JP7128916B2 - Additive manufacturing - Google Patents

Additive manufacturing Download PDF

Info

Publication number
JP7128916B2
JP7128916B2 JP2021004644A JP2021004644A JP7128916B2 JP 7128916 B2 JP7128916 B2 JP 7128916B2 JP 2021004644 A JP2021004644 A JP 2021004644A JP 2021004644 A JP2021004644 A JP 2021004644A JP 7128916 B2 JP7128916 B2 JP 7128916B2
Authority
JP
Japan
Prior art keywords
based superalloy
powder
less
range
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021004644A
Other languages
Japanese (ja)
Other versions
JP2021075796A (en
Inventor
哲嗣 久世
裕樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021004644A priority Critical patent/JP7128916B2/en
Publication of JP2021075796A publication Critical patent/JP2021075796A/en
Application granted granted Critical
Publication of JP7128916B2 publication Critical patent/JP7128916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、高温特性の良好な積層造形用Ni基超合金粉末に関する。より詳細には、本発明は、積層造形法などの急速溶融急冷凝固プロセスで焼結を行った場合でも、高温特性が良好な焼結体が得られるNi基超合金粉末に関するものである。 TECHNICAL FIELD The present invention relates to a Ni-based superalloy powder for additive manufacturing with good high-temperature properties. More specifically, the present invention relates to a Ni-based superalloy powder that provides a sintered body with good high-temperature characteristics even when sintered by a rapid melting, rapid cooling and solidification process such as additive manufacturing.

従来、粉末材料にレーザーや電子ビームを照射して三次元形状造形物を製造する方法(以下、粉末焼結積層法と呼ぶ)が知られている。この方法は、例えば特許第4661842号公報(特許文献1)に開示されているように、金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末の製造方法が提案されている。 2. Description of the Related Art Conventionally, a method of producing a three-dimensional shaped object by irradiating a powder material with a laser or an electron beam (hereinafter referred to as powder sintering lamination method) is known. In this method, for example, as disclosed in Japanese Patent No. 4661842 (Patent Document 1), a powder layer made of metal powder is irradiated with a light beam to form a sintered layer, and the sintered layer is laminated. A method for producing a metal powder for metal stereolithography, which is used for metal stereolithography to obtain a three-dimensional shaped article, has been proposed.

一方、粉末焼結積層法で用いられる粉末のひとつに、Ni基超合金粉末がある。Ni基超合金は、宇宙・航空機分野のエンジン部品素材などとして広範に用いられている。例えば特開2005-97650号公報(特許文献2)に開示されているように、重量%で、Cr:20%以下、Mo:10%以下、W:15%以下、Al:2~10%、Ta+Nb+Ti:16%以下、Ru:10%以下を含有し、残部がNiと不可避的不純物からなる組成を有するNi基超合金が提案されている。なお、本発明の場合は特にRuを必須元素としていることに特徴がある。 On the other hand, one of the powders used in the powder sintering lamination method is Ni-based superalloy powder. Ni-based superalloys are widely used as materials for engine parts in the fields of space and aircraft. For example, as disclosed in Japanese Patent Application Laid-Open No. 2005-97650 (Patent Document 2), in terms of weight %, Cr: 20% or less, Mo: 10% or less, W: 15% or less, Al: 2 to 10%, A Ni-based superalloy having a composition containing Ta+Nb+Ti: 16% or less, Ru: 10% or less, and the balance being Ni and unavoidable impurities has been proposed. The present invention is particularly characterized by using Ru as an essential element.

また、特開平11ー310839号公報(特許文献3)に開示されているように、重量%で、Hf:0~2%、Zr:0~0.1、Cr:2~25%、Al:2~7%、Mo:0~8%、W:0~16%、Re:0~16%、V:0~4%、Nb:0~8%、Ta:0~16%、Co:~15%、Ti:0~7%と、Ru、Rh、Pd、Ir及びPtの1種または2種以上の合計量8%以下と、Sc、Y、La及びCeの1種または2種以上の合計量2%以下とを含む高強度Ni基超合金方向性凝固鋳物が提案されている。なお、本発明の場合は特にNbが実施例からみて積極添加されていないことにある。 Further, as disclosed in Japanese Patent Application Laid-Open No. 11-310839 (Patent Document 3), in weight %, Hf: 0 to 2%, Zr: 0 to 0.1, Cr: 2 to 25%, Al: 2-7%, Mo: 0-8%, W: 0-16%, Re: 0-16%, V: 0-4%, Nb: 0-8%, Ta: 0-16%, Co: ~ 15%, Ti: 0 to 7%, a total amount of 8% or less of one or more of Ru, Rh, Pd, Ir and Pt, and one or more of Sc, Y, La and Ce A high-strength Ni-based superalloy directionally solidified casting containing a total amount of 2% or less has been proposed. In the case of the present invention, Nb is not intentionally added in view of the examples.

特許第4661842号公報Japanese Patent No. 4661842 特開2005-97650号公報JP-A-2005-97650 特開平11-310839号公報JP-A-11-310839

上述した特許文献2、3に開示されている場合の現状は鋳造材、鍛造材での使用が多く、難加工性の点から、ニアネットシェイプで部品を作製できる粉末焼結積層法の適用が進められている。また、Ni基超合金は一般的にAl、Ti、Nbが、結晶粒内にγ’(ガンマプライム)相と呼ばれるNi(Al、Ti)や、γ’’(ガンマダブルプライム)相と呼ばれるNi(Al、Ti、Nb)の強化相を微細析出させることで、高温において優れた機械的特性を発現させる。よって、γ’、γ’’量を多くすることで高温での強度をより高強度化することができる。そのγ’、γ’’量はAl、Ti、Nb等の添加量によって変化し、添加量を多くすることで析出量を多くすることができる。 Currently, the cases disclosed in the above-mentioned Patent Documents 2 and 3 are often used in cast materials and forged materials, and from the viewpoint of difficult workability, the application of the powder sintering lamination method that can produce parts in near net shape is preferred. is underway. In addition, Ni-based superalloys generally have Al, Ti, and Nb in the crystal grains called γ' (gamma prime) phase, called Ni 3 (Al, Ti), and γ'' (gamma double prime) phase. By finely precipitating a strengthening phase of Ni 3 (Al, Ti, Nb), excellent mechanical properties are exhibited at high temperatures. Therefore, by increasing the amounts of γ' and γ'', the strength at high temperatures can be increased. The amount of γ′ and γ″ varies depending on the amount of Al, Ti, Nb, etc. added, and the amount of precipitation can be increased by increasing the amount of addition.

しかし、γ’相やγ’’相の生成元素であるAlやTi量を増大させると凝固割れの原因、Nb量増大はラーベス相の生成による強度低下に繋がる。そのため急速溶融急冷凝固プロセスを伴う粉末焼結積層法に適用可能で、合金の強度を高めつつ、高温特性が良好な焼結体が得られるNi基超合金粉末の作製は困難であった。 However, increasing the amount of Al and Ti, which are the forming elements of the γ' and γ″ phases, causes solidification cracking, and increasing the amount of Nb leads to a decrease in strength due to the formation of the Laves phase. Therefore, it has been difficult to produce a Ni-based superalloy powder that can be applied to the powder sintering lamination method involving a rapid melting, rapid cooling and solidification process, and that yields a sintered body with good high-temperature characteristics while increasing the strength of the alloy.

上述のような課題に対し鋭意検討した結果、Zr、Y、Hfのいずれか1種以上を添加することで、粉末積層造形法などの急速溶融急冷凝固プロセスを適用し焼結された組織にしても、高温特性が良好な焼結体を得ることができることを見出し、本発明に至った。
その発明の要旨とするところは、
(1)質量%で、C:0.001~0.3%、Cr:9.0~25.0%、Ti+Al:1.0~10.0%、Mo:0.1~10.0%、Nb:0.1~7.0%、Zr、Y、Hfの少なくとも1種以上を、Zr:0.1~2.0%、Y:0.2~2.0%、Hf:0.1~2.0%の量で含有し、残部をNiおよび不可避的不純物からなることを特徴とするNi基超合金粉末。
As a result of intensive studies on the above-mentioned problems, by adding one or more of Zr, Y, and Hf, a sintered structure is obtained by applying a rapid melting and rapid solidification process such as a powder additive manufacturing method. also found that it is possible to obtain a sintered body having good high-temperature properties, leading to the present invention.
The gist of the invention is
(1) In mass%, C: 0.001 to 0.3%, Cr: 9.0 to 25.0%, Ti + Al: 1.0 to 10.0%, Mo: 0.1 to 10.0% , Nb: 0.1 to 7.0%, at least one or more of Zr, Y, and Hf, Zr: 0.1 to 2.0%, Y: 0.2 to 2.0%, Hf: 0.1% to 2.0%. A Ni-based superalloy powder characterized by containing in an amount of 1 to 2.0%, the balance consisting of Ni and unavoidable impurities.

(2)前記(1)の成分に加え、更にW、Co、Taの少なくとも1種または2種以上を合計で0.1~40%の量で含有することを特徴とするNi基超合金粉末。 (2) Ni-based superalloy powder characterized by containing at least one or more of W, Co and Ta in a total amount of 0.1 to 40% in addition to the component (1). .

(3)積層造形法などの急速溶融急冷凝固プロセスで焼結をおこなった後の特性において、常温時(TR)と高温時(TH)のそれぞれの引張強さをATR、ATH、0.2%耐力をBTR、BTH、伸びをCTR、CTHとした時、下記(1)式を満たす前記(1)または(2)に記載のNi基超合金粉末。
ただし、TRは0℃から50℃までの温度を、THは50℃から760℃までの温度を示す。0.4≦ATH/ATR、BTH/BTR、CTH/CTR≦1.0 ・・・(1)
(3) In terms of properties after sintering in a rapid melting and rapid solidification process such as additive manufacturing, the tensile strengths at room temperature (TR) and at high temperature (TH) are A TR , A TH , 0.00. The Ni-based superalloy powder according to (1) or (2) above, which satisfies the following formula (1), where B TR and B TH are 2% yield strengths, and C TR and C TH are elongations.
However, TR indicates a temperature from 0°C to 50°C, and TH indicates a temperature from 50°C to 760°C. 0.4≦A TH /A TR , B TH /B TR , C TH /C TR ≦1.0 (1)

(4)平均粒子径D50とタップ密度TDの比(D50/TD)が0.2~20を満たす前記(1)~(3)のいずれか1に記載のNi基超合金粉末。
また、D50の単位はμm、TDの単位はMg/mにある。
(4) The Ni-based superalloy powder according to any one of (1) to (3), wherein the ratio of average particle size D50 to tap density TD (D50/TD) satisfies 0.2-20.
The unit of D50 is μm , and the unit of TD is Mg/m3.

以上述べたように、本発明は、積層造形法などの急速溶融急冷凝固プロセスで焼結を行っても、高温特性が良好な焼結体を得られるNi基超合金粉末を提供するもので、焼結させるための照射方式に問わず、積層造形用母材として用いることができる。 INDUSTRIAL APPLICABILITY As described above, the present invention provides a Ni-based superalloy powder capable of obtaining a sintered body having good high-temperature properties even when sintered by a rapid melting, rapid cooling and solidification process such as an additive manufacturing method. It can be used as a base material for additive manufacturing regardless of the irradiation method for sintering.

以下、本発明について詳細に説明する。
Ni基超合金は、一般の鋳造、鍛造プロセスを母材に作製した際と同様、急速溶融急冷凝固プロセスで造形体を作製した場合、高温域では特性が悪化する傾向がある。この悪化の状況を調査した結果、常温では確認できない非常に小さな介在物、酸化物が、高温では粒界境界面に存在することが分かった。急速急冷プロセスでは、一般の鋳造、鍛造プロセスよりも、短時間で溶融、凝固が繰り返されることから、不純物元素が拡散しきる前に、溶融、凝固に至る。そのため、粒界境界面に介在物、酸化物が偏析した状態になり、高温域での割れの起因点になると考えた。
The present invention will be described in detail below.
Ni-based superalloys tend to deteriorate in properties in a high temperature range when shaped bodies are produced by rapid melting, rapid cooling, and solidification processes, as in the case of producing base metals by general casting and forging processes. As a result of investigating the state of this deterioration, it was found that very small inclusions and oxides, which cannot be detected at room temperature, exist at the grain boundaries at high temperatures. In the rapid quenching process, melting and solidification are repeated in a shorter period of time than in general casting and forging processes, so melting and solidification occur before impurity elements have completely diffused. Therefore, inclusions and oxides are segregated at the grain boundary interface, which is thought to be the cause of cracking in the high temperature range.

そこで、高温において優れた特性を発現させるために鋭意検討した結果、Zr、Y、Hfの少なくとも1種以上を、Zr:0.1%以上2.0%以下、Y:0.2%以上2.0%以下、Hf:0.1%以上2.0%以下に制御することにより、良好な高温特性を示すことが分かった。すなわち、急速溶融急冷凝固プロセスにおいて、Zr、Y、Hfを添加することでZr、Y、Hfの化合物が熱的に安定な酸化物、介在物になり、ピン止め効果によって生地組織を微細かつ安定化させたことで、造形体自身の高温特性が良好なものになることを明らかにした。 Therefore, as a result of intensive studies in order to develop excellent characteristics at high temperatures, at least one of Zr, Y, and Hf was added to Zr: 0.1% or more and 2.0% or less, Y: 0.2% or more 2 0% or less, and Hf: 0.1% or more and 2.0% or less, good high-temperature characteristics are exhibited. That is, in the rapid melting, rapid cooling and solidification process, by adding Zr, Y, and Hf, the compounds of Zr, Y, and Hf become thermally stable oxides and inclusions, and the pinning effect makes the fabric structure fine and stable. It was clarified that the high-temperature characteristics of the molded body itself are improved by making it more flexible.

本発明は、このように急速溶融急冷凝固プロセスにおける高温特性悪化原因から、Ni基超合金粉末中のZr、Y、Hfの添加が有効であることを見出し、良好な高温特性を示すNi基超合金の造形を実現したものである。 The present invention finds that the addition of Zr, Y, and Hf to the Ni-based superalloy powder is effective for the deterioration of high-temperature properties in the rapid melting, rapid cooling, and solidification process. It is a realization of alloy molding.

以下に、本発明の成分組成を限定理由について説明する。
C:0.001~0.3%
本発明Ni基超合金粉末においてCは、Nb、TiなどとMC型炭化物を形成するほか、Cr、Mo、WなどとMC、M 、M23などの炭化物をつくり合金の高温強さを高める効果があるため、0.001%以上添加することが必要である。しかし、Cを多量に添加すると、炭化物が結晶粒界に連続的に析出し、結晶粒界がぜい弱になり、耐食性、靭性が劣化するので、0.3%以下が必要である。好ましくは、0.05%以上、0.1%以下である。
The reasons for limiting the component composition of the present invention are described below.
C: 0.001-0.3%
In the Ni-based superalloy powder of the present invention, C not only forms MC - type carbides with Nb, Ti, etc., but also forms carbides such as M6C , M7C3 , M23C6 with Cr, Mo, W, etc. to form alloys. It is necessary to add 0.001% or more because of the effect of increasing the high-temperature strength of the steel. However, if a large amount of C is added, carbides are continuously precipitated at grain boundaries, weakening the grain boundaries and deteriorating corrosion resistance and toughness. Preferably, it is 0.05% or more and 0.1% or less.

Cr:9.0~25.0%
本発明Ni基超合金粉末においてCrは、合金の固溶体強化と耐酸化性の向上に寄与する必須元素である。9.0%未満では上記効果が得られず、25.0%を超えるとδ相が生成し、高温強度と靭性が低下するため、9.0%以上、25.0%以下とする。好ましくは13.0%以上20.0%以下である。
Cr: 9.0-25.0%
In the Ni-based superalloy powder of the present invention, Cr is an essential element that contributes to solid solution strengthening and oxidation resistance improvement of the alloy. If it is less than 9.0%, the above effect cannot be obtained, and if it exceeds 25.0%, the δ phase is generated and the high-temperature strength and toughness are lowered. It is preferably 13.0% or more and 20.0% or less.

Ti+Al:0.1~10.0%
本発明Ni基超合金粉末においてTi、Alは、γ‘相を形成し、クリープ破断強さと耐酸化性を上げる元素であるが、10.0%を超えると高温割れが発生しやすくなり、積層造形時に割れが発生しやすくなるため、10.0%以下とする。
Ti+Al: 0.1 to 10.0%
In the Ni-based superalloy powder of the present invention, Ti and Al are elements that form a γ' phase and increase creep rupture strength and oxidation resistance. Since cracks are likely to occur during molding, the content is made 10.0% or less.

Mo:0.1~10.0%
本発明Ni基超合金粉末においてMoは、固溶体強化に寄与し強度を高めるのに有効な元素であるため、0.1%以上含有させる必要がある。しかし、含有量が多すぎるとμ相またはσ相の生成を助長し、脆化の一因となるため、10.0%以下とする。
Mo: 0.1-10.0%
In the Ni-based superalloy powder of the present invention, Mo is an element that contributes to solid solution strengthening and is effective in increasing strength, so it must be contained in an amount of 0.1% or more. However, if the content is too large, it promotes the formation of μ phase or σ phase and causes embrittlement, so the content is made 10.0% or less.

Nb:0.1~7.0%
本発明Ni基超合金粉末においてNbは、炭化物を形成するとともにγ‘相を強化し強度を向上させるので、0.1%以上含有させる必要がある。しかし、多すぎるとラーベス相を生成して、強度を低下させるので、7.0%以下とする。
Nb: 0.1-7.0%
In the Ni-based superalloy powder of the present invention, Nb forms carbides and reinforces the γ' phase to improve the strength, so the content should be 0.1% or more. However, if it is too large, a Laves phase is formed and the strength is lowered, so the content is made 7.0% or less.

Zr:0.1~2.0%
本発明Ni基超合金粉末においてZrは、酸化物、炭化物と反応して熱的に安定なZrの酸化物粒子、介在物粒子になり、生地組織を微細かつ安定化させるため0.2%以上含有させる必要がある。しかし、多すぎると酸化物粒子、介在物粒子が粗大になり、高温強度を低下させるので、2.0%以下とする。
Zr: 0.1-2.0%
In the Ni-based superalloy powder of the present invention, Zr reacts with oxides and carbides to form thermally stable Zr oxide particles and inclusion particles. must be included. However, if the amount is too large, the oxide particles and inclusion particles become coarse and the high-temperature strength is lowered, so the content is made 2.0% or less.

Y:0.2~2.0%
本発明Ni基超合金粉末においてYは、酸化物、炭化物と反応して熱的に安定なYの酸化物粒子、介在物粒子になり、生地組織を微細かつ安定化させるため0.2%以上含有させる必要がある。しかし、多すぎると酸化物粒子、介在物粒子が粗大になり、高温強度を低下させるので、2.0%以下が良い。
Y: 0.2-2.0%
In the Ni-based superalloy powder of the present invention, Y reacts with oxides and carbides to form thermally stable Y oxide particles and inclusion particles. must be included. However, if the content is too large, the oxide particles and inclusion particles become coarse and the high-temperature strength is lowered, so the content is preferably 2.0% or less.

Hf:0.1~2.0%
本発明Ni基超合金粉末においてHfは、耐酸化性を向上させる効果があるため、必要に応じて0.1%以上含有させる必要がある。しかし、多すぎると脆化相を生成して、強度、靱性を低下させるので、2.0%以下が良い。
Hf: 0.1-2.0%
Since Hf has the effect of improving oxidation resistance in the Ni-based superalloy powder of the present invention, it is necessary to contain 0.1% or more as necessary. However, if it is too large, a brittle phase is formed and the strength and toughness are lowered, so 2.0% or less is preferable.

W、Co、Taの少なくとも1種または2種以上を合計で0.1~40%
本発明Ni基超合金粉末において、Wは、固溶体強化に寄与し強度を高めるのに有効な元素、Coは、γ‘相のNi固溶体に対する溶解度を増加させ、高温延性と高温強度を改善、Taは、炭化物を形成するとともにγ‘相を強化し強度を向上させるため、必要に応じて少なくとも1種または2種以上を合計で0.1~40%添加できる。しかし、含有量が多すぎると脆化や強度低下に繋がるため、合計で40.0%以下とする。
0.1 to 40% in total of at least one or more of W, Co and Ta
In the Ni-based superalloy powder of the present invention, W is an element that contributes to solid solution strengthening and is effective in increasing strength, Co increases the solubility of the γ' phase in Ni solid solution to improve high temperature ductility and high temperature strength, and Ta forms carbides and strengthens the γ' phase to improve strength, so at least one or more of them can be added in a total amount of 0.1 to 40% as required. However, if the content is too large, it leads to embrittlement and strength reduction, so the total content is made 40.0% or less.

常温時(TR)と高温時(TH)の引張強さA、0.2%耐力B、伸びCが0.4≦ATH/ATR、BTH/BTR、CTH/CTR<1.0である金属粉末 … (1)
本発明Ni基超合金粉末において、ATH/ATR、BTH/BTR、CTH/CTRは0.4~1.0である。しかし、0.4より小さい場合、常温時の特性が非常に良好だとしても、高温時での使用環境には適さない。1.0より大きいことは、通常の材料、通常の試験条件ではありえない。したがって、その範囲を0.4~1.0とした。
Tensile strength A at room temperature (TR) and high temperature (TH), 0.2% yield strength B, elongation C is 0.4 ≤ A TH /A TR , B TH /B TR , C TH /C TR <1 .0 metal powder ... (1)
In the Ni-based superalloy powder of the present invention, A TH /A TR , B TH /B TR , and C TH /C TR are from 0.4 to 1.0. However, if it is less than 0.4, even if the characteristics at room temperature are very good, it is not suitable for use at high temperatures. Greater than 1.0 is not possible in normal materials, under normal test conditions. Therefore, the range was set to 0.4 to 1.0.

平均粒子径D50とタップ密度TDの比(D50/TD)が0.2~20を満たす金属粉末
本発明Ni基超合金粉末において、D50/TDは0.2~20である。0.2未満では、微粉化により粉末の流動性が低下し、造形体の密度が低下する。20よりも大きい場合、積層造形時に粉末の一部が溶け残って焼結され、欠陥として残存する。したがって、その範囲を0.2~20とした。
Metal powder satisfying the ratio of average particle diameter D50 to tap density TD (D50/TD) of 0.2-20 In the Ni-based superalloy powder of the present invention, D50/TD is 0.2-20. If it is less than 0.2, the fluidity of the powder is reduced due to pulverization, and the density of the shaped body is reduced. If it is greater than 20, part of the powder remains undissolved and sintered during layered manufacturing, and remains as defects. Therefore, the range was set to 0.2-20.

以下、本発明について実施例によって具体的に説明する。
まず、添加元素Zr、Hf,Yの高温特性改善に対する影響を詳細に評価した。ベースは、代表的なNi基超合金の3鋼種(Ni-19.0Cr-3.0Mo-5.0Nb-1.5(Ti+Al)-0.05C、Ni-12.5Cr-4.2Mo-2Nb-6.9(Ti+Al)-0.1Zr-0.1C、Ni-22.5Cr-1Nb-5.5(Ti+Al)-19.0Co-2.0W-1.4Ta-0.15C)とし、添加元素Zr量を0.1~2.0%、Y量を0.2~2.0%、Hf量を0.1~2.0%の範囲で変化させ、常温時(TR)と高温時(TH)のそれぞれの引張強さ比ATR/ATH、0.2%耐力比BTR/BTH、伸び比CTR/CTH、平均粒子径D50とタップ密度TDの比(D50/TD)に対する挙動を評価し、Ni基超合金のZr,Hf,Y添加量の有効組成範囲を検討した(表1、No.1~24)。
EXAMPLES The present invention will be specifically described below with reference to Examples.
First, the effects of additive elements Zr, Hf, and Y on improvement of high-temperature characteristics were evaluated in detail. The base is three representative Ni-based superalloy steel types (Ni-19.0Cr-3.0Mo-5.0Nb-1.5 (Ti + Al)-0.05C, Ni-12.5Cr-4.2Mo-2Nb -6.9 (Ti + Al) -0.1Zr-0.1C, Ni-22.5Cr-1Nb-5.5 (Ti + Al) -19.0Co-2.0W-1.4Ta-0.15C) and added The amount of elemental Zr is changed in the range of 0.1 to 2.0%, the amount of Y is changed in the range of 0.2 to 2.0%, and the amount of Hf is changed in the range of 0.1 to 2.0%. ( TH ) of each tensile strength ratio ATR /ATH, 0.2% yield strength ratio BTR / BTH , elongation ratio CTR/ CTH , ratio of average particle diameter D50 and tap density TD (D50/TD ), and investigated the effective composition range of the amount of Zr, Hf, and Y added to the Ni-based superalloy (Table 1, Nos. 1 to 24).

次に、Ni基超合金の組成を変化させ、ATR/ATH、BTR/BTH、CTR/CTH、D50/TDを評価し、Ni基超合金のC,Cr,Ti+Al,Mo,Nb,Zr,Y,Hf,W,Co,Ta量の有効組成範囲を検討した(表1、No.25~51)。 Next, by changing the composition of the Ni-based superalloy, ATR /ATH, BTR / BTH, CTR/CTH , and D50/ TD were evaluated, and C, Cr , Ti+Al, and Mo of the Ni-based superalloy were evaluated. , Nb, Zr, Y, Hf, W, Co, and Ta were investigated (Table 1, Nos. 25 to 51).

[供試材の作製]
ガスアトマイズ法により所定の成分の粉末を作製し63μm以下に分級した。ガスアトマイズは、真空中にてアルミナ製坩堝で所定の配分となる様にした原料を高周波誘導加熱で溶解し、坩堝下の直径約5mmのノズルから溶融した合金を落下させ、これに高圧アルゴンまたは高圧窒素を噴霧することで実施した。これを原料粉末とし、3次元積層造形装置(EOS-M280)を用いて各試験に供する材料を作製した。
[Preparation of test material]
A powder of prescribed components was produced by the gas atomization method and classified to a size of 63 μm or less. Gas atomization is performed by melting a raw material in a vacuum crucible made of alumina in a predetermined distribution by high-frequency induction heating, dropping the molten alloy from a nozzle with a diameter of about 5 mm under the crucible, and applying high-pressure argon or high-pressure gas to it. This was done by sparging with nitrogen. Using this as a raw material powder, a material to be subjected to each test was produced using a three-dimensional additive manufacturing apparatus (EOS-M280).

[常温引張特性]
JIS14A号 φ5試験片(φ5×GL25mm)を作製し、引張試験中に加わった最大引張応力σを引張強さ(σ=測定荷重F/断面積S)として算出した。また、荷重と伸びをグラフにプロットし、弾性領域と平行に標点距離の0.2%分だけオフセットした直線を引き、荷重曲線との交点を0.2%耐力として算出した。伸びZは、標点間距離L0が破断後にLfになったときの百分率((Lf-L0)/L0×100)として算出した。
[Room temperature tensile properties]
A JIS14A φ5 test piece (φ5×GL25 mm) was prepared, and the maximum tensile stress σ applied during the tensile test was calculated as the tensile strength (σ=measured load F/cross-sectional area S). Also, the load and elongation were plotted on a graph, a straight line offset by 0.2% of the gauge length was drawn parallel to the elastic region, and the intersection with the load curve was calculated as the 0.2% yield strength. The elongation Z was calculated as a percentage ((Lf−L0)/L0×100) when the gauge length L0 became Lf after breakage.

[高温引張特性]
JIS G 0567 I-6型試験片(φ6×GL30mm)を作製し、常温引張特性と同様の測定を760℃の環境下で実施し、引張強さ、0.2%耐力、伸びを算出した。
[High temperature tensile properties]
A JIS G 0567 I-6 type test piece (φ6×GL30 mm) was prepared, and the same measurements as for normal temperature tensile properties were performed at 760° C. to calculate tensile strength, 0.2% proof stress and elongation.

[粒度分布測定、タップ密度]
平均粒径はレーザー回折法で評価した。タップ密度は、約50gの球状粉末を、容積100cmのシリンダーに充填し、落下高さ10mm、タップ回数200回の時の充填密度で評価した。
[Particle size distribution measurement, tap density]
Average particle size was evaluated by laser diffraction method. About 50 g of spherical powder was packed into a cylinder with a volume of 100 cm 3 , and the tap density was evaluated by the packing density when the drop height was 10 mm and the number of taps was 200.

[評価方法]
(評価1)ATH/ATR、BTH/BTR、CTH/CTR:0.9~1.0
D50/TD:0.2~20
(評価2)ATH/ATR、BTH/BTR、CTH/CTR:0.5~0.9未満
D50/TD:0.2~20
(評価3)ATH/ATR、BTH/BTR、CTH/CTR:0.4~0.5未満
D50/TD:0.2~20
(評価4)ATH/ATR、BTH/BTR、CTH/CTR:0.4未満
D50/TD:0.2未満もしくは20より大きい
のいずれかに該当する。
(評価5)組成が本発明の範囲を外れる。
[Evaluation method]
(Evaluation 1) A TH /A TR , B TH /B TR , C TH /C TR : 0.9 to 1.0
D50/TD: 0.2-20
(Evaluation 2) A TH /A TR , B TH /B TR , C TH /C TR : 0.5 to less than 0.9
D50/TD: 0.2-20
(Evaluation 3) A TH /A TR , B TH /B TR , C TH /C TR : 0.4 to less than 0.5
D50/TD: 0.2-20
(Evaluation 4) A TH /A TR , B TH /B TR , C TH /C TR : less than 0.4
D50/TD: less than 0.2 or greater than 20
falls under any of
(Evaluation 5) The composition is outside the scope of the present invention.

Figure 0007128916000001
Figure 0007128916000001

Figure 0007128916000002

表1または表2に示すように、No.1~24は本発明例であり、No.25~51は比較例である。
Figure 0007128916000002

As shown in Table 1 or Table 2, No. 1 to 24 are examples of the present invention; 25-51 are comparative examples.

表2に示す比較例No.38、41、42、45、49、50は、成分組成であるZr、Y、Hfの含有量が全て範囲外であり、かつC、Cr、Ti+Al、Mo、Nbの1種または2種の含有量の何れかが範囲外であり、加えて、No.38の場合はW,Co,Taの少なくとも1種または2種以上の合計含有量が範囲外であるために、評価5となる。 Comparative example No. shown in Table 2. In 38, 41, 42, 45, 49, and 50, the contents of Zr, Y, and Hf, which are component compositions, are all outside the range, and one or two of C, Cr, Ti + Al, Mo, and Nb are contained. any of the amounts are out of range, plus no. In the case of No. 38, the total content of at least one or more of W, Co, and Ta is out of the range, so the evaluation is 5.

表2に示す比較例No.26、30~35、39、43、44、48、51は、成分組成であるZr、Y、Hfの含有量が全て範囲内であるが、C、Cr、Ti+Al、Mo、Nbの1種または2種の含有量の何れかが範囲外であり、加えて、No.31、32、33、39、48はW,Co,Taの少なくとも1種または2種以上の合計含有量が範囲外であるために、評価5となる。 Comparative example No. shown in Table 2. 26, 30 to 35, 39, 43, 44, 48, and 51, the contents of Zr, Y, and Hf, which are component compositions, are all within the range, but one of C, Cr, Ti+Al, Mo, and Nb or Either of the two contents is outside the range, and in addition, No. In Nos. 31, 32, 33, 39, and 48, the total content of at least one of W, Co, and Ta or at least two of them was out of the range, so they were evaluated as 5.

表2に示す比較例No.25、27は、成分組成であるZr、Y、Hfの含有量が1種または2種範囲内であるが、No.25は、C、Ti+Alの含有量が範囲外、No.27は、Cr、Ti+Alの含有量が範囲外であるために、評価5となる。 Comparative example No. shown in Table 2. In Nos. 25 and 27, the contents of Zr, Y, and Hf, which are component compositions, are within the range of 1 or 2 types. In No. 25, the contents of C and Ti+Al are out of range. In No. 27, the contents of Cr and Ti+Al are out of the range, so the evaluation is 5.

表2に示す比較例No.28、37は、成分組成であるZr、Y、Hfの含有量が1種範囲内であるが、Crの含有量が低いために、評価5となる。 Comparative example No. shown in Table 2. In Nos. 28 and 37, the contents of Zr, Y, and Hf, which are component compositions, are within the range of one type, but the content of Cr is low, so they are evaluated as 5.

表2に示す比較例No.29、36、40、46、47は、成分組成であるZr、Y、Hfの含有量が1種範囲内であるが、全てTi+Alの含有量が範囲外であり、さらにNo.29はC、Moが範囲外、No.40はCが範囲外、No.46はCrが範囲外、No.47はMoが範囲外であるために、評価5となる。 Comparative example No. shown in Table 2. In Nos. 29, 36, 40, 46, and 47, the contents of Zr, Y, and Hf, which are component compositions, are within the range of one type, but the contents of Ti+Al are all outside the range. 29 is C, Mo is out of range, No. 40, C is out of range; 46 is Cr out of the range; 47 is rated 5 because Mo is out of range.

これに対して、本発明例No.1~24は、いずれも本発明の条件を満たしていることから、その評価は1~4の値を示していることが分かる。 On the other hand, Example No. of the present invention. Since all of 1 to 24 satisfy the conditions of the present invention, it can be seen that the evaluation shows a value of 1 to 4.

以上のように、Ni基超合金粉末の成分組成を規制し、その上で特にNi基超合金粉末を急速溶融急冷凝固プロセスで高温特性を改善するために、Zr、Y、Hfを添加することでZr、Y、Hfの化合物が熱的に安定な酸化物粒子、介在物粒子になり、ピン止め効果によって生地組織を微細かつ安定化させたことで、造形体自身の高温特性が良好なものになることを明らかにしたものである。 As described above, the chemical composition of the Ni-based superalloy powder is regulated, and then Zr, Y, and Hf are added in order to improve the high-temperature properties of the Ni-based superalloy powder in the rapid melting and rapid solidification process. The compounds of Zr, Y, and Hf become thermally stable oxide particles and inclusion particles, and the pinning effect finely stabilizes the texture of the fabric, resulting in good high-temperature characteristics of the model itself. It is made clear that it will be

Claims (1)

その材質がNi基超合金である積層造形体であって、
上記Ni基超合金が、質量%で、
C:0.001~0.3%、
Cr:9.0~25.0%、
Ti+Al:1.0~10.0%、
Mo:0.1~10.0%、
及び
Nb:0.1~7.0%、
を含有しており、
Zr:0.1~2.0%、
Y:0.2~2.0%、
及び
Hf:0.1~2.0%
の少なくとも1種を含有しており、
W、Co及びTaの少なくとも1種を含有し、これらの合計含有率が0.1~40.0%であり、
残部がNiおよび不可避的不純物からなり、
常温引張試験で得られた引張強さA TR 、0.2%耐力B TR 及び伸びC TR 、並びに760℃の環境下での引張試験で得られた引張強さA TH 、0.2%耐力B TH 及び伸びC TH が、下記の3つの数式を満たす積層造形体。
0.4 ≦ ATH/ATR ≦ 1.0
0.4 ≦ BTH/BTR ≦ 1.0
0.4 ≦ CTH/CTR ≦ 1.0
A laminate-molded body whose material is a Ni-based superalloy,
The Ni-based superalloy, in mass%,
C: 0.001 to 0.3%,
Cr: 9.0 to 25.0%,
Ti + Al: 1.0 to 10.0%,
Mo: 0.1 to 10.0%,
and Nb: 0.1 to 7.0%,
contains
Zr: 0.1 to 2.0%,
Y: 0.2 to 2.0%,
and Hf: 0.1 to 2.0%
contains at least one of
Containing at least one of W, Co and Ta, the total content of these is 0.1 to 40.0%,
The balance consists of Ni and unavoidable impurities,
Tensile strength A TR , 0.2% proof stress B TR , and elongation C TR obtained in normal temperature tensile test, and tensile strength A TH obtained in tensile test at 760° C. , 0.2% proof stress A layered product whose B TH and elongation C TH satisfy the following three formulas.
0.4 ≤ ATH / ATR ≤ 1.0
0.4≦ BTH / BTR ≦1.0
0.4≦ CTH / CTR ≦1.0
JP2021004644A 2021-01-15 2021-01-15 Additive manufacturing Active JP7128916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021004644A JP7128916B2 (en) 2021-01-15 2021-01-15 Additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004644A JP7128916B2 (en) 2021-01-15 2021-01-15 Additive manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017165034A Division JP6850223B2 (en) 2017-08-30 2017-08-30 Ni-based superalloy powder for laminated molding

Publications (2)

Publication Number Publication Date
JP2021075796A JP2021075796A (en) 2021-05-20
JP7128916B2 true JP7128916B2 (en) 2022-08-31

Family

ID=75898301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004644A Active JP7128916B2 (en) 2021-01-15 2021-01-15 Additive manufacturing

Country Status (1)

Country Link
JP (1) JP7128916B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676881A (en) 2012-06-12 2012-09-19 钢铁研究总院 Nickel-based powder metallurgy high-temperature alloy capable of eliminating previous particle boundary
CN103866162A (en) 2014-03-02 2014-06-18 王文姣 Nickel-based powder metallurgical superalloy with high crack propagation resistance
CN105624474A (en) 2016-04-11 2016-06-01 西安欧中材料科技有限公司 Preparation method of superfine high-grade spherical EP741NP alloy powder
JP2017036485A (en) 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-BASED SUPERALLOY POWDER FOR LAMINATE MOLDING

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890816A (en) * 1973-09-26 1975-06-24 Gen Electric Elimination of carbide segregation to prior particle boundaries
JPH08225864A (en) * 1995-02-20 1996-09-03 Kobe Steel Ltd Nickel-base heat resistant alloy excellent in high temperature characteristic and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676881A (en) 2012-06-12 2012-09-19 钢铁研究总院 Nickel-based powder metallurgy high-temperature alloy capable of eliminating previous particle boundary
CN103866162A (en) 2014-03-02 2014-06-18 王文姣 Nickel-based powder metallurgical superalloy with high crack propagation resistance
JP2017036485A (en) 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-BASED SUPERALLOY POWDER FOR LAMINATE MOLDING
CN105624474A (en) 2016-04-11 2016-06-01 西安欧中材料科技有限公司 Preparation method of superfine high-grade spherical EP741NP alloy powder

Also Published As

Publication number Publication date
JP2021075796A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
CN112813308B (en) Cobalt-based alloy material
JP6499546B2 (en) Ni-based superalloy powder for additive manufacturing
US12000022B2 (en) High entropy alloy article, product formed of said high entropy alloy article, and fluid machine having said product
JP6850223B2 (en) Ni-based superalloy powder for laminated molding
US20110268989A1 (en) Cobalt-nickel superalloys, and related articles
JP6880203B2 (en) Aluminum alloy for additional manufacturing technology
US11692246B2 (en) Ni-based alloy for hot-working die, and hot-forging die using same
JP2021507088A5 (en)
EP3778068A1 (en) Powder for mold
GB2576305A (en) Nickel-based alloy
JP7128916B2 (en) Additive manufacturing
WO2020110498A1 (en) Powder for laminate formation use, laminated article, and method for producing laminated article
WO2020032235A1 (en) NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
JP2020169378A (en) Aluminum alloy for compressor slide components and compressor slide component forging
JP7339412B2 (en) Ni-based alloy powder for additive manufacturing and additive manufacturing
JP7211561B2 (en) Ni-based alloy for hot molds and hot forging molds using the same
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product
US11884995B2 (en) Co-based alloy material, co-based alloy product, and method for manufacturing said product
US20220349032A1 (en) Ni-Based Superalloy Powder for Additive Manufacturing and an Article Made Therefrom
KR20230046239A (en) Fe-BASED ALLOY FOR MELTING-SOLIDIFICATION SHAPING AND METAL POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7128916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150