WO2019069651A1 - Compressor component for transport and method for manufacturing same - Google Patents

Compressor component for transport and method for manufacturing same Download PDF

Info

Publication number
WO2019069651A1
WO2019069651A1 PCT/JP2018/033951 JP2018033951W WO2019069651A1 WO 2019069651 A1 WO2019069651 A1 WO 2019069651A1 JP 2018033951 W JP2018033951 W JP 2018033951W WO 2019069651 A1 WO2019069651 A1 WO 2019069651A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
compressor component
intermetallic compound
compressor
Prior art date
Application number
PCT/JP2018/033951
Other languages
French (fr)
Japanese (ja)
Inventor
泰生 小鉄
杉山 知平
恭平 安藤
卓也 荒山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to DE112018005544.2T priority Critical patent/DE112018005544T5/en
Priority to CN201880058088.9A priority patent/CN111065754A/en
Priority to US16/651,211 priority patent/US20200238385A1/en
Publication of WO2019069651A1 publication Critical patent/WO2019069651A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/40Intermetallics other than rare earth-Co or -Ni or -Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades

Definitions

  • the present invention relates to a compressor component for a transport machine made of an aluminum alloy excellent in mechanical properties at high temperatures, and a method for producing the same.
  • turbochargers for turbochargers are required to have high strength and high rigidity at high temperatures since high speed rotation exceeding 10000 rpm is given under high temperature conditions of about 150 ° C.
  • weight reduction is also required.
  • strength which can endure high speed rotation is also required.
  • the turbocharger impeller is made of 2618 alloy (Cu: 1.9% by mass to 2.7% by mass, Mg: 1.3% by mass to 1.8% by mass, Ni: 0.9% by mass to 1. 2 mass%, Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, balance Is manufactured by cutting and casting cast and forged aluminum alloys.
  • Patent Document 1 discloses a technique for providing an Al-Cu-Mg-based aluminum alloy extruded material whose strength at high temperature (160 ° C.) is improved as compared with the conventional art. That is, in Patent Document 1, Cu: 3.4 to 5.5% (% by mass, the same applies hereinafter), Mg: 1.7 to 2.3%, Ni: 1.0 to 2.5%, Fe: 0.5 to 1.5%, Mn: 0.1 to 0.4%, Zr: 0.05 to 0.3%, Si: less than 0.1%, Ti: less than 0.1%, balance A heat-resistant aluminum alloy extruded material excellent in high-temperature strength and high-temperature fatigue characteristics characterized by comprising Al and unavoidable impurities is described.
  • the impeller for turbochargers is required to further increase the rotational speed. Therefore, as an aluminum alloy material constituting the impeller for turbochargers, even in a higher temperature range than before. What is excellent in mechanical properties is desired. In addition to static strength, dynamic properties such as creep properties are also required to be excellent as characteristics required of transport compressor components such as turbocharger impellers.
  • the present invention has been made in view of such technical background, and it is an object of the present invention to provide a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures and a method of manufacturing the same. I assume.
  • the present invention provides the following means.
  • An aluminum alloy compressor component for a transport machine comprising: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities,
  • the compressor component for a transport machine contains an Al-Fe-based intermetallic compound, and in the cross-sectional structure structure of the compressor component for a transport machine, the average equivalent circle diameter of the Al-Fe-based intermetallic compound is 0.1 ⁇ m to Transport compressor component characterized in that it is in the range of 3.0 ⁇ m.
  • the intermetallic compound is an Al-Fe-V-Mo based intermetallic compound containing at least Al, Fe, V and Mo,
  • the content of Al is 81.60% by mass to 92.37% by mass
  • the content of Fe is 2.58% by mass to 10.05% by mass
  • the content of V is 1.44% by mass 3.
  • Fe 5.0% by mass to 9.0% by mass
  • V 0.1% by mass to 3.0% by mass
  • Mo 0.1% by mass to 3.0% by mass
  • Zr 0.1 Compression molding process to obtain a green compact by compression molding an aluminum alloy powder containing: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities
  • An extrusion step of hot extruding the green compact to obtain an extruded material Cutting the extruded material to obtain a compressor component for a transport machine;
  • the compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound.
  • a molten metal of an aluminum alloy containing: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities is rapidly solidified by solidification and pulverized to powder
  • a powdering step of obtaining an alloy powder A compression molding step of compression molding the aluminum alloy powder to obtain a green compact; An extrusion step of hot extruding the green compact to obtain an extruded material; Cutting the extruded material to obtain a compressor component for a transport machine;
  • the compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound.
  • a compressor part for a transporter made of aluminum alloy excellent in mechanical properties (static strength, creep property, etc.) at high temperature is provided.
  • the obtained compressor component for a transporter is suitably used as a compressor component for a transporter such as a car.
  • the compressor component for a transport comprises: Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.%.
  • Fe 5.0% by mass to 9.0% by mass
  • V 0.1% by mass to 3.0% by mass
  • Mo 0.1% by mass to 3.%.
  • Ti 0.02% by mass to 2.0% by mass, with the balance being Al and unavoidable impurities
  • the equivalent diameter is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • Fe 5.0% by mass to 9.0% by mass
  • V 0.1% by mass to 3.0% by mass
  • Mo 0.1% by mass to 3.0% by mass
  • Zr 0
  • Ti 0.02% by mass to 2.0% by mass, the balance being Al and unavoidable impurities.
  • the production method of the aluminum alloy powder having the specific composition is not particularly limited, but Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1 Aluminum alloy containing mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities
  • the molten metal is rapidly solidified by atomization and solidified into powder to obtain an aluminum alloy powder (aluminum alloy atomized powder) (powdering step).
  • a molten aluminum alloy of the above specific composition is prepared by a general melting method.
  • the obtained molten aluminum alloy is pulverized by an atomizing method.
  • the atomization method is a method of forming minute droplets of molten aluminum alloy into mist and spraying them by a gas flow of nitrogen gas or the like from a spray nozzle, and rapidly cooling and solidifying the minute droplets to obtain fine aluminum alloy powder.
  • the cooling rate is preferably 10 2 to 10 5 ° C./s. It is preferable to obtain an aluminum alloy powder having an average particle size of 30 ⁇ m to 70 ⁇ m. While being able to remarkably improve the yield of alloy powder preparation by being 30 micrometers or more, mixing of a coarse oxide and a foreign material can be avoided by being 70 micrometers or less.
  • the obtained aluminum alloy powder is preferably classified using a sieve.
  • the aluminum alloy powder obtained in the powdering step is compression molded to obtain a green compact (compression molding step).
  • compression molding step the aluminum alloy powder heated to 250 ° C. to 300 ° C. is filled in a mold heated to 230 ° C. to 270 ° C., and compression molded into a predetermined shape to obtain a green compact.
  • the pressure for the compression molding is not particularly limited, but in general, it is preferable to set to 0.5 ton / cm 2 to 3.0 ton / cm 2 . Further, it is preferable to make a green compact having a relative density of 60% to 90%.
  • the shape of the green compact is not particularly limited, but is preferably cylindrical or disk-like in consideration of the next extrusion step.
  • the green compact obtained in the compression molding step is hot-extruded to obtain an extruded material (extrusion step).
  • the green compact is subjected to machining such as facing as required, and then subjected to a degassing treatment, and is heated and subjected to an extrusion process.
  • the heating temperature of the green compact before extrusion is preferably 300 ° C. to 450 ° C.
  • the green compact is inserted into an extrusion container, pressure is applied by an extrusion ram, and extruded from an extrusion die into, for example, a round bar shape. At this time, it is desirable to heat the extrusion container to 300 ° C. to 400 ° C. in advance.
  • the extrusion pressure is preferably set to 10 MPa to 25 MPa.
  • the extruded material obtained in the extrusion step is cut to obtain a compressor component for a transport machine (cutting step).
  • the extruded material is subjected to lathe processing, and cut using a 5-axis processing machine or the like using a cutter such as a ball end mill to obtain a transport compressor component having a predetermined shape (see FIG. 1).
  • the compressor component for a transporter obtained in the cutting step contains an Al-Fe based intermetallic compound in the compressor component for a transporter, and in the cross-sectional structure structure of the compressor component for a transporter, the Al- The average equivalent circular diameter of the Fe-based intermetallic compound is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • the compressor component 1 for transport of the present invention can be obtained (see FIG. 1).
  • the compressor part 1 for transport machine obtained by the manufacturing method of the compressor part for transport machine according to the present invention mentioned above is Fe: 5.0 mass% to 9.0 mass%, V: 0.1 Mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%
  • compressor part 1 for transports which concerns on this invention is not limited to the compressor part for transports obtained by the said manufacturing method, The thing obtained by the other manufacturing method is also included.
  • the aluminum alloy contains Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0
  • the Fe (component) is an element capable of forming an Al—Fe based intermetallic compound having a high melting point and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there.
  • the Fe content in the aluminum alloy is in the range of 5.0% by mass to 9.0% by mass. If the Fe content is less than 5.0% by mass, the strength of the compressor component for the transport machine is reduced, and if the Fe content exceeds 9.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures.
  • the Fe content in the aluminum alloy is preferably in the range of 7.0% by mass to 8.0% by mass.
  • the V (component) is an element capable of forming an Al-Fe-V-Mo intermetallic compound and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there.
  • the V content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the V content is less than 0.1% by mass, the strength of the compressor component for the transport machine is reduced, and when the V content exceeds 3.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures.
  • the V content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
  • the Mo (component) is an element capable of forming an Al-Fe-V-Mo based intermetallic compound and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there.
  • the Mo content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the Mo content is less than 0.1% by mass, the strength of the compressor component for the transport machine is reduced, and when the Mo content exceeds 3.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures.
  • the Mo content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
  • the Zr is an element that can realize fine crystallization of the intermetallic compound without causing coarsening of the Al—Fe—V—Mo intermetallic compound. Further, by containing the above-mentioned Zr, the high temperature strength can be improved, and the effect that the self diffusion of Al in the Al matrix can be suppressed and the creep characteristics can be improved can also be obtained.
  • the Zr content in the aluminum alloy is in the range of 0.1% by mass to 2.0% by mass. If the Zr content is less than 0.1% by mass, the effect of precipitation strengthening and dispersion strengthening can not be exhibited.
  • the Zr content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.5% by mass.
  • the Ti (component) has a role of forming an Al— (Ti, Zr) -based intermetallic compound of L 12 structure with Al, in cooperation with the Zr.
  • Ti has a small diffusion coefficient in the Al matrix, the effect of being able to improve the creep characteristics is also obtained.
  • the Ti content in the aluminum alloy is in the range of 0.02% by mass to 2.0% by mass. If the Ti content is less than 0.02% by mass, the effect of precipitation strengthening and dispersion strengthening can not be exhibited. Moreover, when the Ti content exceeds 2.0% by mass, the ductility of the compressor component for transport decreases, and the compressor component for transport excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperature Can not get.
  • the Ti content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.0% by mass.
  • the aluminum alloy may be configured (composed) to further include 0.0001% by mass to 0.03% by mass of B (boron).
  • B boron
  • the compressor part for a transport machine contains an Al-Fe-based intermetallic compound, and in the cross-sectional structure structure of the compressor part for a transport machine, the average equivalent circle diameter of the Al-Fe-based intermetallic compound is It is in the range of 0.1 ⁇ m to 3.0 ⁇ m.
  • the average equivalent circle diameter of the intermetallic compound is less than 0.1 ⁇ m, the effect of dispersion strengthening can not be exhibited.
  • the average equivalent circle diameter of the intermetallic compound exceeds 3.0 ⁇ m, it becomes a coarse intermetallic compound, and it breaks from that point, causing a problem that the mechanical properties are deteriorated.
  • the average equivalent circle diameter of the Al-Fe based intermetallic compound is preferably in the range of 0.3 ⁇ m to 2.0 ⁇ m, and more preferably 0.4 ⁇ m to 1. Particularly preferred is a range of 5 ⁇ m.
  • the Al-Fe-based intermetallic compound is not particularly limited, and examples thereof include Al-Fe-V-Mo-based intermetallic compounds containing at least Al, Fe, V and Mo. .
  • the content of Al is 81.60% by mass to 92.37% by mass
  • the content of Fe is 2.58% by mass to 10.05% by mass
  • V is The content is preferably 1.44% to 4.39% by mass
  • the content of Mo is preferably 2.45% to 3.62% by mass, and in this case, good in a high temperature range of 200 ° C. or higher Mechanical properties can be obtained.
  • the equivalent circle diameter of the Al-Fe-based intermetallic compound is a circle having the same area as the area of the Al-Fe-based intermetallic compound in the SEM photograph (image) of the cross section of the compressor component 1 for a transport machine. It is a value converted as a diameter.
  • Example 1 Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 0.1 mass%, Al: 86.9 mass% After heating an aluminum alloy containing unavoidable impurities to obtain a molten aluminum alloy at 1000 ° C., the molten aluminum alloy is atomized with a gas, quenched and solidified to a powder, and aluminum having an average particle diameter of 50 ⁇ m. An alloy powder (aluminum alloy atomized powder) was obtained (powdering step).
  • the obtained aluminum alloy powder is preheated to a temperature of 280 ° C., and the preheated aluminum alloy powder is charged into the mold heated and held at the same 280 ° C., at a pressure of 1.5 tons / cm 2 .
  • Compression molding was performed to obtain a cylindrical green compact (diameter) of 210 mm and a length of 250 mm.
  • the obtained green compact was chamfered to a diameter of 203 mm with a lathe to obtain a billet of the green compact (compression molding step).
  • the obtained billet is heated to 400 ° C., and this heated billet is inserted into an extrusion container with an inner diameter of 210 mm heated to 400 ° C., and an extrusion ratio of 6.4 by an indirect extrusion method using a die with an inner diameter of 83 mm. Extruded to obtain an extruded material (extrusion step).
  • the obtained extruded material was subjected to lathe processing, and cut using a ball end mill (blade) with a 5-axis processing machine to obtain a compressor part 1 for a transport machine shown in FIG. Process).
  • Example 2 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 0.5 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 3 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 4 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 2.0 mass %, Al: 85.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 5 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 0.5% by mass, Ti: 1.0% by mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 6 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.5 mass%, Ti: 1.0 mass %, Al: 85.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 7 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 0.5 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 87.5 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
  • Example 8 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 1.5 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 9 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 0.5% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass %, Al: 87.5 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
  • Example 10 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 1.5 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
  • Example 11 As an aluminum alloy for forming a molten aluminum alloy, Fe: 6.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass % And Al: 88.0 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
  • Example 12 As an aluminum alloy for forming a molten aluminum alloy, Fe: 7.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass % And Al: 87.0 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
  • Comparative Example 1 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Al: 87.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
  • Comparative Example 2 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Zr: 1.0 mass%, Si: 2.0 mass%, Cu: 0.13 mass In the same manner as in Example 1 except that an aluminum alloy containing 0.1% by mass, 0.13% by mass of Al, and 86.74% by mass of Al and containing unavoidable impurities is used, a compressor component for a transport machine is obtained.
  • Comparative Example 3 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Si: 2.0% by mass %, Al: 85.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
  • Comparative Example 4 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Mg: 1.0% by mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
  • Comparative Example 5 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Ti: 1.0 mass%, Al: 87.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
  • Comparative Example 6 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Al: 88.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
  • Comparative Example 7 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Al: 88.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
  • Comparative Example 8 As an aluminum alloy for forming a molten aluminum alloy, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass, Al: 94.0% %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
  • Comparative Example 9 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 2.5 mass%, Ti: 1.0 mass %, Al: 84.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part for transport machines.
  • Comparative Example 10 As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 4.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass % And Al: 84.0% by mass, except that an aluminum alloy containing unavoidable impurities was used, a compressor component for a transporter was obtained in the same manner as in Example 1.
  • Comparative Example 11 As an aluminum alloy for forming a molten aluminum alloy, Fe: 6.0% by mass, V: 4.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
  • Comparative Example 12 As an aluminum alloy for forming a molten aluminum alloy, Fe: 10.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass % And Al: 84.0% by mass, except that an aluminum alloy containing unavoidable impurities was used, a compressor component for a transporter was obtained in the same manner as in Example 1.
  • average equivalent circular diameter ( ⁇ m) of intermetallic compound indicates the Al—Fe—V—Mo intermetallic compound (Al, Fe, V) present in the matrix of the compressor component for each transport machine.
  • the “average equivalent circle diameter ( ⁇ m) of the intermetallic compound” is a structure having a size of 10 mm in length ⁇ 10 mm in width ⁇ 10 mm in thickness from the main body (shaft portion) at the center of the obtained compressor component for transport machine A sample piece for observation is cut out, this sample piece is micro-polished using a cross section sample preparation apparatus (Cross section polisher), and a SEM photograph (scanning electron micrograph) of the sample piece after micro-grinding is taken, and this photograph image
  • the average equivalent circle diameter ( ⁇ m) of the intermetallic compound was determined (evaluated) from the above.
  • the average equivalent circular diameter was determined for 10 Al—Fe—V—Mo intermetallic compounds present in the range of 1.5815 mm 2 of the field of view in the SEM photograph.
  • the high-temperature tensile strength (at 260 ° C.) is obtained by processing the obtained compressor component for a transport machine into a tensile test specimen having a distance between marks of 20 mm and a parallel part diameter of 4 mm, and conducting a high temperature tensile test of the tensile test specimen. Tensile strength was measured. The high temperature tensile test was conducted under the measurement environment of 260 ° C. after holding the high temperature tensile test piece at 260 ° C. for 100 hours. It evaluated based on the following judgment criteria. (Judgment criteria) " ⁇ " ...
  • Tensile strength at 260 ° C is 355MPa or more " ⁇ ” ...
  • Tensile strength at 260 ° C is 350MPa or more and less than 355MPa " ⁇ ” ...
  • the high temperature fatigue strength (at 260 ° C.) is obtained by processing the obtained compressor component for a transport machine into a fatigue test piece with a distance between marks of 30 mm and a parallel part diameter of 8 mm, and conducting a high temperature fatigue test of the fatigue test piece. The fatigue strength was measured.
  • the high temperature fatigue test was conducted 500,000 times of testing at a repetition rate of 3600 rpm in a measuring environment of 260 ° C. after holding a fatigue test piece at 260 ° C. for 100 hours. It evaluated based on the following judgment criteria. (Judgment criteria) " ⁇ " ... Fatigue strength at 260 ° C is 210 MPa or more " ⁇ " ...
  • Fatigue strength at 260 ° C is 205 MPa or more and less than 210 MPa " ⁇ ” ... Fatigue strength at 260 ° C is 200 MPa or more and less than 205 MPa " ⁇ ” ... 260 ° C Fatigue strength of less than 200 MPa.
  • Creep test method at high temperature The resulting compressor component for a transport machine is processed into a creep test specimen having a distance between marks of 30 mm and a diameter of parallel section of 6 mm, and the high temperature creep characteristics (260 ° C. Creep characteristics were measured.
  • the high temperature creep test was conducted under the measurement environment of 260 ° C. after holding the creep test piece at 260 ° C. for 100 hours.
  • the creep rupture strength under the conditions of temperature: 260 ° C. and rupture time of 300 hours was calculated and evaluated based on the following judgment criteria. (Judgment criteria) " ⁇ " ... Creep rupture strength at 260 ° C is 215 MPa or more " ⁇ " ...
  • Creep rupture strength at 260 ° C is 210 MPa or more and less than 215 MPa " ⁇ ” ... Creep rupture strength at 260 ° C is 205 MPa or more and less than 210 MPa " ⁇ ” ... Creep rupture strength at 260 ° C. is less than 205 MPa.
  • the compressor parts for transporters of Examples 1 to 12 according to the present invention were excellent in various mechanical properties at high temperature (260 ° C.).
  • the compressor component for a transporter according to the present invention, and the compressor component for a transporter obtained by the manufacturing method of the present invention are excellent in mechanical characteristics at high temperatures, and thus are suitably used as a compressor component for transporters such as automobiles. used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a compressor component for a transport that has superior mechanical properties at high temperatures. The compressor component (1) for a transport is formed from an aluminum alloy that includes 5.0 – 9.0% by mass Fe, 0.1 – 3.0% by mass V, 0.1 – 3.0% by mass Mo, 0.1 – 2.0% by mass Zr, and 0.02 – 2.0% by mass Ti, with the remainder being Al and inevitable impurities. The compressor component (1) for a transport includes an Al-Fe intermetallic compound, and the average circular equivalent diameter of the Al-Fe intermetallic compound in a cross-sectional compositional structure of the compressor component for a transport is in the range of 0.1 – 3.0 µm.

Description

輸送機用圧縮機部品及びその製造方法Compressor parts for transport aircraft and method of manufacturing the same
 本発明は、高温における機械特性に優れたアルミニウム合金製の、輸送機用圧縮機部品及びその製造方法に関する。 The present invention relates to a compressor component for a transport machine made of an aluminum alloy excellent in mechanical properties at high temperatures, and a method for producing the same.
 従来の輸送機用圧縮機部品、例えばターボチャージャ用インペラは、150℃程度の高温状況下において10000rpmを超える高速回転が与えられるため、この高温下において高強度および高剛性を備えていることが要求されると共に、エネルギー損失の低減を図るために軽量化も求められている。また、高速回転に耐えることができる強度も要求される。 Conventional compressor parts for transport machines, for example, turbochargers for turbochargers, are required to have high strength and high rigidity at high temperatures since high speed rotation exceeding 10000 rpm is given under high temperature conditions of about 150 ° C. In addition, in order to reduce energy loss, weight reduction is also required. Moreover, the strength which can endure high speed rotation is also required.
 従来では、ターボチャージャ用インペラは、2618合金(Cu:1.9質量%~2.7質量%、Mg:1.3質量%~1.8質量%、Ni:0.9質量%~1.2質量%、Fe:0.9質量%~1.3質量%、Si:0.1質量%~0.25質量%、Ti:0.04質量%~0.1質量%を含有し、残部がAlからなる合金)の鋳造・鍛造品を切削加工して製造していた。 Conventionally, the turbocharger impeller is made of 2618 alloy (Cu: 1.9% by mass to 2.7% by mass, Mg: 1.3% by mass to 1.8% by mass, Ni: 0.9% by mass to 1. 2 mass%, Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, balance Is manufactured by cutting and casting cast and forged aluminum alloys.
 しかし、近年における切削加工の高速化により、アルミニウム合金押出材の切削品化が進んできており、切削性の向上、高温強度の改善がさらに必要となってきている。 However, with the speeding up of cutting in recent years, the aluminum alloy extruded material is being made into a cut product, and it is further necessary to improve the machinability and improve the high temperature strength.
 例えば、特許文献1には、高温(160℃)での強度が従来よりも向上したAl-Cu-Mg系アルミニウム合金押出材を提供する技術が開示されている。即ち、特許文献1には、Cu:3.4~5.5%(質量%、以下同じ)、Mg:1.7~2.3%、Ni:1.0~2.5%、Fe:0.5~1.5%、Mn:0.1~0.4%、Zr:0.05~0.3%、Si:0.1%未満、Ti:0.1%未満を含み、残部Al及び不可避不純物からなることを特徴とする高温強度及び高温疲労特性に優れた耐熱アルミニウム合金押出材が記載されている。 For example, Patent Document 1 discloses a technique for providing an Al-Cu-Mg-based aluminum alloy extruded material whose strength at high temperature (160 ° C.) is improved as compared with the conventional art. That is, in Patent Document 1, Cu: 3.4 to 5.5% (% by mass, the same applies hereinafter), Mg: 1.7 to 2.3%, Ni: 1.0 to 2.5%, Fe: 0.5 to 1.5%, Mn: 0.1 to 0.4%, Zr: 0.05 to 0.3%, Si: less than 0.1%, Ti: less than 0.1%, balance A heat-resistant aluminum alloy extruded material excellent in high-temperature strength and high-temperature fatigue characteristics characterized by comprising Al and unavoidable impurities is described.
特許第5284935号公報Patent No. 5284 935
 ところで、自動車等の内燃機関の技術分野においてターボチャージャ用インペラは、更なる高速回転化が求められており、従ってターボチャージャ用インペラを構成するアルミニウム合金材としては、従来よりさらに高い温度域においても機械特性に優れたものが希求されている。また、ターボチャージャ用インペラ等の輸送機用圧縮機部品に要求される特性としては、静的強度の他に、クリープ特性等の動的な強度も優れていることが求められている。 By the way, in the technical field of internal combustion engines such as automobiles, the impeller for turbochargers is required to further increase the rotational speed. Therefore, as an aluminum alloy material constituting the impeller for turbochargers, even in a higher temperature range than before. What is excellent in mechanical properties is desired. In addition to static strength, dynamic properties such as creep properties are also required to be excellent as characteristics required of transport compressor components such as turbocharger impellers.
 本発明は、かかる技術的背景に鑑みてなされたものであって、高温における機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品及びその製造方法を提供することを目的とする。 The present invention has been made in view of such technical background, and it is an object of the present invention to provide a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures and a method of manufacturing the same. I assume.
 前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
 [1]Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製の輸送機用圧縮機部品であって、
 前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品。
[1] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 An aluminum alloy compressor component for a transport machine, comprising: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities,
The compressor component for a transport machine contains an Al-Fe-based intermetallic compound, and in the cross-sectional structure structure of the compressor component for a transport machine, the average equivalent circle diameter of the Al-Fe-based intermetallic compound is 0.1 μm to Transport compressor component characterized in that it is in the range of 3.0 μm.
 [2]前記アルミニウム合金は、さらに、Bを0.0001質量%~0.03質量%含む前項1に記載の輸送機用圧縮機部品。 [2] The compressor component for a transporter according to the above 1, wherein the aluminum alloy further contains 0.0001% by mass to 0.03% by mass of B.
 [3]前記金属間化合物は、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物であり、
 前記金属間化合物における、Alの含有率が81.60質量%~92.37質量%、Feの含有率が2.58質量%~10.05質量%、Vの含有率が1.44質量%~4.39質量%、Moの含有率が2.45質量%~3.62質量%である前項1または2に記載の輸送機用圧縮機部品。
[3] The intermetallic compound is an Al-Fe-V-Mo based intermetallic compound containing at least Al, Fe, V and Mo,
In the intermetallic compound, the content of Al is 81.60% by mass to 92.37% by mass, the content of Fe is 2.58% by mass to 10.05% by mass, and the content of V is 1.44% by mass 3. The compressor component for a transport machine according to the above 1 or 2, wherein the content of Mo is 4.39% by mass and the content of Mo is 2.45% by mass to 3.62% by mass.
 [4]Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
 前記圧粉体を熱間押出しして押出材を得る押出工程と、
 前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
 前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
[4] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 Compression molding process to obtain a green compact by compression molding an aluminum alloy powder containing: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities When,
An extrusion step of hot extruding the green compact to obtain an extruded material;
Cutting the extruded material to obtain a compressor component for a transport machine;
The compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound. A method of producing a compressor component for a transport machine, wherein an average equivalent circle diameter is in the range of 0.1 μm to 3.0 μm.
 [5]Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る粉末化工程と、
 前記アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
 前記圧粉体を熱間押出しして押出材を得る押出工程と、
 前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
 前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
[5] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 A molten metal of an aluminum alloy containing: mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities is rapidly solidified by solidification and pulverized to powder A powdering step of obtaining an alloy powder,
A compression molding step of compression molding the aluminum alloy powder to obtain a green compact;
An extrusion step of hot extruding the green compact to obtain an extruded material;
Cutting the extruded material to obtain a compressor component for a transport machine;
The compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound. A method of producing a compressor component for a transport machine, wherein an average equivalent circle diameter is in the range of 0.1 μm to 3.0 μm.
 [1]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金製輸送機用圧縮機部品が提供される。 According to the invention of [1], a compressor part for a transporter made of aluminum alloy excellent in mechanical properties (static strength, creep property, etc.) at high temperature is provided.
 [2]の発明によれば、高温における機械特性(値)をより向上させたアルミニウム合金製輸送機用圧縮機部品が提供される。 According to the invention of [2], a compressor part for a transporter made of aluminum alloy, in which the mechanical property (value) at high temperature is further improved, is provided.
 [3]の発明によれば、高温における機械特性(値)をより一層向上させたアルミニウム合金製輸送機用圧縮機部品が提供される。 According to the invention of [3], a compressor part for a transporter made of aluminum alloy, in which the mechanical property (value) at high temperature is further improved, is provided.
 [4]及び[5]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金製輸送機用圧縮機部品を製造することができる。従って、得られた輸送機用圧縮機部品は、自動車等の輸送機用圧縮機部品として好適に使用される。 According to the inventions of [4] and [5], it is possible to manufacture an aluminum alloy-made compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures. Therefore, the obtained compressor component for a transporter is suitably used as a compressor component for a transporter such as a car.
 更に[5]の発明では、アルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得ているので、合金の各元素の凝固時の拡散を抑制し、結晶粒や析出物の粗大化を抑制できて、さらに平衡相や準安定相の出現を抑制できて、遷移元素であるFeの固溶量の拡大をなし得て、高温における機械特性(静的強度、クリープ特性等)により一層優れたアルミニウム合金製輸送機用圧縮機部品を製造することができる。 Furthermore, in the invention of [5], since the molten metal of the aluminum alloy is rapidly solidified by atomization and powdered to obtain an aluminum alloy powder, the diffusion during solidification of each element of the alloy is suppressed, and crystal grains and precipitates are obtained. Can be suppressed, and the appearance of the equilibrium phase and the metastable phase can be further suppressed, and the solid solution amount of the transition element Fe can be expanded, and mechanical properties at high temperatures (static strength, creep properties, etc. ) Can further produce an aluminum alloy compressor component for a transport machine.
本発明に係る輸送機用圧縮機部品の一例を示す斜視図である。It is a perspective view showing an example of a compressor part for transport machines concerning the present invention.
 本発明に係る輸送機用圧縮機部品は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製の輸送機用圧縮機部品であって、前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である構成である。このような構成であることにより、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金製輸送機用圧縮機部品が提供される。 The compressor component for a transport according to the present invention comprises: Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.%. For aluminum alloy transport machines containing 0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, with the balance being Al and unavoidable impurities A compressor component, wherein the compressor component for a transporter contains an Al-Fe-based intermetallic compound, and the average circle of the Al-Fe-based intermetallic compound in the cross-sectional structure structure of the compressor component for a transporter The equivalent diameter is in the range of 0.1 μm to 3.0 μm. With such a configuration, an aluminum alloy-made compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures is provided.
 次に、本発明に係る、輸送機用圧縮機部品の製造方法について説明する。本製造方法では、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を準備する。前記特定組成のアルミニウム合金粉末の製造手法は、特に限定されないが、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得るのが好ましい(粉末化工程)。 Next, a method of manufacturing a compressor component for a transport according to the present invention will be described. In this production method, Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0 Prepare an aluminum alloy powder containing 1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, the balance being Al and unavoidable impurities. The production method of the aluminum alloy powder having the specific composition is not particularly limited, but Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1 Aluminum alloy containing mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities Preferably, the molten metal is rapidly solidified by atomization and solidified into powder to obtain an aluminum alloy powder (aluminum alloy atomized powder) (powdering step).
 前記粉末化工程では、上記特定組成のアルミニウム合金溶湯を通常の溶解法によって調製する。得られたアルミニウム合金溶湯をアトマイズ法によって粉末化する。アトマイズ法は、噴霧ノズルからの窒素ガス等のガス流によりアルミニウム合金溶湯の微小液滴をミスト化して噴霧し、微小液滴を急冷凝固させて微細なアルミニウム合金粉末を得る方法である。冷却速度は、102~105℃/秒であるのが好ましい。平均粒子径が30μm~70μmのアルミニウム合金粉末が得られるようにするのがよい。30μm以上であることで合金粉末作製の歩留まりを顕著に向上できると共に、70μm以下であることで粗大な酸化物や異物の混入を回避できる。得られたアルミニウム合金粉末は、篩を用いて分級するのが好ましい。 In the powdering step, a molten aluminum alloy of the above specific composition is prepared by a general melting method. The obtained molten aluminum alloy is pulverized by an atomizing method. The atomization method is a method of forming minute droplets of molten aluminum alloy into mist and spraying them by a gas flow of nitrogen gas or the like from a spray nozzle, and rapidly cooling and solidifying the minute droplets to obtain fine aluminum alloy powder. The cooling rate is preferably 10 2 to 10 5 ° C./s. It is preferable to obtain an aluminum alloy powder having an average particle size of 30 μm to 70 μm. While being able to remarkably improve the yield of alloy powder preparation by being 30 micrometers or more, mixing of a coarse oxide and a foreign material can be avoided by being 70 micrometers or less. The obtained aluminum alloy powder is preferably classified using a sieve.
 次に、前記粉末化工程で得られたアルミニウム合金粉末を圧縮成形して圧粉体を得る(圧縮成形工程)。一例を挙げると、250℃~300℃に加熱したアルミニウム合金粉末を、230℃~270℃に加熱された金型内に充填し、所定形状に圧縮成形して圧粉体を得る。前記圧縮成形の圧力は、特に限定されないが、通常は、0.5トン/cm2~3.0トン/cm2に設定するのが好ましい。また、相対密度が60%~90%の圧粉体にするのが好ましい。前記圧粉体の形状は、特に限定されないが、次の押出工程を考慮して、円柱形状または円盤状とするのが好ましい。 Next, the aluminum alloy powder obtained in the powdering step is compression molded to obtain a green compact (compression molding step). For example, the aluminum alloy powder heated to 250 ° C. to 300 ° C. is filled in a mold heated to 230 ° C. to 270 ° C., and compression molded into a predetermined shape to obtain a green compact. The pressure for the compression molding is not particularly limited, but in general, it is preferable to set to 0.5 ton / cm 2 to 3.0 ton / cm 2 . Further, it is preferable to make a green compact having a relative density of 60% to 90%. The shape of the green compact is not particularly limited, but is preferably cylindrical or disk-like in consideration of the next extrusion step.
 次いで、前記圧縮成形工程で得られた圧粉体を熱間押出しして押出材を得る(押出工程)。前記圧粉体には、必要に応じて面削等の機械加工を施してから、脱ガス処理を施し、加熱して押出工程に供する。押出前の圧粉体の加熱温度は、300℃~450℃にするのが好ましい。押出に際しては、例えば、圧粉体を押出コンテナ内に挿入して押出ラムにより加圧力を加え、押出ダイスから例えば丸棒形状に押出す。この時、前記押出コンテナを予め300℃~400℃に加熱しておくのが望ましい。このように熱間で押し出すことによって圧粉体の塑性変形が進行し、アルミニウム合金粉末(粒子)同士が結合して一体化した押出体が得られる。前記押出の際に、押出圧力は10MPa~25MPaに設定するのが好ましい。 Next, the green compact obtained in the compression molding step is hot-extruded to obtain an extruded material (extrusion step). The green compact is subjected to machining such as facing as required, and then subjected to a degassing treatment, and is heated and subjected to an extrusion process. The heating temperature of the green compact before extrusion is preferably 300 ° C. to 450 ° C. At the time of extrusion, for example, the green compact is inserted into an extrusion container, pressure is applied by an extrusion ram, and extruded from an extrusion die into, for example, a round bar shape. At this time, it is desirable to heat the extrusion container to 300 ° C. to 400 ° C. in advance. Thus, by extruding hot, plastic deformation of the green compact proceeds, and an extruded body in which aluminum alloy powders (particles) are combined and integrated is obtained. During the extrusion, the extrusion pressure is preferably set to 10 MPa to 25 MPa.
 次いで、前記押出工程で得られた押出材を切削加工して輸送機用圧縮機部品を得る(切削工程)。例えば、前記押出材を旋盤加工を経て、5軸加工機等にてボールエンドミル等の刃物を用いて切削加工して所定形状の輸送機用圧縮機部品を得る(図1参照)。 Next, the extruded material obtained in the extrusion step is cut to obtain a compressor component for a transport machine (cutting step). For example, the extruded material is subjected to lathe processing, and cut using a 5-axis processing machine or the like using a cutter such as a ball end mill to obtain a transport compressor component having a predetermined shape (see FIG. 1).
 前記切削工程で得られた輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲にある構成である。こうして本発明の輸送機用圧縮機部品1を得ることができる(図1参照)。 The compressor component for a transporter obtained in the cutting step contains an Al-Fe based intermetallic compound in the compressor component for a transporter, and in the cross-sectional structure structure of the compressor component for a transporter, the Al- The average equivalent circular diameter of the Fe-based intermetallic compound is in the range of 0.1 μm to 3.0 μm. Thus, the compressor component 1 for transport of the present invention can be obtained (see FIG. 1).
 即ち、上述した本発明に係る、輸送機用圧縮機部品の製造方法によって得られた輸送機用圧縮機部品1は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製輸送機用圧縮機部品であって、前記アルミニウム合金製輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記アルミニウム合金製輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である構成である。 That is, the compressor part 1 for transport machine obtained by the manufacturing method of the compressor part for transport machine according to the present invention mentioned above is Fe: 5.0 mass% to 9.0 mass%, V: 0.1 Mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to 2.0 mass%, Ti: 0.02 mass% to 2.0 mass% An aluminum alloy-made compressor component for an aluminum alloy, the balance comprising Al and unavoidable impurities, wherein the aluminum alloy-made compressor component for an aluminum alloy contains an Al—Fe-based intermetallic compound, An average equivalent circle diameter of the Al—Fe based intermetallic compound is in a range of 0.1 μm to 3.0 μm in a cross-sectional structure structure of a compressor part for an alloy-made transport machine.
 なお、本発明に係る輸送機用圧縮機部品1は、上記製造方法で得られた輸送機用圧縮機部品に限定されるものではなく、他の製造方法で得られたものも包含する。 In addition, the compressor part 1 for transports which concerns on this invention is not limited to the compressor part for transports obtained by the said manufacturing method, The thing obtained by the other manufacturing method is also included.
 次に、上述した本発明に係る輸送機用圧縮機部品および輸送機用圧縮機部品の製造方法における「アルミニウム合金」の組成について以下詳述する。前記アルミニウム合金は、Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金である。 Next, the composition of the “aluminum alloy” in the method of manufacturing the compressor component for a transport machine and the compressor component for a transport machine according to the present invention described above will be described in detail below. The aluminum alloy contains Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0 An aluminum alloy containing 1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and the balance being Al and unavoidable impurities.
 前記Fe(成分)は、高い融点を有するAl-Fe系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるFe含有率は、5.0質量%~9.0質量%の範囲とする。Fe含有率が5.0質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、Fe含有率が9.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるFe含有率は、7.0質量%~8.0質量%の範囲であるのが好ましい。 The Fe (component) is an element capable of forming an Al—Fe based intermetallic compound having a high melting point and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there. The Fe content in the aluminum alloy is in the range of 5.0% by mass to 9.0% by mass. If the Fe content is less than 5.0% by mass, the strength of the compressor component for the transport machine is reduced, and if the Fe content exceeds 9.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures. Among them, the Fe content in the aluminum alloy is preferably in the range of 7.0% by mass to 8.0% by mass.
 前記V(成分)は、Al-Fe-V-Mo系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるV含有率は、0.1質量%~3.0質量%の範囲とする。V含有率が0.1質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、V含有率が3.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるV含有率は、1.0質量%~2.0質量%の範囲であるのが好ましい。 The V (component) is an element capable of forming an Al-Fe-V-Mo intermetallic compound and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there. The V content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the V content is less than 0.1% by mass, the strength of the compressor component for the transport machine is reduced, and when the V content exceeds 3.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures. Among them, the V content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
 前記Mo(成分)は、Al-Fe-V-Mo系金属間化合物を生成し、例えば200℃~350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるMo含有率は、0.1質量%~3.0質量%の範囲とする。Mo含有率が0.1質量%未満になると、輸送機用圧縮機部品の強度の低下をもたらし、Mo含有率が3.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるMo含有率は、1.0質量%~2.0質量%の範囲であるのが好ましい。 The Mo (component) is an element capable of forming an Al-Fe-V-Mo based intermetallic compound and improving mechanical properties (static strength, creep properties, etc.) in a high temperature range of 200 ° C. to 350 ° C., for example. is there. The Mo content in the aluminum alloy is in the range of 0.1% by mass to 3.0% by mass. When the Mo content is less than 0.1% by mass, the strength of the compressor component for the transport machine is reduced, and when the Mo content exceeds 3.0% by mass, the ductility of the compressor component for the transport machine is reduced. Therefore, it is not possible to obtain a compressor component for a transport machine excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperatures. Among them, the Mo content in the aluminum alloy is preferably in the range of 1.0% by mass to 2.0% by mass.
 前記Zr(成分)は、Al-Fe-V-Mo系金属間化合物の粗大化を生じず、金属間化合物の微細晶出を実現できる元素である。また、前記Zrを含有していることで、高温強度を向上させることができるし、Alマトリックス中でのAlの自己拡散を抑制できてクリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるZr含有率は、0.1質量%~2.0質量%の範囲とする。Zr含有率が0.1質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。またZr含有率が2.0質量%を超えると、Zrを含む粗大な金属間化合物が発生するので(後述の比較例9参照)、良好な機械的特性を得ることができない。中でも、前記アルミニウム合金におけるZr含有率は、0.5質量%~1.5質量%の範囲であるのが好ましい。 The Zr (component) is an element that can realize fine crystallization of the intermetallic compound without causing coarsening of the Al—Fe—V—Mo intermetallic compound. Further, by containing the above-mentioned Zr, the high temperature strength can be improved, and the effect that the self diffusion of Al in the Al matrix can be suppressed and the creep characteristics can be improved can also be obtained. The Zr content in the aluminum alloy is in the range of 0.1% by mass to 2.0% by mass. If the Zr content is less than 0.1% by mass, the effect of precipitation strengthening and dispersion strengthening can not be exhibited. Further, if the Zr content exceeds 2.0% by mass, coarse intermetallic compounds containing Zr are generated (see Comparative Example 9 described later), and therefore good mechanical properties can not be obtained. Among them, the Zr content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.5% by mass.
 前記Ti(成分)は、前記Zrとの協働により、Alとの間で、L12構造のAl-(Ti,Zr)系金属間化合物を形成する役割を有する。また、前記Tiは、Alマトリックス中での拡散係数が小さいので、クリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるTi含有率は、0.02質量%~2.0質量%の範囲とする。Ti含有率が0.02質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。またTi含有率が2.0質量%を超えると、輸送機用圧縮機部品の延性が低下して、高温での機械特性(静的強度、クリープ特性等)に優れた輸送機用圧縮機部品を得ることができない。中でも、前記アルミニウム合金におけるTi含有率は、0.5質量%~1.0質量%の範囲であるのが好ましい。 The Ti (component) has a role of forming an Al— (Ti, Zr) -based intermetallic compound of L 12 structure with Al, in cooperation with the Zr. In addition, since Ti has a small diffusion coefficient in the Al matrix, the effect of being able to improve the creep characteristics is also obtained. The Ti content in the aluminum alloy is in the range of 0.02% by mass to 2.0% by mass. If the Ti content is less than 0.02% by mass, the effect of precipitation strengthening and dispersion strengthening can not be exhibited. Moreover, when the Ti content exceeds 2.0% by mass, the ductility of the compressor component for transport decreases, and the compressor component for transport excellent in mechanical characteristics (static strength, creep characteristics, etc.) at high temperature Can not get. Among them, the Ti content in the aluminum alloy is preferably in the range of 0.5% by mass to 1.0% by mass.
 本発明において、前記アルミニウム合金は、さらに、B(ホウ素)を0.0001質量%~0.03質量%含む構成(組成)としてもよい。Bを上記特定比率で含有せしめた組成とすることにより、結晶粒を微細化し、機械特性を向上できる。 In the present invention, the aluminum alloy may be configured (composed) to further include 0.0001% by mass to 0.03% by mass of B (boron). By making the composition containing B in the above-mentioned specific ratio, it is possible to refine crystal grains and improve mechanical properties.
 本発明では、前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲である。前記金属間化合物の平均円相当直径が0.1μm未満になると、分散強化の効果を発揮できない。また、前記金属間化合物の平均円相当直径が3.0μmを超えると、粗大な金属間化合物となり、それを起点として破断するため機械的特性が低下するという問題を生じる。中でも、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.3μm~2.0μmの範囲であるのが好ましく、さらに0.4μm~1.5μmの範囲であるのが特に好ましい。 In the present invention, the compressor part for a transport machine contains an Al-Fe-based intermetallic compound, and in the cross-sectional structure structure of the compressor part for a transport machine, the average equivalent circle diameter of the Al-Fe-based intermetallic compound is It is in the range of 0.1 μm to 3.0 μm. When the average equivalent circle diameter of the intermetallic compound is less than 0.1 μm, the effect of dispersion strengthening can not be exhibited. In addition, when the average equivalent circle diameter of the intermetallic compound exceeds 3.0 μm, it becomes a coarse intermetallic compound, and it breaks from that point, causing a problem that the mechanical properties are deteriorated. Among them, in the cross-sectional structure structure of the compressor component for a transport machine, the average equivalent circle diameter of the Al-Fe based intermetallic compound is preferably in the range of 0.3 μm to 2.0 μm, and more preferably 0.4 μm to 1. Particularly preferred is a range of 5 μm.
 前記Al-Fe系金属間化合物としては、特に限定されるものではないが、例えば、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物などが挙げられる。前記Al-Fe-V-Mo系金属間化合物における、Alの含有率は81.60質量%~92.37質量%、Feの含有率は2.58質量%~10.05質量%、Vの含有率は1.44質量%~4.39質量%、Moの含有率は2.45質量%~3.62質量%である構成が好ましく、この場合には200℃以上の高温域で良好な機械的特性を得ることができる。 The Al-Fe-based intermetallic compound is not particularly limited, and examples thereof include Al-Fe-V-Mo-based intermetallic compounds containing at least Al, Fe, V and Mo. . In the Al-Fe-V-Mo intermetallic compound, the content of Al is 81.60% by mass to 92.37% by mass, the content of Fe is 2.58% by mass to 10.05% by mass, and V is The content is preferably 1.44% to 4.39% by mass, and the content of Mo is preferably 2.45% to 3.62% by mass, and in this case, good in a high temperature range of 200 ° C. or higher Mechanical properties can be obtained.
 なお、前記Al-Fe系金属間化合物の円相当直径とは、前記輸送機用圧縮機部品1の断面のSEM写真(画像)におけるAl-Fe系金属間化合物の面積と同じ面積を有する円の直径として換算した値である。 The equivalent circle diameter of the Al-Fe-based intermetallic compound is a circle having the same area as the area of the Al-Fe-based intermetallic compound in the SEM photograph (image) of the cross section of the compressor component 1 for a transport machine. It is a value converted as a diameter.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
 <実施例1>
 Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:0.1質量%、Al:86.9質量%を含有し、不可避不純物を含有するアルミニウム合金を加熱して、1000℃のアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯をガスにてアトマイズして急冷凝固させて粉末化して、平均粒子径が50μmのアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得た(粉末化工程)。
Example 1
Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 0.1 mass%, Al: 86.9 mass% After heating an aluminum alloy containing unavoidable impurities to obtain a molten aluminum alloy at 1000 ° C., the molten aluminum alloy is atomized with a gas, quenched and solidified to a powder, and aluminum having an average particle diameter of 50 μm. An alloy powder (aluminum alloy atomized powder) was obtained (powdering step).
 次に、得られたアルミニウム合金粉末を280℃の温度に予熱し、この予熱したアルミニウム合金粉末を、同じ280℃に加熱保持した金型内に充填し、1.5トン/cm2の圧力で圧縮成形して、直径210mm、長さ250mmの円柱形状の圧粉体(成形体)を得た。次に、得られた圧粉体を旋盤にて直径203mmまで面削して、圧粉体のビレットを得た(圧縮成形工程)。 Next, the obtained aluminum alloy powder is preheated to a temperature of 280 ° C., and the preheated aluminum alloy powder is charged into the mold heated and held at the same 280 ° C., at a pressure of 1.5 tons / cm 2 . Compression molding was performed to obtain a cylindrical green compact (diameter) of 210 mm and a length of 250 mm. Next, the obtained green compact was chamfered to a diameter of 203 mm with a lathe to obtain a billet of the green compact (compression molding step).
 次に、得られたビレットを400℃に加熱し、この加熱ビレットを、400℃に加熱保持された内径210mmの押出コンテナ中に挿入し、内径83mmのダイスで間接押出法により押出比6.4で押出して押出材を得た(押出工程)。 Next, the obtained billet is heated to 400 ° C., and this heated billet is inserted into an extrusion container with an inner diameter of 210 mm heated to 400 ° C., and an extrusion ratio of 6.4 by an indirect extrusion method using a die with an inner diameter of 83 mm. Extruded to obtain an extruded material (extrusion step).
 次に、得られた押出材を旋盤加工を経て、5軸加工機にてボールエンドミル(刃物)を用いて切削加工することによって、図1に示す輸送機用圧縮機部品1を得た(切削工程)。 Next, the obtained extruded material was subjected to lathe processing, and cut using a ball end mill (blade) with a 5-axis processing machine to obtain a compressor part 1 for a transport machine shown in FIG. Process).
 <実施例2>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:0.5質量%、Al:86.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 2
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 0.5 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例3>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:86.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 3
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例4>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:2.0質量%、Al:85.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 4
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 2.0 mass %, Al: 85.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例5>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:0.5質量%、Ti:1.0質量%、Al:86.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 5
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 0.5% by mass, Ti: 1.0% by mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例6>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.5質量%、Ti:1.0質量%、Al:85.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 6
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.5 mass%, Ti: 1.0 mass %, Al: 85.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例7>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:0.5質量%、Zr:1.0質量%、Ti:1.0質量%、Al:87.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 7
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 0.5 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 87.5 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
 <実施例8>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:1.5質量%、Zr:1.0質量%、Ti:1.0質量%、Al:86.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 8
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 1.5 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例9>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:0.5質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:87.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 9
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 0.5% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass %, Al: 87.5 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
 <実施例10>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:1.5質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:86.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 10
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 1.5 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass %, Al: 86.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy which contains an unavoidable impurity, and obtained the compressor part 1 for transport machines.
 <実施例11>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:6.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:88.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 11
As an aluminum alloy for forming a molten aluminum alloy, Fe: 6.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass % And Al: 88.0 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
 <実施例12>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:7.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:87.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品1を得た。
Example 12
As an aluminum alloy for forming a molten aluminum alloy, Fe: 7.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass % And Al: 87.0 mass%, and using the aluminum alloy containing unavoidable impurities, it carried out similarly to Example 1, and obtained compressor part 1 for transport machines.
 <比較例1>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Al:87.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 1
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Al: 87.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
 <比較例2>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Zr:1.0質量%、Si:2.0質量%、Cu:0.13質量%、Mg:0.13質量%、Al:86.74質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 2
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Zr: 1.0 mass%, Si: 2.0 mass%, Cu: 0.13 mass In the same manner as in Example 1 except that an aluminum alloy containing 0.1% by mass, 0.13% by mass of Al, and 86.74% by mass of Al and containing unavoidable impurities is used, a compressor component for a transport machine is obtained. The
 <比較例3>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Si:2.0質量%、Al:85.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 3
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Si: 2.0% by mass %, Al: 85.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
 <比較例4>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Mg:1.0質量%、Al:86.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 4
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0% by mass, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Mg: 1.0% by mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
 <比較例5>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Ti:1.0質量%、Al:87.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 5
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Ti: 1.0 mass%, Al: 87.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
 <比較例6>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:88.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 6
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Al: 88.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
 <比較例7>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:88.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 7
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Al: 88.0 mass %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
 <比較例8>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:94.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 8
As an aluminum alloy for forming a molten aluminum alloy, V: 2.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass, Al: 94.0% %, And a compressor component for a transporter was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used.
 <比較例9>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:2.5質量%、Ti:1.0質量%、Al:84.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 9
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 2.5 mass%, Ti: 1.0 mass %, Al: 84.5 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor part for transport machines.
 <比較例10>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:4.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:84.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 10
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 4.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass % And Al: 84.0% by mass, except that an aluminum alloy containing unavoidable impurities was used, a compressor component for a transporter was obtained in the same manner as in Example 1.
 <比較例11>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:6.0質量%、V:4.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:86.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 11
As an aluminum alloy for forming a molten aluminum alloy, Fe: 6.0% by mass, V: 4.0% by mass, Mo: 2.0% by mass, Zr: 1.0% by mass, Ti: 1.0% by mass %, Al: 86.0 mass% was contained, and it carried out similarly to Example 1 except having used the aluminum alloy containing an unavoidable impurity, and obtained the compressor component for transport machines.
 <比較例12>
 アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:10.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Al:84.0質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、輸送機用圧縮機部品を得た。
Comparative Example 12
As an aluminum alloy for forming a molten aluminum alloy, Fe: 10.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass % And Al: 84.0% by mass, except that an aluminum alloy containing unavoidable impurities was used, a compressor component for a transporter was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記のようにして得られた各輸送機用圧縮機部品(切削加工品)について下記評価法に基づいて評価を行った。その結果を表1~3に示す。なお、表1~3中の各元素欄において「-」の表記は、検出限界(0.005質量%)未満の数値であること(即ち当該元素が検出されなかったこと)を示している。 The compressor parts for each transport machine (cut products) obtained as described above were evaluated based on the following evaluation method. The results are shown in Tables 1 to 3. In each element column in Tables 1 to 3, the notation “−” indicates that the value is less than the detection limit (0.005 mass%) (that is, the element is not detected).
 また、表1~3中の「金属間化合物の平均円相当直径(μm)」は、各輸送機用圧縮機部品のマトリックス中に存在するAl-Fe-V-Mo系金属間化合物(Al、Fe、V及びMoを少なくとも含有してなる金属間化合物)の平均円相当直径(μm)である。この「金属間化合物の平均円相当直径(μm)」は、得られた輸送機用圧縮機部品の中心にある本体部(軸部)から縦10mm×横10mm×厚さ10mmの大きさの組織観察用サンプル片を切り出し、このサンプル片を断面試料作製装置(Cross section polisher)を用いてミクロ研磨し、このミクロ研磨後のサンプル片のSEM写真(走査電子顕微鏡写真)を撮影し、この写真画像から金属間化合物の平均円相当直径(μm)を求めた(評価した)。前記SEM写真における視野1.5815mm2の範囲に存在する10個のAl-Fe-V-Mo系金属間化合物についての平均円相当直径を求めた。 In addition, “average equivalent circular diameter (μm) of intermetallic compound” in Tables 1 to 3 indicates the Al—Fe—V—Mo intermetallic compound (Al, Fe, V) present in the matrix of the compressor component for each transport machine. Average circle equivalent diameter (μm) of the intermetallic compound) containing at least Fe, V and Mo. The “average equivalent circle diameter (μm) of the intermetallic compound” is a structure having a size of 10 mm in length × 10 mm in width × 10 mm in thickness from the main body (shaft portion) at the center of the obtained compressor component for transport machine A sample piece for observation is cut out, this sample piece is micro-polished using a cross section sample preparation apparatus (Cross section polisher), and a SEM photograph (scanning electron micrograph) of the sample piece after micro-grinding is taken, and this photograph image The average equivalent circle diameter (μm) of the intermetallic compound was determined (evaluated) from the above. The average equivalent circular diameter was determined for 10 Al—Fe—V—Mo intermetallic compounds present in the range of 1.5815 mm 2 of the field of view in the SEM photograph.
 <高温での引張強度評価法>
 得られた輸送機用圧縮機部品を、標点間距離20mm、平行部直径4mmの引張試験片に加工して、該引張試験片の高温引張試験を行うことによって高温引張強度(260℃での引張強度)を測定した。前記高温引張試験は、高温引張試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での引張強度が355MPa以上
「○」…260℃での引張強度が350MPa以上355MPa未満
「△」…260℃での引張強度が345MPa以上350MPa未満
「×」…260℃での引張強度が345MPa未満である。
<Evaluation method of tensile strength at high temperature>
The high-temperature tensile strength (at 260 ° C.) is obtained by processing the obtained compressor component for a transport machine into a tensile test specimen having a distance between marks of 20 mm and a parallel part diameter of 4 mm, and conducting a high temperature tensile test of the tensile test specimen. Tensile strength was measured. The high temperature tensile test was conducted under the measurement environment of 260 ° C. after holding the high temperature tensile test piece at 260 ° C. for 100 hours. It evaluated based on the following judgment criteria.
(Judgment criteria)
"◎" ... Tensile strength at 260 ° C is 355MPa or more "○" ... Tensile strength at 260 ° C is 350MPa or more and less than 355MPa "Δ" ... Tensile strength at 260 ° C is 345MPa or more and less than 350MPa "×" ... 260 ° C Tensile strength of less than 345 MPa.
 <高温での疲労試験法>
 得られた輸送機用圧縮機部品を、標点間距離30mm、平行部直径8mmの疲労試験片に加工して、該疲労試験片の高温疲労試験を行うことによって高温疲労強度(260℃での疲労強度)を測定した。前記高温疲労試験は、疲労試験片を260℃に100時間保持した後に260℃の測定環境下で繰返し速度3600rpmの条件で500000回試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での疲労強度が210MPa以上
「○」…260℃での疲労強度が205MPa以上210MPa未満
「△」…260℃での疲労強度が200MPa以上205MPa未満
「×」…260℃での疲労強度が200MPa未満である。
<Fatigue test method at high temperature>
The high temperature fatigue strength (at 260 ° C.) is obtained by processing the obtained compressor component for a transport machine into a fatigue test piece with a distance between marks of 30 mm and a parallel part diameter of 8 mm, and conducting a high temperature fatigue test of the fatigue test piece. The fatigue strength was measured. The high temperature fatigue test was conducted 500,000 times of testing at a repetition rate of 3600 rpm in a measuring environment of 260 ° C. after holding a fatigue test piece at 260 ° C. for 100 hours. It evaluated based on the following judgment criteria.
(Judgment criteria)
"◎" ... Fatigue strength at 260 ° C is 210 MPa or more "○" ... Fatigue strength at 260 ° C is 205 MPa or more and less than 210 MPa "Δ" ... Fatigue strength at 260 ° C is 200 MPa or more and less than 205 MPa "×" ... 260 ° C Fatigue strength of less than 200 MPa.
 <高温でのクリープ試験法>
 得られた輸送機用圧縮機部品を、標点間距離30mm、平行部直径6mmのクリープ試験片に加工して、該クリープ試験片の高温クリープ試験を行うことによって高温クリープ特性(260℃でのクリープ特性)を測定した。前記高温クリープ試験は、クリープ試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。温度:260℃、破断時間300時間の条件下でのクリープラプチャー強度を算出し、下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃でのクリープラプチャー強度が215MPa以上
「○」…260℃でのクリープラプチャー強度が210MPa以上215MPa未満
「△」…260℃でのクリープラプチャー強度が205MPa以上210MPa未満
「×」…260℃でのクリープラプチャー強度が205MPa未満である。
Creep test method at high temperature
The resulting compressor component for a transport machine is processed into a creep test specimen having a distance between marks of 30 mm and a diameter of parallel section of 6 mm, and the high temperature creep characteristics (260 ° C. Creep characteristics were measured. The high temperature creep test was conducted under the measurement environment of 260 ° C. after holding the creep test piece at 260 ° C. for 100 hours. The creep rupture strength under the conditions of temperature: 260 ° C. and rupture time of 300 hours was calculated and evaluated based on the following judgment criteria.
(Judgment criteria)
"◎" ... Creep rupture strength at 260 ° C is 215 MPa or more "○" ... Creep rupture strength at 260 ° C is 210 MPa or more and less than 215 MPa "△" ... Creep rupture strength at 260 ° C is 205 MPa or more and less than 210 MPa "×" ... Creep rupture strength at 260 ° C. is less than 205 MPa.
 表から明らかなように、本発明に係る実施例1~12の輸送機用圧縮機部品は、高温(260℃)において各種の機械特性に優れていた。 As apparent from the table, the compressor parts for transporters of Examples 1 to 12 according to the present invention were excellent in various mechanical properties at high temperature (260 ° C.).
 これに対し、本発明の規定範囲を逸脱する比較例1~12の輸送機用圧縮機部品では、高温(260℃)での機械特性に劣っていた。 On the other hand, the compressor parts for transporters of Comparative Examples 1 to 12 which deviate from the specified range of the present invention were inferior in mechanical characteristics at high temperature (260 ° C.).
 本発明に係る輸送機用圧縮機部品、本発明の製造方法で得られた輸送機用圧縮機部品は、高温における機械特性に優れているので、自動車等の輸送機用圧縮機部品として好適に使用される。 The compressor component for a transporter according to the present invention, and the compressor component for a transporter obtained by the manufacturing method of the present invention are excellent in mechanical characteristics at high temperatures, and thus are suitably used as a compressor component for transporters such as automobiles. used.

Claims (5)

  1.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金製の輸送機用圧縮機部品であって、
     前記輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品。
    Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to An aluminum alloy compressor component for a transport machine, containing 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, the balance being Al and unavoidable impurities,
    The compressor component for a transport machine contains an Al-Fe-based intermetallic compound, and in the cross-sectional structure structure of the compressor component for a transport machine, the average equivalent circle diameter of the Al-Fe-based intermetallic compound is 0.1 μm to Transport compressor component characterized in that it is in the range of 3.0 μm.
  2.  前記アルミニウム合金は、さらに、Bを0.0001質量%~0.03質量%含む請求項1に記載の輸送機用圧縮機部品。 The compressor part for a transporter according to claim 1, wherein the aluminum alloy further contains 0.0001% by mass to 0.03% by mass of B.
  3.  前記金属間化合物は、Al、Fe、V及びMoを少なくとも含有してなるAl-Fe-V-Mo系金属間化合物であり、
     前記金属間化合物における、Alの含有率が81.60質量%~92.37質量%、Feの含有率が2.58質量%~10.05質量%、Vの含有率が1.44質量%~4.39質量%、Moの含有率が2.45質量%~3.62質量%である請求項1または2に記載の輸送機用圧縮機部品。
    The intermetallic compound is an Al-Fe-V-Mo based intermetallic compound containing at least Al, Fe, V and Mo,
    In the intermetallic compound, the content of Al is 81.60% by mass to 92.37% by mass, the content of Fe is 2.58% by mass to 10.05% by mass, and the content of V is 1.44% by mass The compressor component for a transport machine according to claim 1 or 2, wherein the content of Mo is 4.39% by mass and the content of Mo is 2.45% by mass to 3.62% by mass.
  4.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
     前記圧粉体を熱間押出しして押出材を得る押出工程と、
     前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
     前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
    Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to A compression molding step of obtaining a green compact by compression molding an aluminum alloy powder containing 2.0 mass%, Ti: 0.02 mass% to 2.0 mass%, and the balance being Al and unavoidable impurities;
    An extrusion step of hot extruding the green compact to obtain an extruded material;
    Cutting the extruded material to obtain a compressor component for a transport machine;
    The compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound. A method of producing a compressor component for a transport machine, wherein an average equivalent circle diameter is in the range of 0.1 μm to 3.0 μm.
  5.  Fe:5.0質量%~9.0質量%、V:0.1質量%~3.0質量%、Mo:0.1質量%~3.0質量%、Zr:0.1質量%~2.0質量%、Ti:0.02質量%~2.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る粉末化工程と、
     前記アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
     前記圧粉体を熱間押出しして押出材を得る押出工程と、
     前記押出材を切削加工して輸送機用圧縮機部品を得る切削工程と、を含み、
     前記輸送機用圧縮機部品は、該輸送機用圧縮機部品中にAl-Fe系金属間化合物を含有し、前記輸送機用圧縮機部品の断面組織構造において前記Al-Fe系金属間化合物の平均円相当直径が0.1μm~3.0μmの範囲であることを特徴とする輸送機用圧縮機部品の製造方法。
    Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0.1 mass% to A molten metal of an aluminum alloy containing 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and the balance being Al and unavoidable impurities is rapidly solidified by an atomizing method to be powdered to form an aluminum alloy powder The powdering process to be obtained,
    A compression molding step of compression molding the aluminum alloy powder to obtain a green compact;
    An extrusion step of hot extruding the green compact to obtain an extruded material;
    Cutting the extruded material to obtain a compressor component for a transport machine;
    The compressor component for a transporter contains an Al-Fe-based intermetallic compound in the compressor component for a transporter, and the cross-sectional structure of the compressor component for the transporter is the Al-Fe-based intermetallic compound. A method of producing a compressor component for a transport machine, wherein an average equivalent circle diameter is in the range of 0.1 μm to 3.0 μm.
PCT/JP2018/033951 2017-10-03 2018-09-13 Compressor component for transport and method for manufacturing same WO2019069651A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018005544.2T DE112018005544T5 (en) 2017-10-03 2018-09-13 Compressor component for a van and manufacturing process therefor
CN201880058088.9A CN111065754A (en) 2017-10-03 2018-09-13 Compressor component for conveyor and manufacturing method thereof
US16/651,211 US20200238385A1 (en) 2017-10-03 2018-09-13 Compressor component for transport and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017193270A JP2019065359A (en) 2017-10-03 2017-10-03 Compressor component for aluminum powder alloy-made transport excellent in mechanical property at high temperature, and manufacturing method therefor
JP2017-193270 2017-10-03

Publications (1)

Publication Number Publication Date
WO2019069651A1 true WO2019069651A1 (en) 2019-04-11

Family

ID=65994563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033951 WO2019069651A1 (en) 2017-10-03 2018-09-13 Compressor component for transport and method for manufacturing same

Country Status (5)

Country Link
US (1) US20200238385A1 (en)
JP (1) JP2019065359A (en)
CN (1) CN111065754A (en)
DE (1) DE112018005544T5 (en)
WO (1) WO2019069651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193985A1 (en) * 2018-04-03 2019-10-10 株式会社豊田自動織機 Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
WO2022079964A1 (en) * 2020-10-12 2022-04-21 株式会社豊田自動織機 Compressor component for transport machine, and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065358A (en) * 2017-10-03 2019-04-25 昭和電工株式会社 Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor
JP7494693B2 (en) 2020-10-12 2024-06-04 株式会社豊田自動織機 Compressor parts for transport aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310221B2 (en) * 1984-08-13 1988-03-04 Sumitomo Light Metal Ind
JPH09249930A (en) * 1996-03-13 1997-09-22 Mitsubishi Heavy Ind Ltd Aluminum alloy excellent in high temperature strength
JPH108162A (en) * 1996-06-17 1998-01-13 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material excellent in high temperature strength
JPH1026002A (en) * 1996-07-10 1998-01-27 Mitsubishi Heavy Ind Ltd Impeller made of aluminum alloy and manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715893A (en) * 1984-04-04 1987-12-29 Allied Corporation Aluminum-iron-vanadium alloys having high strength at elevated temperatures
JP3735205B2 (en) * 1998-11-30 2006-01-18 三菱重工業株式会社 Aluminum alloy impeller and manufacturing method thereof
JP5284935B2 (en) * 2009-12-08 2013-09-11 株式会社神戸製鋼所 Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
US20170107600A1 (en) * 2014-03-15 2017-04-20 Uacj Corporation Compressor impeller cast from al alloy and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310221B2 (en) * 1984-08-13 1988-03-04 Sumitomo Light Metal Ind
JPH09249930A (en) * 1996-03-13 1997-09-22 Mitsubishi Heavy Ind Ltd Aluminum alloy excellent in high temperature strength
JPH108162A (en) * 1996-06-17 1998-01-13 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material excellent in high temperature strength
JPH1026002A (en) * 1996-07-10 1998-01-27 Mitsubishi Heavy Ind Ltd Impeller made of aluminum alloy and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193985A1 (en) * 2018-04-03 2019-10-10 株式会社豊田自動織機 Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
WO2022079964A1 (en) * 2020-10-12 2022-04-21 株式会社豊田自動織機 Compressor component for transport machine, and method for manufacturing same
JP7512830B2 (en) 2020-10-12 2024-07-09 株式会社豊田自動織機 Compressor parts for transport aircraft and manufacturing method thereof

Also Published As

Publication number Publication date
US20200238385A1 (en) 2020-07-30
CN111065754A (en) 2020-04-24
DE112018005544T5 (en) 2020-06-25
JP2019065359A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019069651A1 (en) Compressor component for transport and method for manufacturing same
WO2010122960A1 (en) High-strength copper alloy
JP5556723B2 (en) Heat resistant high strength aluminum alloy and method for producing the same
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
EP2295609A1 (en) Direct extrusion of shapes with L12 aluminum alloys
JP4764094B2 (en) Heat-resistant Al-based alloy
EP3994289A1 (en) Nickel based alloy for powder and method for producing a powder
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
JP2019065358A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
WO2006103885A1 (en) Al BASE ALLOY EXCELLENT IN HEAT RESISTANCE, WORKABILITY AND RIGIDITY
JP7118705B2 (en) Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same
US20230160038A1 (en) Metal matrix composites and methods of making and use thereof
JP2020007594A (en) Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP4699786B2 (en) Al-based alloy with excellent workability and heat resistance
JP7128916B2 (en) Additive manufacturing
US20230374996A1 (en) Vehicle compressor component and method for manufacturing the same
JP2020007596A (en) Aluminum alloy material
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JP3905674B2 (en) Method for manufacturing metal article
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JP2020007595A (en) Aluminum alloy material
JPH10265918A (en) Aluminum alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864457

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18864457

Country of ref document: EP

Kind code of ref document: A1