 前記アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
 前記圧粉体を熱間押出しして押出材を得る押出工程と、
 前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
 前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
[5] Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 1 to 2% by mass of one or two metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass to 2.0% by mass and Ti: 0.02% by mass to 2.0% by mass A pulverization step of obtaining an aluminum alloy powder by rapidly solidifying a molten aluminum alloy containing ~ 2.0% by mass and the balance consisting of Al and inevitable impurities by an atomizing method;
A compression molding step of obtaining a green compact by compression molding the aluminum alloy powder;
An extruding step of hot extruding the green compact to obtain an extruded material;
A cutting step of cutting the extruded material to obtain a compressor part for a transport aircraft, and
The compressor part for transport aircraft contains an Al—Fe intermetallic compound in the compressor part for transport aircraft, and the Al—Fe intermetallic compound of the cross section structure of the compressor part for transport aircraft is A method for producing a compressor component for a transport aircraft, wherein an average equivalent circle diameter is in a range of 0.1 μm to 3.0 μm.
 [1]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品が提供される。 [1] According to the invention of [1], a compressor component for a transport aircraft excellent in mechanical properties (static strength, creep properties, etc.) at a high temperature is provided.
 [2]の発明によれば、高温における機械特性(値)をより向上させた輸送機用圧縮機部品が提供される。 [2] According to the invention of [2], a compressor component for a transport aircraft with improved mechanical characteristics (value) at a high temperature is provided.
 [3]の発明によれば、高温における機械特性(値)をより一層向上させた輸送機用圧縮機部品が提供される。 [3] According to the invention of [3], a compressor component for a transport aircraft having further improved mechanical characteristics (value) at a high temperature is provided.
 [4]及び[5]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を製造することができる。従って、得られた輸送機用圧縮機部品は、自動車等の輸送機用圧縮機部品として好適に使用される。 According to the inventions [4] and [5], it is possible to produce a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures. Therefore, the obtained compressor component for a transport machine is suitably used as a compressor component for a transport machine such as an automobile.
 更に[5]の発明では、アルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得ているので、合金の各元素の凝固時の拡散を抑制し、結晶粒や析出物の粗大化を抑制できて、さらに平衡相や準安定相の出現を抑制できて、遷移元素であるFeの固溶量の拡大をなし得て、高温における機械特性(静的強度、クリープ特性等)により一層優れた輸送機用圧縮機部品を製造することができる。 Furthermore, in the invention of [5], since the molten aluminum alloy is rapidly solidified by atomization and pulverized to obtain an aluminum alloy powder, diffusion of each element of the alloy during solidification is suppressed, and crystal grains and precipitates are produced. It is possible to suppress the coarsening of steel, further suppress the appearance of equilibrium phase and metastable phase, increase the solid solution amount of transition element Fe, and increase mechanical properties at high temperatures (static strength, creep properties, etc.) ), More excellent compressor parts for transport aircraft can be manufactured.
本発明に係る輸送機用圧縮機部品の一例を示す斜視図である。It is a perspective view which shows an example of the compressor components for transport aircraft which concern on this invention.
 本発明に係る輸送機用圧縮機部品は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなる輸送機用圧縮機部品であって、前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である構成である。このような構成であることにより、高温における機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品が提供される。 The compressor component for a transport aircraft according to the present invention includes Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.% by mass. 0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, one or two selected from the group consisting of Cr and Mn A compressor part for a transport machine containing 0.02% by mass to 2.0% by mass of a metal, the balance being Al and inevitable impurities, wherein the Al—Fe-based metal is contained in the compressor part for a transport machine In the cross-sectional structure of the compressor component for transport aircraft, the average equivalent circle diameter of the Al—Fe intermetallic compound is in the range of 0.1 μm to 3.0 μm. With such a configuration, a compressor component for a transport aircraft having excellent mechanical properties (static strength, creep properties, etc.) at a high temperature is provided.
 次に、本発明に係る、輸送機用圧縮機部品の製造方法について説明する。本製造方法では、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を準備する。前記特定組成のアルミニウム合金粉末の製造手法は、特に限定されないが、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得るのが好ましい(粉末化工程)。 Next, a method for manufacturing a compressor component for a transport aircraft according to the present invention will be described. In this production method, Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02%. An aluminum alloy powder is prepared that is contained by mass% to 2.0 mass%, and the balance is Al and inevitable impurities. The method for producing the aluminum alloy powder having the specific composition is not particularly limited, but Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% 1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, selected from the group consisting of Cr and Mn An aluminum alloy powder containing 0.02% by mass to 2.0% by mass of seeds or two kinds of metals, with the balance being rapidly solidified by an atomization method using a molten aluminum alloy consisting of Al and inevitable impurities. It is preferable to obtain an aluminum alloy atomized powder) (powdering step).
 前記粉末化工程では、上記特定組成のアルミニウム合金溶湯を通常の溶解法によって調製する。得られたアルミニウム合金溶湯をアトマイズ法によって粉末化する。アトマイズ法は、噴霧ノズルからの窒素ガス等のガス流によりアルミニウム合金溶湯の微小液滴をミスト化して噴霧し、微小液滴を急冷凝固させて微細なアルミニウム合金粉末を得る方法である。冷却速度は、102~105℃/秒であるのが好ましい。平均粒子径が30μm~70μmのアルミニウム合金粉末が得られるようにするのがよい。30μm以上であることで合金粉末作製の歩留まりを顕著に向上できると共に、70μm以下であることで粗大な酸化物や異物の混入を回避できる。得られたアルミニウム合金粉末は、篩を用いて分級するのが好ましい。 In the powdering step, the molten aluminum alloy having the specific composition is prepared by a normal melting method. The obtained molten aluminum alloy is pulverized by an atomizing method. The atomization method is a method in which fine droplets of molten aluminum alloy are atomized and sprayed by a gas flow such as nitrogen gas from a spray nozzle, and the fine droplets are rapidly solidified to obtain a fine aluminum alloy powder. The cooling rate is preferably 10 2 to 10 5 ° C / second. It is preferable to obtain an aluminum alloy powder having an average particle diameter of 30 μm to 70 μm. When the thickness is 30 μm or more, the yield of manufacturing the alloy powder can be remarkably improved, and when the thickness is 70 μm or less, mixing of coarse oxides and foreign matters can be avoided. The obtained aluminum alloy powder is preferably classified using a sieve.
 次に、前記粉末化工程で得られたアルミニウム合金粉末を圧縮成形して圧粉体を得る(圧縮成形工程)。一例を挙げると、250℃~300℃に加熱したアルミニウム合金粉末を、230℃~270℃に加熱された金型内に充填し、所定形状に圧縮成形して圧粉体を得る。前記圧縮成形の圧力は、特に限定されないが、通常は、0.5トン/cm2~3.0トン/cm2に設定するのが好ましい。また、相対密度が60%~90%の圧粉体にするのが好ましい。前記圧粉体の形状は、特に限定されないが、次の押出工程を考慮して、円柱形状または円盤状とするのが好ましい。 Next, the aluminum alloy powder obtained in the powdering step is compression molded to obtain a green compact (compression molding step). For example, an aluminum alloy powder heated to 250 ° C. to 300 ° C. is filled in a mold heated to 230 ° C. to 270 ° C., and compression molded into a predetermined shape to obtain a green compact. The pressure for the compression molding is not particularly limited, but it is usually preferable to set the pressure to 0.5 ton / cm 2 to 3.0 ton / cm 2 . Further, it is preferable to use a green compact having a relative density of 60% to 90%. The shape of the green compact is not particularly limited, but it is preferably a cylindrical shape or a disk shape in consideration of the next extrusion process.
 次いで、前記圧縮成形工程で得られた圧粉体を熱間押出しして押出材を得る(押出工程)。前記圧粉体には、必要に応じて面削等の機械加工を施してから、脱ガス処理を施し、加熱して押出工程に供する。押出前の圧粉体の加熱温度は、300℃~450℃にするのが好ましい。押出に際しては、例えば、圧粉体を押出コンテナ内に挿入して押出ラムにより加圧力を加え、押出ダイスから例えば丸棒形状に押出す。この時、前記押出コンテナを予め300℃~400℃に加熱しておくのが望ましい。このように熱間で押し出すことによって圧粉体の塑性変形が進行し、アルミニウム合金粉末(粒子)同士が結合して一体化した押出体が得られる。前記押出の際に、押出圧力は10MPa~25MPaに設定するのが好ましい。 Next, the green compact obtained in the compression molding step is hot-extruded to obtain an extruded material (extrusion step). The green compact is subjected to machining such as chamfering as necessary, and then subjected to degassing treatment and heated to be subjected to an extrusion process. The heating temperature of the green compact before extrusion is preferably 300 to 450 ° C. At the time of extrusion, for example, the green compact is inserted into an extrusion container, pressure is applied by an extrusion ram, and the extrusion die is extruded into, for example, a round bar shape. At this time, it is desirable that the extrusion container is heated to 300 ° C. to 400 ° C. in advance. By extruding in this way, plastic deformation of the green compact proceeds, and an extruded body in which aluminum alloy powders (particles) are combined and integrated is obtained. During the extrusion, the extrusion pressure is preferably set to 10 MPa to 25 MPa.
 次いで、前記押出工程で得られた押出材を切削加工して輸送機用圧縮機部品を得る(切削工程)。例えば、前記押出材を旋盤加工を経て、5軸加工機等にてボールエンドミル等の刃物を用いて切削加工して所定形状の輸送機用圧縮機部品を得る(図1参照)。 Next, the extruded material obtained in the extrusion process is cut to obtain a compressor component for a transport machine (cutting process). For example, the extruded material is subjected to a lathe process, and is cut using a cutting tool such as a ball end mill with a 5-axis machine or the like to obtain a compressor part for a transporting machine having a predetermined shape (see FIG. 1).
 前記切削工程で得られた輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲にある構成である。こうして本発明の輸送機用圧縮機部品1を得ることができる(図1参照)。 The transport compressor component obtained in the cutting process contains an Al—Fe intermetallic compound in the transport compressor component, and the Al—Fe intermetallic compound is included in the cross-sectional structure of the transport compressor component. The average equivalent circle diameter of the Fe-based intermetallic compound is in the range of 0.1 μm to 3.0 μm. Thus, the compressor part 1 for a transport aircraft of the present invention can be obtained (see FIG. 1).
 即ち、上述した本発明に係る、輸送機用圧縮機部品の製造方法によって得られた輸送機用圧縮機部品1は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金製輸送機用圧縮機部品であって、前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である構成である。 That is, the compressor part 1 for transport aircraft obtained by the method for manufacturing a compressor part for transport aircraft according to the present invention described above has Fe: 5.0 mass% to 9.0 mass%, V: 0.1 Mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass% An aluminum alloy transporter containing 0.02% by mass to 2.0% by mass of one or two metals selected from the group consisting of Cr and Mn, with the balance being Al and inevitable impurities A compressor part for transport, comprising an Al—Fe based intermetallic compound in the compressor part for transporting machine, and an average of the Al—Fe based intermetallic compound in the cross-sectional structure of the compressor part for transporting machine The equivalent circle diameter is in the range of 0.1 μm to 3.0 μm.
 なお、本発明に係る輸送機用圧縮機部品1は、上記製造方法で得られた輸送機用圧縮機部品に限定されるものではなく、他の製造方法で得られたものも包含する。 In addition, the compressor component 1 for transport aircraft according to the present invention is not limited to the compressor component for transport aircraft obtained by the above-described production method, and includes those obtained by other production methods.
 次に、上述した本発明に係る輸送機用圧縮機部品および輸送機用圧縮機部品の製造方法における「アルミニウム合金」の組成について以下詳述する。前記アルミニウム合金は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金である。 Next, the composition of the “aluminum alloy” in the manufacturing method of the compressor component for a transport aircraft and the compressor component for a transport aircraft according to the present invention described above will be described in detail below. The aluminum alloy contains Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02%. It is an aluminum alloy containing from mass% to 2.0 mass% with the balance being Al and inevitable impurities.
 前記Fe(成分)は、高い融点を有するAl-Fe系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるFe含有率は、5.0質量%~9.0質量%の範囲とする。Fe含有率が5.0質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、Fe含有率が9.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるFe含有率は、7.0質量%~8.0質量%の範囲であるのが好ましい。 The Fe (component) is an element that generates an Al—Fe-based intermetallic compound having a high melting point and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C. to 350 ° C. is there. The Fe content in the aluminum alloy is in the range of 5.0% by mass to 9.0% by mass. When the Fe content is less than 5.0% by mass, the strength of the compressor component for transport aircraft is reduced. When the Fe content exceeds 9.0% by mass, the ductility of the compressor component for transport aircraft is decreased. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures. In particular, the Fe content in the aluminum alloy is preferably in the range of 7.0% by mass to 8.0% by mass.
 前記V(成分)は、Al-Fe-V-Mo系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるV含有率は、0.1質量%~3.0質量%の範囲とする。V含有率が0.1質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、V含有率が3.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるV含有率は、1.0質量%~2.0質量%の範囲であるのが好ましい。 V (component) is an element that generates an Al—Fe—V—Mo intermetallic compound and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there. The V content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the V content is less than 0.1% by mass, the strength of the compressor component for transport aircraft is reduced. When the V content exceeds 3.0% by mass, the ductility of the compressor component for transport aircraft is decreased. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures. In particular, the V content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
 前記Mo(成分)は、Al-Fe-V-Mo系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるMo含有率は、0.1質量%~3.0質量%の範囲とする。Mo含有率が0.1質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、Mo含有率が3.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるMo含有率は、1.0質量%~2.0質量%の範囲であるのが好ましい。 The Mo (component) is an element that forms an Al—Fe—V—Mo intermetallic compound and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C. to 350 ° C. is there. The Mo content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. If the Mo content is less than 0.1% by mass, the strength of the compressor component for transport equipment will be reduced. If the Mo content exceeds 3.0% by mass, the ductility of the compressor component for transport equipment will be reduced. Therefore, it is not possible to obtain a compressor component for a transport aircraft that is excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures. In particular, the Mo content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
 前記Zr(成分)は、Al-Fe-V-Mo系金属間化合物の粗大化を生じず、金属間化合物の微細晶出を実現できる元素である。また、前記Zrを含有していることで、高温強度を向上させることができるし、Alマトリックス中でのAlの自己拡散を抑制できてクリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるZr含有率は、0.1質量%~2.0質量%の範囲とする。Zr含有率が0.1質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。またZr含有率が2.0質量%を超えると、Zrを含む粗大な金属間化合物が発生するので(後述の比較例9参照)、良好な機械的特性を得ることができない。中でも、前記アルミニウム合金におけるZr含有率は、0.5質量%~1.5質量%の範囲であるのが好ましい。 The Zr (component) is an element that does not cause coarsening of the Al—Fe—V—Mo intermetallic compound and can realize fine crystallization of the intermetallic compound. Further, by containing Zr, the high temperature strength can be improved, and the self-diffusion of Al in the Al matrix can be suppressed and the creep characteristics can be improved. The Zr content in the aluminum alloy is in the range of 0.1% by mass to 2.0% by mass. When the Zr content is less than 0.1% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited. On the other hand, if the Zr content exceeds 2.0% by mass, a coarse intermetallic compound containing Zr is generated (see Comparative Example 9 described later), so that good mechanical properties cannot be obtained. In particular, the Zr content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.5% by mass.
 前記Ti(成分)は、前記Zrとの協働により、Alとの間で、L12構造のAl-(Ti,Zr)系金属間化合物を形成する役割を有する。また、前記Tiは、Alマトリックス中での拡散係数が小さいので、クリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるTi含有率は、0.02質量%~2.0質量%の範囲とする。Ti含有率が0.02質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。またTi含有率が2.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるTi含有率は、0.5質量%~1.0質量%の範囲であるのが好ましい。 The Ti (component) has a role of forming an Al— (Ti, Zr) -based intermetallic compound having an L 12 structure with Al in cooperation with the Zr. Moreover, since Ti has a small diffusion coefficient in the Al matrix, the effect of improving the creep characteristics can be obtained. The Ti content in the aluminum alloy is in the range of 0.02% by mass to 2.0% by mass. When the Ti content is less than 0.02% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited. If the Ti content exceeds 2.0% by mass, the ductility of the compressor parts for transport equipment will decrease and the compressor parts for transport equipment will have excellent mechanical properties (static strength, creep characteristics, etc.) at high temperatures. Can't get. Among them, the Ti content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.0% by mass.
 本発明において、前記アルミニウム合金は、さらに、CrおよびMnからなる群より選ばれる1種または2種の金属を含有する。即ち、前記アルミニウム合金は、さらにCr:0.02質量%~2.0質量%を含有する組成であってもよいし、或いはさらにMn:0.02質量%~2.0質量%を含有する組成であってもよいし、或いはまたさらにCr:0.02質量%~2.0質量%およびMn:0.02質量%~2.0質量%を含有する組成であってもよい。Cr(成分)およびMn(成分)は、Al母相中に固溶して固溶強化として効果を発揮する。ただし、押出加工温度が500℃以上になると、析出が進行して高温での機械的特性を低下させやすいので、押出加工温度は500℃未満に設定するのが望ましい。またCr又は/及びMnの分散粒子は、再結晶後の粒界移動を抑制する効果があるので、例えば鍛造工程中におけるパーティングライン組織のST方向の平均結晶粒径の粗大化を抑制できて、本発明のアルミニウム合金押出材、鍛造材の全体にわたって微細な結晶粒、亜結晶粒を得ることができて、機械的特性をより向上させることができる。 In the present invention, the aluminum alloy further contains one or two metals selected from the group consisting of Cr and Mn. That is, the aluminum alloy may further have a composition containing Cr: 0.02% by mass to 2.0% by mass, or may further contain Mn: 0.02% by mass to 2.0% by mass. The composition may be a composition, or may further contain Cr: 0.02 mass% to 2.0 mass% and Mn: 0.02 mass% to 2.0 mass%. Cr (component) and Mn (component) are dissolved in the Al matrix and exert an effect as solid solution strengthening. However, when the extrusion temperature is 500 ° C. or higher, precipitation proceeds and the mechanical properties at high temperatures are likely to be lowered. Therefore, the extrusion temperature is preferably set to less than 500 ° C. Moreover, since the dispersed particles of Cr or / and Mn have the effect of suppressing the grain boundary movement after recrystallization, for example, the coarsening of the average crystal grain size in the ST direction of the parting line structure during the forging process can be suppressed. Further, fine crystal grains and sub-crystal grains can be obtained over the entire aluminum alloy extruded material and forged material of the present invention, and the mechanical characteristics can be further improved.
 また、Zrと、Cr又は/及びMnと、をそれぞれ上記含有率で含有することで、Al母相中に固溶して0.2%耐力を増大させることができる。 In addition, by containing Zr and Cr or / and Mn at the above-mentioned contents, respectively, it is possible to increase the 0.2% yield strength by solid solution in the Al matrix.
 Crを0.02質量%以上含有せしめることで、Al母相中にCrを固溶させることができて機械的特性(特に高温での疲労強度)を向上させることができ、また耐摩耗性を高め、Al母相中にCrが固溶して耐食性を向上させることができると共に、焼戻し軟化抵抗を高めるので、Crを含有せしめることで焼入れ性を向上できて熱処理硬さを向上させることができる。また、Crの含有率を2.0質量%以下とすることで、Al母相中にCrを固溶させることができ、更にCrを含む粗大な金属間化合物を生成し、機械的特性の低下を防止できると共に、熱伝導率の低下を回避できるし、摺動による接触面の昇温を防止できて耐スカッフィング性を向上できる。中でも、Crを含有させる場合、Cr含有率を0.05質量%~1.5質量%に設定するのがより好ましい。 By containing 0.02% by mass or more of Cr, Cr can be dissolved in the Al matrix and mechanical characteristics (particularly fatigue strength at high temperatures) can be improved, and wear resistance can be improved. It is possible to improve and improve the corrosion resistance by solid solution of Cr in the Al matrix, and to improve the temper softening resistance. By adding Cr, the hardenability can be improved and the heat treatment hardness can be improved. . In addition, by setting the Cr content to 2.0 mass% or less, Cr can be dissolved in the Al matrix, and a coarse intermetallic compound containing Cr is produced, resulting in a decrease in mechanical properties. Can be prevented, a decrease in thermal conductivity can be avoided, and the temperature rise of the contact surface due to sliding can be prevented, thereby improving the scuffing resistance. In particular, when Cr is contained, it is more preferable to set the Cr content to 0.05 mass% to 1.5 mass%.
 また、Mnを0.02質量%以上含有せしめることで、Al母相中にMnを固溶させることができて機械的特性(特に高温での疲労強度)を向上させることができるという効果が得られる。また、Mnの含有率を2.0質量%以下とすることで、Al母相中にMnを固溶させることができ、更にMnを含む粗大な金属間化合物を生成し、機械的特性の低下を防止できる。中でも、Mnを含有させる場合、Mn含有率を0.05質量%~1.5質量%に設定するのがより好ましい。 Further, by containing 0.02% by mass or more of Mn, the effect that Mn can be dissolved in the Al matrix and the mechanical properties (particularly fatigue strength at high temperature) can be improved is obtained. It is done. In addition, when the Mn content is 2.0% by mass or less, Mn can be dissolved in the Al matrix, and a coarse intermetallic compound containing Mn is generated, resulting in a decrease in mechanical properties. Can be prevented. Among these, when Mn is contained, it is more preferable to set the Mn content to 0.05 mass% to 1.5 mass%.
 本発明において、前記アルミニウム合金は、さらに、B(ホウ素)を0.0001質量%~0.03質量%含む構成(組成)としてもよい。Bを上記特定比率で含有せしめた組成とすることにより、結晶粒を微細化し、機械特性を向上できる。 In the present invention, the aluminum alloy may further include a composition (composition) containing 0.0001% by mass to 0.03% by mass of B (boron). By setting it as the composition which contained B by the said specific ratio, a crystal grain can be refined | miniaturized and a mechanical characteristic can be improved.
 本発明では、前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である。前記金属間化合物の平均円相当直径が0.1μm未満になると、分散強化の効果を発揮できない。また、前記金属間化合物の平均円相当直径が3.0μmを超えると、粗大な金属間化合物となり、それを起点として破断するため機械的特性が低下するという問題を生じる。中でも、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.3μm~2.0μmの範囲であるのが好ましく、さらに0.4μm~1.5μmの範囲であるのが特に好ましい。 In the present invention, the transport aircraft compressor component contains an Al—Fe based intermetallic compound, and an average equivalent circle diameter of the Al—Fe based intermetallic compound is in a cross-sectional structure of the transport aircraft compressor component. It is in the range of 0.1 μm to 3.0 μm. When the average equivalent circle diameter of the intermetallic compound is less than 0.1 μm, the effect of dispersion strengthening cannot be exhibited. In addition, when the average equivalent circle diameter of the intermetallic compound exceeds 3.0 μm, a coarse intermetallic compound is formed, and since it breaks from the starting point, the mechanical property is deteriorated. In particular, the average equivalent circle diameter of the Al—Fe-based intermetallic compound is preferably in the range of 0.3 μm to 2.0 μm in the cross-sectional structure of the compressor component for transport aircraft. The range of 5 μm is particularly preferable.
 前記Al-Fe系金属間化合物としては、特に限定されるものではないが、例えば、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物などが挙げられる。前記Al-Fe-V-Mo系金属間化合物における、Alの含有率は81.60質量%~92.37質量%、Feの含有率は2.58質量%~10.05質量%、Vの含有率は1.44質量%~4.39質量%、Moの含有率は2.45質量%~3.62質量%である構成が好ましく、この場合には200℃以上の高温域で良好な機械的特性を得ることができる。 The Al—Fe based intermetallic compound is not particularly limited, and examples thereof include an Al—Fe—V—Mo based intermetallic compound containing at least Al, Fe, V, and Mo. . In the Al—Fe—V—Mo intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, The content is preferably from 1.44% by mass to 4.39% by mass, and the Mo content is preferably from 2.45% by mass to 3.62% by mass. In this case, the composition is good at a high temperature range of 200 ° C. or higher. Mechanical properties can be obtained.
 なお、前記Al-Fe系金属間化合物の円相当直径とは、前記輸送機用圧縮機部品1の断面のSEM写真(画像)におけるAl-Fe系金属間化合物の面積と同じ面積を有する円の直径として換算した値である。 The equivalent circle diameter of the Al—Fe intermetallic compound is a circle having the same area as the area of the Al—Fe intermetallic compound in the SEM photograph (image) of the cross section of the compressor component 1 for transport equipment. It is a value converted as a diameter.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
 <実施例1>
 Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Cr:0.1質量%、Al:85.9質量%を含有し、不可避不純物を含有するアルミニウム合金を加熱して、1000℃のアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯をガスにてアトマイズして急冷凝固させて粉末化して、平均粒子径が50μmのアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得た(粉末化工程)。
<Example 1>
Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Cr: 0.1 mass%, Al: After heating an aluminum alloy containing 85.9% by mass and containing inevitable impurities to obtain a molten aluminum alloy at 1000 ° C., the molten aluminum alloy is atomized with a gas, rapidly solidified, and powdered. An aluminum alloy powder (aluminum alloy atomized powder) having an average particle diameter of 50 μm was obtained (powdering step).
 次に、得られたアルミニウム合金粉末を280℃の温度に予熱し、この予熱したアルミニウム合金粉末を、同じ280℃に加熱保持した金型内に充填し、1.5トン/cm2の圧力で圧縮成形して、直径210mm、長さ250mmの円柱形状の圧粉体(成形体)を得た。次に、得られた圧粉体を旋盤にて直径203mmまで面削して、圧粉体のビレットを得た(圧縮成形工程)。 Next, the obtained aluminum alloy powder is preheated to a temperature of 280 ° C., the preheated aluminum alloy powder is filled in a mold heated and held at the same 280 ° C., and the pressure is 1.5 ton / cm 2 . Compression molding was performed to obtain a cylindrical compact (molded body) having a diameter of 210 mm and a length of 250 mm. Next, the obtained green compact was chamfered to a diameter of 203 mm with a lathe to obtain a green compact billet (compression molding process).
 次に、得られたビレットを400℃に加熱し、この加熱ビレットを、400℃に加熱保持された内径210mmの押出コンテナ中に挿入し、内径83mmのダイスで間接押出法により押出比6.4で押出して押出材を得た(押出工程)。 Next, the obtained billet is heated to 400 ° C., and the heated billet is inserted into an extrusion container having an inner diameter of 210 mm that is heated and maintained at 400 ° C., and an extrusion ratio of 6.4 is obtained by an indirect extrusion method using a die having an inner diameter of 83 mm. Was extruded to obtain an extruded material (extrusion process).
 次に、得られた押出材を旋盤加工を経て、5軸加工機にてボールエンドミル(刃物)を用いて切削加工することによって、図1に示す輸送機用圧縮機部品1を得た(切削工程)。 Next, the obtained extruded material was subjected to a lathe process and cut using a ball end mill (blade) with a five-axis machine to obtain a compressor part 1 for a transport machine shown in FIG. 1 (cutting) Process).
 <実施例2>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Cr:0.5質量%、Al:85.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
<Example 2>
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Cr: 0.5% by mass, Al: 85.5% by mass, except that an aluminum alloy containing inevitable impurities was used. Obtained.
 <実施例3~8>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
<Examples 3 to 8>
A compressor part 1 for a transport aircraft is manufactured in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 1 is used as an aluminum alloy for forming a molten aluminum alloy. Obtained.
 <実施例9~16>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、表2に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
<Examples 9 to 16>
A compressor part 1 for a transport aircraft is manufactured in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 2 is used as an aluminum alloy for forming a molten aluminum alloy. Obtained.
 <実施例17、18、比較例1~6>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、表3に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
<Examples 17 and 18, Comparative Examples 1 to 6>
A compressor component for a transport aircraft is obtained in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 3 is used as an aluminum alloy for forming a molten aluminum alloy. It was.
 <比較例7~14>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、表4に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
<Comparative Examples 7 to 14>
A compressor part for a transport aircraft was obtained in the same manner as in Example 1 except that an aluminum alloy having an alloy composition (containing inevitable impurities) shown in Table 4 was used as the aluminum alloy for forming the molten aluminum alloy. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記のようにして得られた各輸送機用圧縮機部品(切削加工品)について下記評価法に基づいて評価を行った。その結果を表1~表4に示す。なお、表1~表4中の各元素欄において「-」の表記は、検出限界(0.005質量%)未満の数値であること(即ち当該元素が検出されなかったこと)を示している。 Evaluation was performed based on the following evaluation method for the compressor parts (cutting products) for each transport aircraft obtained as described above. The results are shown in Tables 1 to 4. In addition, in each element column in Tables 1 to 4, the notation “−” indicates that the value is less than the detection limit (0.005 mass%) (that is, the element was not detected). .
 また、表1~表4中の「金属間化合物の平均円相当直径(μm)」は、各輸送機用圧縮機部品のマトリックス中に存在するAl-Fe-V-Mo系金属間化合物(Al、Fe、V及びMoを少なくとも含有してなる金属間化合物)の平均円相当直径(μm)である。この「金属間化合物の平均円相当直径(μm)」は、得られた輸送機用圧縮機部品の中心にある本体部(軸部)から縦10mm×横10mm×厚さ10mmの大きさの組織観察用サンプル片を切り出し、このサンプル片を断面試料作製装置(Cross section polisher)を用いてミクロ研磨し、このミクロ研磨後のサンプル片のSEM写真(走査電子顕微鏡写真)を撮影し、この写真画像から金属間化合物の平均円相当直径(μm)を求めた(評価した)。前記SEM写真における視野1.5815mm2の範囲に存在する10個のAl-Fe-V-Mo系金属間化合物についての平均円相当直径を求めた。 In Tables 1 to 4, “average equivalent circle diameter (μm) of intermetallic compound” is the Al—Fe—V—Mo intermetallic compound (Al) present in the matrix of each compressor component for transport aircraft. , Fe, V, and Mo, the average equivalent circle diameter (μm) of the intermetallic compound. This “average circle equivalent diameter (μm) of the intermetallic compound” is a structure having a size of 10 mm in length × 10 mm in width × 10 mm in thickness from the main body (shaft) at the center of the compressor component for transport equipment obtained. A sample piece for observation was cut out, this sample piece was micro-polished using a cross section sampler (Cross section polisher), and an SEM photograph (scanning electron micrograph) of this micro-polished sample piece was taken, and this photographic image From this, the average equivalent circle diameter (μm) of the intermetallic compound was determined (evaluated). The average equivalent circle diameter of 10 Al—Fe—V—Mo intermetallic compounds existing in the field of view of 1.5815 mm 2 in the SEM photograph was determined.
 <高温での引張強度評価法>
 得られた輸送機用圧縮機部品を、標点間距離20mm、平行部直径4mmの引張試験片に加工して、該引張試験片の高温引張試験を行うことによって高温引張強度(260℃での引張強度)を測定した。前記高温引張試験は、高温引張試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での引張強度が356MPa以上
「○」…260℃での引張強度が351MPa以上355MPa以下
「△」…260℃での引張強度が346MPa以上350MPa以下
「×」…260℃での引張強度が345MPa以下である。
<Tensile strength evaluation method at high temperature>
The obtained compressor part for transport aircraft is processed into a tensile test piece having a distance between gauge points of 20 mm and a parallel part diameter of 4 mm, and a high-temperature tensile test (at 260 ° C.) is performed on the tensile test piece. Tensile strength) was measured. The high temperature tensile test was performed in a measurement environment at 260 ° C. after holding the high temperature tensile test piece at 260 ° C. for 100 hours. Evaluation was made based on the following criteria.
(Criteria)
“◎”: The tensile strength at 260 ° C. is 356 MPa or more “O”: The tensile strength at 260 ° C. is 351 MPa or more and 355 MPa or less “Δ” ... The tensile strength at 260 ° C. is 346 MPa or more and 350 MPa or less “X”: At 260 ° C. Has a tensile strength of 345 MPa or less.
 <高温での疲労試験法>
 得られた輸送機用圧縮機部品を、標点間距離30mm、平行部直径8mmの疲労試験片に加工して、該疲労試験片の高温疲労試験を行うことによって高温疲労強度(260℃での疲労強度)を測定した。前記高温疲労試験は、疲労試験片を260℃に100時間保持した後に260℃の測定環境下で繰返し速度3600rpmの条件で500000回試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での疲労強度が226MPa以上
「○」…260℃での疲労強度が221MPa以上225MPa以下
「△」…260℃での疲労強度が216MPa以上220MPa以下
「×」…260℃での疲労強度が215MPa以下である。
<High-temperature fatigue test method>
The obtained compressor part for transport equipment is processed into a fatigue test piece having a distance between gauge points of 30 mm and a parallel part diameter of 8 mm, and the fatigue test piece is subjected to a high temperature fatigue test (at 260 ° C.). Fatigue strength) was measured. In the high temperature fatigue test, the fatigue test piece was held at 260 ° C. for 100 hours, and then the test was conducted 500,000 times under a measurement environment of 260 ° C. under a condition of a repetition rate of 3600 rpm. Evaluation was made based on the following criteria.
(Criteria)
“◎”: the fatigue strength at 260 ° C. is 226 MPa or more “O”: the fatigue strength at 260 ° C. is 221 MPa or more and 225 MPa or less “Δ”: the fatigue strength at 260 ° C. is 216 MPa or more and 220 MPa or less “×”: at 260 ° C. Has a fatigue strength of 215 MPa or less.
 <高温でのクリープ試験法>
 得られた輸送機用圧縮機部品を、標点間距離30mm、平行部直径6mmのクリープ試験片に加工して、該クリープ試験片の高温クリープ試験を行うことによって高温クリープ特性(260℃でのクリープ特性)を測定した。前記高温クリープ試験は、クリープ試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。温度:260℃、破断時間300時間の条件下でのクリープラプチャー強度を算出し、下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃でのクリープラプチャー強度が216MPa以上
「○」…260℃でのクリープラプチャー強度が211MPa以上215MPa以下
「△」…260℃でのクリープラプチャー強度が206MPa以上210MPa以下
「×」…260℃でのクリープラプチャー強度が205MPa以下である。
<Creep test method at high temperature>
The obtained compressor part for transport equipment is processed into a creep test piece having a distance between gauge points of 30 mm and a parallel part diameter of 6 mm, and a high temperature creep test is performed on the creep test piece (at 260 ° C.). Creep characteristics) were measured. The high temperature creep test was conducted in a measurement environment at 260 ° C. after the creep test piece was held at 260 ° C. for 100 hours. The creep rupture strength was calculated under the conditions of temperature: 260 ° C. and rupture time of 300 hours, and evaluated based on the following criteria.
(Criteria)
“◎”: Creep rupture strength at 260 ° C. is 216 MPa or more “O” ... Creep rupture strength at 260 ° C. is 211 MPa or more and 215 MPa or less “Δ” ... Creep rupture strength at 260 ° C. is 206 MPa or more and 210 MPa or less “×” ... The creep rupture strength at 260 ° C. is 205 MPa or less.
 表から明らかなように、本発明に係る実施例1~18の輸送機用圧縮機部品は、高温(260℃)において各種の機械特性に優れていた。 As is clear from the table, the compressor parts for transport aircraft of Examples 1 to 18 according to the present invention were excellent in various mechanical properties at high temperature (260 ° C.).
 これに対し、本発明の規定範囲を逸脱する比較例1~14の輸送機用圧縮機部品では、高温(260℃)での機械特性に劣っていた。 On the other hand, the compressor parts for transport aircraft of Comparative Examples 1 to 14 deviating from the specified range of the present invention were inferior in mechanical properties at high temperature (260 ° C.).
 本発明に係る輸送機用圧縮機部品、本発明の製造方法で得られた輸送機用圧縮機部品は、高温における機械特性に優れているので、自動車等の輸送機用圧縮機部品として好適に使用される。 The compressor parts for transport aircraft according to the present invention and the compressor parts for transport aircraft obtained by the production method of the present invention are excellent in mechanical properties at high temperatures, and therefore suitable as compressor parts for transport aircraft such as automobiles. used.

Claims (5)

  1.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなる輸送機用圧縮機部品であって、
     前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品。
    Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02% by mass to 2.% by mass. It is a compressor part for a transport aircraft that contains 0% by mass and the balance consists of Al and inevitable impurities,
    The compressor part for transport equipment contains an Al—Fe based intermetallic compound, and the average equivalent circle diameter of the Al—Fe based intermetallic compound in the cross-sectional structure of the transport equipment compressor part is 0.1 μm to A compressor part for a transport aircraft, characterized by being in the range of 3.0 μm.
  2.  前記輸送機用圧縮機部品は、さらに、Bを0.0001質量%~0.03質量%含む請求項1に記載の輸送機用圧縮機部品。 The compressor component for a transport aircraft according to claim 1, wherein the compressor component for a transport aircraft further contains 0.0001% by mass to 0.03% by mass of B.
  3.  前記Al-Fe系金属間化合物は、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物であり、
     前記Al-Fe-V-Mo系金属間化合物における、Alの含有率が81.60質量%~92.37質量%、Feの含有率が2.58質量%~10.05質量%、Vの含有率が1.44質量%~4.39質量%、Moの含有率が2.45質量%~3.62質量%である請求項1または2に記載の輸送機用圧縮機部品。
    The Al—Fe based intermetallic compound is an Al—Fe—V—Mo based intermetallic compound containing at least Al, Fe, V and Mo,
    In the Al—Fe—V—Mo intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, The compressor component for a transport aircraft according to claim 1 or 2, wherein the content is 1.44% by mass to 4.39% by mass, and the Mo content is 2.45% by mass to 3.62% by mass.
  4.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
     前記圧粉体を熱間押出しして押出材を得る押出工程と、
     前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
     前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
    Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02% by mass to 2.% by mass. A compression molding step of obtaining a green compact by compression molding aluminum alloy powder containing 0% by mass and the balance being Al and inevitable impurities;
    An extruding step of hot extruding the green compact to obtain an extruded material;
    A cutting step of cutting the extruded material to obtain a compressor part for a transport aircraft, and
    The compressor part for transport aircraft contains an Al—Fe intermetallic compound in the compressor part for transport aircraft, and the Al—Fe intermetallic compound of the cross section structure of the compressor part for transport aircraft is A method for producing a compressor component for a transport aircraft, wherein an average equivalent circle diameter is in a range of 0.1 μm to 3.0 μm.
  5.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%~2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る粉末化工程と、
     前記アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
     前記圧粉体を熱間押出しして押出材を得る押出工程と、
     前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
     前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
    Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02% by mass to 2.% by mass. A powdering step of obtaining an aluminum alloy powder by containing 0% by mass, the balance of Al and inevitable impurities consisting of Al and an inevitable impurity by rapidly solidifying the molten aluminum alloy by an atomizing method;
    A compression molding step of obtaining a green compact by compression molding the aluminum alloy powder;
    An extruding step of hot extruding the green compact to obtain an extruded material;
    A cutting step of cutting the extruded material to obtain a compressor part for a transport aircraft, and
    The compressor part for transport aircraft contains an Al—Fe intermetallic compound in the compressor part for transport aircraft, and the Al—Fe intermetallic compound of the cross section structure of the compressor part for transport aircraft is A method for producing a compressor component for a transport aircraft, wherein an average equivalent circle diameter is in a range of 0.1 to 3.0 μm.
PCT/JP2019/011944 2018-04-03 2019-03-21 Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof WO2019193985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071462 2018-04-03
JP2018071462A JP7118705B2 (en) 2018-04-03 2018-04-03 Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019193985A1 true WO2019193985A1 (en) 2019-10-10

Family

ID=68100586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011944 WO2019193985A1 (en) 2018-04-03 2019-03-21 Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7118705B2 (en)
WO (1) WO2019193985A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033481B2 (en) * 2018-04-03 2022-03-10 昭和電工株式会社 Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310221B2 (en) * 1984-08-13 1988-03-04 Sumitomo Light Metal Ind
JPH09249930A (en) * 1996-03-13 1997-09-22 Mitsubishi Heavy Ind Ltd Aluminum alloy excellent in high temperature strength
JPH108162A (en) * 1996-06-17 1998-01-13 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material excellent in high temperature strength
JP2000161071A (en) * 1998-11-30 2000-06-13 Mitsubishi Heavy Ind Ltd Aluminum alloy made impeller and manufacture thereof
WO2019069651A1 (en) * 2017-10-03 2019-04-11 株式会社豊田自動織機 Compressor component for transport and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065358A (en) 2017-10-03 2019-04-25 昭和電工株式会社 Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor
JP7033481B2 (en) 2018-04-03 2022-03-10 昭和電工株式会社 Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310221B2 (en) * 1984-08-13 1988-03-04 Sumitomo Light Metal Ind
JPH09249930A (en) * 1996-03-13 1997-09-22 Mitsubishi Heavy Ind Ltd Aluminum alloy excellent in high temperature strength
JPH108162A (en) * 1996-06-17 1998-01-13 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material excellent in high temperature strength
JP2000161071A (en) * 1998-11-30 2000-06-13 Mitsubishi Heavy Ind Ltd Aluminum alloy made impeller and manufacture thereof
WO2019069651A1 (en) * 2017-10-03 2019-04-11 株式会社豊田自動織機 Compressor component for transport and method for manufacturing same

Also Published As

Publication number Publication date
JP2019183190A (en) 2019-10-24
JP7118705B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5326114B2 (en) High strength copper alloy
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
EP0265307B1 (en) Process for manufacturing shaped bodies from hypereutectic aluminium-silicon alloys, starting from powders obtained by rapid cooling
WO2019069651A1 (en) Compressor component for transport and method for manufacturing same
EP4083244A1 (en) Heat-resistant powdered aluminium material
JP6491452B2 (en) Aluminum alloy continuous cast material and method for producing the same
JP4764094B2 (en) Heat-resistant Al-based alloy
EP3170594B1 (en) Aluminum alloy powder for hot forging of sliding component, method of producing the same, aluminum alloy forged product for sliding component, and method of producing the same
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
JP2019065358A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor
JP2019026859A (en) Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
JP4277264B2 (en) Tool member with excellent high-temperature strength characteristics and method for producing the same
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JPH108162A (en) Production of aluminum alloy material excellent in high temperature strength
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JP2531773B2 (en) Method for producing heat-resistant A1-based alloy powder sintered body
JP2844688B2 (en) Method for producing Co-based alloy
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
JPH10265918A (en) Aluminum alloy
JP2000328164A (en) Heat resistant aluminum alloy excellent in strength and toughness and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780885

Country of ref document: EP

Kind code of ref document: A1