JPH10265918A - Aluminum alloy - Google Patents

Aluminum alloy

Info

Publication number
JPH10265918A
JPH10265918A JP7531197A JP7531197A JPH10265918A JP H10265918 A JPH10265918 A JP H10265918A JP 7531197 A JP7531197 A JP 7531197A JP 7531197 A JP7531197 A JP 7531197A JP H10265918 A JPH10265918 A JP H10265918A
Authority
JP
Japan
Prior art keywords
alloy
weight
aluminum alloy
ductility
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7531197A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yokoe
一彦 横江
Takamasa Yokote
隆昌 横手
Jun Kusui
潤 楠井
Kohei Kubo
幸平 久保
Kenji Matsuki
賢司 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP7531197A priority Critical patent/JPH10265918A/en
Publication of JPH10265918A publication Critical patent/JPH10265918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum alloy having a specific Charpy impact value, excellent in formability and workability, and suitable for use in production on an industrial scale by incorporating Fe, Cr, and Ni and specifying a composition and a structure, respectively. SOLUTION: This alloy is an Al alloy which contains, by weight, 2-7% Fe, 2-12$ Cr, and 1-10% Ni (where 7<=Fe+Cr+Ni<=15 is satisfied) and in which at least a part of alloy structure is composed of quasi-crystal and Charpy impact value is regulated to >=2 J/cm<2> . Further, 0.01-2.5% of Zr can be incorporated into this alloy (where 7<=Fe+Cr+Ni+Zr<=15 is satisfied). Fe is an essential component for constituting a quasi-crystal formed mainly in the alloy, and Fe atoms which do not constitute quasi-crystals form Al3 Fe, etc., and these contribute to the improvement of heat resistance, etc.; however, incorporation of Fe in an amount exceeding 7% causes deterioration in toughness and ductility. Although Cr makes the same contribution as Fe does, its incorporation in an amount exceeding 12% causes deterioration in ductility. Ni contributes to the improvement, e.g. of the strengthening and stabilization of quasi-crystals, but the possibility of causing deterioration in toughness and ductility is brought about when Ni content exceeds 10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合金
に関する。
[0001] The present invention relates to an aluminum alloy.

【0002】[0002]

【従来技術】アルミニウム合金は、軽量性、熱伝導性、
比強度等において優れた特性を有し、航空機、自動車、
オートバイその他機械部品に幅広く用いられている。特
に、近年では、高強度で耐熱性に優れたアルミニウム合
金又はその複合材料が数多く開発されている。
2. Description of the Related Art Aluminum alloys are lightweight, thermally conductive,
Excellent properties such as specific strength, aircraft, automobiles,
Widely used for motorcycles and other mechanical parts. In particular, in recent years, many aluminum alloys or composite materials thereof having high strength and excellent heat resistance have been developed.

【0003】しかし、これらの材料は、冷間加工性のみ
ならず熱間加工性も非常に悪く、既存の押出機、鍛造機
等で成形できないことが多い。また、たとえ成形できた
としてもクラック、ビビリ等の欠陥を避けることは困難
である。たとえ健全に成形され、これらの欠陥がなかっ
たとしても、成形品の室温における靱性自体が不十分で
ある。このため、得られた成形品にさらに冷間加工を加
えることはきわめて困難である。
[0003] However, these materials have extremely poor hot workability as well as cold workability, and cannot be formed by an existing extruder, forging machine or the like in many cases. Further, even if it can be formed, it is difficult to avoid defects such as cracks and chatter. Even if the molding is sound and there are no such defects, the toughness of the molded article at room temperature itself is insufficient. For this reason, it is extremely difficult to further perform cold working on the obtained molded product.

【0004】これに関し、高強度・耐熱性アルミニウム
合金として、アルミニウム粉末にウィスカー、セラミッ
クス粒子等を分散させた複合材、メカニカルアロイング
法、超急冷法等によるアモルファス(非晶質)合金、ア
ルミニウム基金属間化合物等も開発されているが、これ
ら技術による合金も上記に示す問題点のほか、製造工程
の複雑さ、製造コストの高さ等から工業的規模での生産
に適しているとは言い難い。
In this regard, as a high-strength and heat-resistant aluminum alloy, a composite material in which whiskers and ceramic particles are dispersed in aluminum powder, an amorphous alloy by a mechanical alloying method, a super-quenching method, etc. Although intermetallic compounds have been developed, alloys based on these technologies are not suitable for industrial-scale production due to the above-mentioned problems, complicated production processes, and high production costs. hard.

【0005】具体的には、上記のウィスカー等を分散強
化材とする複合材では、その分散材となるウィスカー等
が高価であり、また分散させる工程にも手間を要し、し
かもその評価も容易でない。さらに、強化すればするほ
ど靱延性に乏しくなり、成形性も低下してしまう。
Specifically, in a composite material using the above-mentioned whiskers or the like as a dispersion strengthening material, the whiskers or the like as the dispersing material are expensive, and the process of dispersing the whiskers requires time and effort, and the evaluation is easy. Not. Further, the more the material is reinforced, the poorer the ductility and the lower the formability.

【0006】メカニカルアロイング法においては、少量
の粉末をボールミル内で長時間処理しなければならない
ので著しく生産性が低く、また処理中において酸素等が
ピックアップされる結果、次第に靱延性が低下してい
く。しかも、得られる粉末には、転位が多数存在して加
工硬化しており、これが成形性を妨げる原因となる。
[0006] In the mechanical alloying method, a small amount of powder must be treated in a ball mill for a long time, so that productivity is extremely low. In addition, oxygen and the like are picked up during the treatment, so that toughness and ductility gradually decrease. Go. In addition, the obtained powder has a large number of dislocations and is work-hardened, which causes a hindrance to moldability.

【0007】超急冷法によるアモルファス合金粉末で
は、急冷するための装置及びそれに用いる高圧ガスが高
価である。また、アモルファス形成元素として高価なイ
ットリウム、セリウム等のレアメタルも必要である。さ
らに、得られる合金粉末は、結晶化温度以下では変形し
にくいため、容易に成形することができない。
[0007] In the case of an amorphous alloy powder obtained by the ultra-quenching method, a device for quenching and a high-pressure gas used for the device are expensive. Further, expensive rare metals such as yttrium and cerium are also required as amorphous forming elements. Further, the obtained alloy powder is not easily deformed at a crystallization temperature or lower, and thus cannot be easily formed.

【0008】他方、アモルファスを利用する技術として
特開平3−267355号公報に開示された方法もある
が、Cr:17.6重量%以上の含有量を必要とするた
め、延性の低下が避けられない。また、Crによる重量
増加、アモルファス化等の煩雑な処理、結晶化温度以下
での成形性の問題等なお改善すべき点が多い。
On the other hand, there is a method disclosed in Japanese Patent Application Laid-Open No. 3-267355 as a technique utilizing amorphous. However, since a Cr content of 17.6% by weight or more is required, a decrease in ductility can be avoided. Absent. In addition, there are still many points to be improved, such as an increase in weight due to Cr, complicated processing such as amorphization, and a problem of formability at a crystallization temperature or lower.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明は、特
に、成形性・加工性に優れ、かつ、工業的規模での生産
に適したアルミニウム合金を提供することを主な目的と
する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an aluminum alloy which is particularly excellent in formability and workability and is suitable for production on an industrial scale.

【0010】[0010]

【課題を解決するための手段】本発明者は、これら従来
技術の問題に鑑みて鋭意研究を重ねた結果、特定組成及
び構造を有するアルミニウム合金が上記目的を達成でき
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of these problems of the prior art, and as a result, has found that an aluminum alloy having a specific composition and structure can achieve the above object, and completed the present invention. I came to.

【0011】すなわち、本発明は、アルミニウムをベー
スとする合金であって、(1)Fe:2〜7重量%、C
r:2〜12重量%及びNi:1〜10重量%(但し、
7重量%≦Fe+Cr+Ni≦15重量%)を含有し、
(2)合金組織の少なくとも一部が準結晶であり、
(3)シャルピー衝撃値が2J/cm2以上であること
を特徴とするアルミニウム合金に係るものである。
That is, the present invention relates to an alloy based on aluminum, comprising: (1) Fe: 2 to 7% by weight;
r: 2 to 12% by weight and Ni: 1 to 10% by weight (provided that
7% by weight ≦ Fe + Cr + Ni ≦ 15% by weight)
(2) At least a part of the alloy structure is a quasicrystal,
(3) An aluminum alloy having a Charpy impact value of 2 J / cm 2 or more.

【0012】[0012]

【発明の実施の形態】以下、本発明をその実施の形態と
ともに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described together with its embodiments.

【0013】まず、本発明アルミニウム合金における各
成分について説明する。但し、本発明アルミニウム合金
の各成分は互いに作用し合うものであるため、各成分の
限定理由を個別に論ずるのは必ずしも適当でなく、一般
的な理由として説明する。
First, each component in the aluminum alloy of the present invention will be described. However, since each component of the aluminum alloy of the present invention interacts with each other, it is not always appropriate to individually discuss the reasons for limiting each component, and a general reason will be described.

【0014】Feは、主として本発明アルミニウム合金
中で形成される準結晶(Al−Cr−Fe(例えばAl
80Cr13.5Fe6.5)系の準結晶等)を構成するために
必須の成分であり、通常は2〜7重量%程度、好ましく
は2.5〜5重量%とする。準結晶を構成しないFe原
子は、Al3Fe、Al9FeNi等を形成し、これらは
耐熱性等の向上に寄与する。しかし、上記含有量が7重
量%を超えるとAl3Fe、Al9FeNi等が粗大化し
やすく、靱延性の低下を招くおそれがある。
Fe is a quasicrystal (Al—Cr—Fe (eg, Al) formed mainly in the aluminum alloy of the present invention.
80 Cr 13.5 Fe 6.5 ) -based quasicrystal or the like), and is usually about 2 to 7% by weight, preferably 2.5 to 5% by weight. Fe atoms that do not form a quasicrystal form Al 3 Fe, Al 9 FeNi, and the like, which contribute to improvement in heat resistance and the like. However, if the content exceeds 7% by weight, Al 3 Fe, Al 9 FeNi, and the like are likely to be coarsened, which may cause a decrease in toughness and ductility.

【0015】Crは、主としてFeと同様に本発明アル
ミニウム合金中における準結晶相を構成するために必要
な成分であり、通常2〜12重量%程度、好ましくは3
〜6重量%とすれば良い。上記含有量が12重量%を超
えると延性が低下し、破断伸びがほとんどなくなるおそ
れがある。準結晶を構成しないCr原子は、Al13Cr
2等を形成する結果、耐熱性等の向上に寄与する。
Cr is a component necessary for constituting the quasicrystalline phase in the aluminum alloy of the present invention, mainly like Fe, and is usually about 2 to 12% by weight, preferably 3 to 12% by weight.
It may be set to 6% by weight. If the content is more than 12% by weight, ductility may be reduced and elongation at break may be almost eliminated. Cr atoms that do not constitute a quasicrystal are Al 13 Cr
As a result of forming 2 etc., it contributes to improvement of heat resistance and the like.

【0016】Niは、主として上記Al80Cr13.5Fe
6.5系の準結晶等に置換型固溶しており、準結晶の強
化、安定性等の向上に寄与する。含有量は、通常1〜1
0重量%程度、好ましくは2〜6重量%とすれば良い。
準結晶を構成しないNi原子は、例えばAl3Ni、A
9FeNi等の化合物、あるいはAlとの共晶組織等
を形成する。Ni含有量が10重量%を超えると、上記
化合物等が粗大化しやすくなり、靱延性が低下するおそ
れがある。
Ni is mainly composed of the above Al 80 Cr 13.5 Fe
It is a substitutional solid solution in 6.5 -type quasicrystals and contributes to strengthening of quasicrystals and improvement of stability. The content is usually 1-1.
The content may be about 0% by weight, preferably 2 to 6% by weight.
Ni atoms that do not constitute a quasicrystal are, for example, Al 3 Ni, A
A compound such as l 9 FeNi or a eutectic structure with Al is formed. If the Ni content exceeds 10% by weight, the above compounds and the like tend to be coarsened, and the toughness and ductility may be reduced.

【0017】また、本発明アルミニウム合金では、Zr
をさらに含有する態様も包含する。Zrは、一定量の範
囲内ではAlマトリックス内に固溶し、固溶強化に寄与
することができる。また、Al中のZrは拡散係数が低
いので、高温でも固溶状態は比較的安定である。かかる
見地から、Zr含有量は通常0.01〜2.5重量%程
度、好ましくは0.1〜1重量%とすれば良い。また、
このように他の成分に比べて少量であってもZrは組織
の微細化にも有効である。Zr含有量が2.5重量%を
超えると、Al3Zr等の化合物が晶出し、靱延性が低
下するおそれがある。しかも、この場合には合金の融点
が高くなり、且つ、溶湯の粘度が高くなるおそれがあ
る。
In the aluminum alloy of the present invention, Zr
Is also included. Zr forms a solid solution in the Al matrix within a certain range, and can contribute to solid solution strengthening. Further, since Zr in Al has a low diffusion coefficient, the solid solution state is relatively stable even at a high temperature. From such a viewpoint, the Zr content may be generally about 0.01 to 2.5% by weight, preferably 0.1 to 1% by weight. Also,
As described above, even if the amount is small compared to the other components, Zr is also effective for refining the structure. When the Zr content exceeds 2.5% by weight, compounds such as Al 3 Zr are crystallized, and the toughness and ductility may be reduced. In addition, in this case, the melting point of the alloy may increase, and the viscosity of the molten metal may increase.

【0018】さらに、本発明アルミニウム合金では、上
記元素以外にも、室温強度、高温強度等を向上させる目
的で必要に応じてMg、Si、Cu、Mn、V、Ti、
Mo等の少なくとも1種をそれぞれ0.01〜3重量%
の範囲内で添加することもできる。
Furthermore, in the aluminum alloy of the present invention, in addition to the above elements, Mg, Si, Cu, Mn, V, Ti,
At least one of Mo and the like in an amount of 0.01 to 3% by weight, respectively
Can also be added within the range.

【0019】これらの添加量が3重量%を超えると、次
のように各元素によって異なる問題が生じるおそれがあ
る。V、Ti、Mo及びMnの場合では粗大な化合物を
生じ、著しく延性が低下するおそれがある。また、特に
Siの場合では、単独で晶出或いは析出し、破壊靱性が
低下するおそれがある。さらに、Mg及びCuの場合で
は、室温から200℃付近までの強度に寄与する元素で
あって熱間加工性を改善する働きがある一方で、Cuは
Fe、Al等と化合物を生じやすく、またMgは酸化物
を形成する確率が高くなる。これらMg等の元素の合計
添加量は、成形性及び靱性の観点から5重量%以下、特
に0.01〜3重量%とすることが好ましい。
If the added amount exceeds 3% by weight, different problems may occur depending on the respective elements as follows. In the case of V, Ti, Mo, and Mn, a coarse compound is formed, and ductility may be significantly reduced. Further, particularly in the case of Si, crystallization or precipitation may occur by itself, and the fracture toughness may be reduced. Further, in the case of Mg and Cu, Cu is an element that contributes to strength from room temperature to around 200 ° C. and has a function of improving hot workability, while Cu easily forms a compound with Fe, Al, and the like. Mg has a high probability of forming an oxide. The total addition amount of these elements such as Mg is preferably 5% by weight or less, particularly preferably 0.01 to 3% by weight from the viewpoint of formability and toughness.

【0020】なお、本発明では、上記成分以外の他の成
分であっても、本発明の効果を損なわない範囲内で含ま
れていても差し支えない。
In the present invention, components other than the above components may be contained within a range that does not impair the effects of the present invention.

【0021】本発明アルミニウム合金では、その組織の
少なくとも一部が準結晶により構成されている。準結晶
とは、アモルファス(非晶質)と通常の結晶との中間的
な構造を有し、例えばAl−Cr合金、Al−Mn合
金、Al−Cu−X(XはFe、Mn、Li等)合金等
においても確認されている。その結晶構造の特徴として
は、20面体のような5回軸をもつ原子配列からなり、
電子線回折では5回或いは10回対称の回折像を示す。
また、X線回折においては、特有のピークを呈する。本
発明アルミニウム合金では、Al−Cr−Fe系の準結
晶と同一又は類似の準結晶を含む。そして、この準結晶
が、特に、靱延性の大幅な低下を伴わずに高温強度等の
向上に寄与する。
In the aluminum alloy of the present invention, at least a part of its structure is composed of a quasicrystal. The quasi-crystal has an intermediate structure between amorphous (amorphous) and normal crystal, and includes, for example, Al-Cr alloy, Al-Mn alloy, Al-Cu-X (X is Fe, Mn, Li, etc.). ) Also confirmed in alloys and the like. Its crystal structure is characterized by an atomic arrangement with a 5-fold axis like an icosahedron,
Electron diffraction shows a diffraction image symmetrical five or ten times.
Further, in X-ray diffraction, it exhibits a unique peak. The aluminum alloy of the present invention contains the same or similar quasicrystal as the Al-Cr-Fe quasicrystal. And this quasicrystal contributes to improvement of high-temperature strength etc., especially, without drastic reduction of toughness.

【0022】本発明アルミニウム合金中における準結晶
サイズは通常0.2μm以下であり、より好ましくは
0.05〜0.1μmである。準結晶サイズが0.2μ
mを上回る場合には所望の特性(加工性、成形性等)が
得られなくなる。
The quasicrystal size in the aluminum alloy of the present invention is usually 0.2 μm or less, more preferably 0.05 to 0.1 μm. Quasicrystal size 0.2μ
If it exceeds m, desired characteristics (workability, moldability, etc.) cannot be obtained.

【0023】また、その体積分率は通常0.1〜20体
積%程度、好ましくは1〜10体積%である。体積分率
が0.1体積%未満の場合は、所望の強度、耐熱性等を
得ることができない。20体積%を超える場合には、相
対的にマトリックスのすべり面が少なくなり、加工性、
成形性等が低下する。なお、体積分率は、例えば顕微鏡
写真より求めることができる。
The volume fraction is usually about 0.1 to 20% by volume, preferably 1 to 10% by volume. If the volume fraction is less than 0.1% by volume, desired strength, heat resistance and the like cannot be obtained. If it exceeds 20% by volume, the slip surface of the matrix is relatively reduced, and the workability and
Moldability and the like are reduced. The volume fraction can be determined, for example, from a micrograph.

【0024】本発明アルミニウム合金は、そのシャルピ
ー衝撃値が2J/cm2以上、好ましくは2.3J/c
2以上である。シャルピー衝撃値が高いほど靱延性、
成形性等に優れていると言える。本発明におけるシャル
ピー衝撃値の測定方法は、後記の実施例に示す。
The aluminum alloy of the present invention has a Charpy impact value of 2 J / cm 2 or more, preferably 2.3 J / cm 2.
m 2 or more. The higher the Charpy impact value, the higher the ductility,
It can be said that it has excellent moldability and the like. The method for measuring the Charpy impact value in the present invention will be described in Examples described later.

【0025】本発明アルミニウム合金の製造方法は、例
えば所望量の準結晶を形成させるという観点から、急冷
凝固法が適しており、例えばアトマイズ法、急冷ロール
法、回転円盤法、噴霧ドラム法等が挙げられ、特にアト
マイズ法が好ましい。
For the method of producing the aluminum alloy of the present invention, rapid solidification is suitable, for example, from the viewpoint of forming a desired amount of quasicrystal, and examples thereof include atomizing, quenching roll, rotating disk, and spray drum methods. And the atomization method is particularly preferable.

【0026】冷却速度は、通常102〜106℃/sec
程度、好ましくは103〜105℃/secとすれば良
い。冷却速度が102℃/sec未満の場合は、所望の
準結晶が得られないばかりでなく、粗大な金属間化合物
が晶出し、靱延性・成形性が著しく低下するおそれがあ
る。また、106℃/secを超える場合は、準結晶の
存在比が多くなりすぎ、マトリックス内の転位の運動が
妨げられ、やはり靱延性・成形性が低下するおそれがあ
る。
The cooling rate is usually 10 2 to 10 6 ° C / sec.
Degree, preferably 10 3 to 10 5 ° C / sec. When the cooling rate is less than 10 2 ° C / sec, not only a desired quasicrystal cannot be obtained, but also a coarse intermetallic compound is crystallized, and there is a possibility that toughness and ductility and formability are significantly reduced. On the other hand, when it exceeds 10 6 ° C / sec, the abundance ratio of quasicrystals becomes too large, and the movement of dislocations in the matrix is hindered.

【0027】粉末の粒度分布は、通常5〜45μm程度
のものが粉末全体の80重量%以上に調整することが望
ましい。45μmを超える粉末が多くなりすぎると所望
の冷却速度が得にくくなる。また、5μm未満の粉末が
多すぎると酸化物(酸素量)が多くなり、靱延性の低
下、成形不良等を招く。
It is desirable that the powder having a particle size distribution of usually about 5 to 45 μm is adjusted to 80% by weight or more of the whole powder. If the amount of powder exceeding 45 μm is too large, it becomes difficult to obtain a desired cooling rate. On the other hand, if the amount of the powder having a particle size of less than 5 μm is too large, the oxide (oxygen amount) is increased, leading to a decrease in toughness and ductility, a molding failure and the like.

【0028】噴霧媒及び噴霧雰囲気は、最終製品の用途
等に応じて適宜決定すれば良く、例えば大気、不活性ガ
ス、或いはこれらの混合ガス等のいずれであっても良
い。例えば、酸素量を制限する場合は、必要に応じて不
活性ガスを導入すれば良い。
The spray medium and the spray atmosphere may be appropriately determined according to the use of the final product and the like, and may be, for example, any of the air, an inert gas, or a mixed gas thereof. For example, when limiting the amount of oxygen, an inert gas may be introduced as needed.

【0029】得られた粉末は、必要に応じて分級を行
う。分級方法は、フルイ等による公知の粉末の分級方法
に従えば良い。粗大な粉末粒子は、例えば準結晶が形成
されていないもの、粗大な晶出物を生成しているもの等
が含まれる可能性が高く、分級によってこれらの粉末粒
子を予め取り除くことが好ましい。粉末の粒度は、通常
150μm以下、好ましくは45μm以下のものを本発
明アルミニウム合金として採用すれば良い。粉末の形状
は、特に制限されず、例えば真球状、回転楕円体状、不
定形状、涙滴状、扁平状等のいずれの形状であっても良
い。
The obtained powder is classified if necessary. The classification may be performed according to a known powder classification method using a sieve or the like. The coarse powder particles are likely to include, for example, those in which quasicrystals are not formed, those in which coarse crystals are formed, and the like. It is preferable to remove these powder particles in advance by classification. The particle size of the powder is usually 150 μm or less, preferably 45 μm or less, as the aluminum alloy of the present invention. The shape of the powder is not particularly limited, and may be any shape such as a true sphere, a spheroid, an irregular shape, a teardrop, and a flat shape.

【0030】本発明アルミニウム合金の粉末をさらに固
化成形する場合は、工業的に実施されている公知の成形
方法をいずれも採用できる。例えば、必要に応じてCI
P又は冷間プレスで予備成形を行い、その後に熱間押し
出し、熱間粉末鍛造、ホットプレス、HIP等で成形・
焼結すれば良い。これらの中でも、熱間粉末鍛造による
方法が工業生産上好ましい。
When the aluminum alloy powder of the present invention is further solidified and compacted, any of the industrially known molding methods can be employed. For example, if necessary
Preforming with P or cold press, then hot extrusion, hot powder forging, hot pressing, HIP, etc.
Sintering may be performed. Among these, the method by hot powder forging is preferable from an industrial production point of view.

【0031】通常、熱間押し出し等により得られた押し
出し材は、押し出し方向とそれに垂直な方向との異方性
が生じやすく、強度・靱延性等において両者の間で10
〜20%程度の差が生じることがある。これに対し、熱
間粉末鍛造の場合は、かかる異方性があったとしても上
記差は通常5%以下である。また、歩留まりについて
も、押し出し材は通常70%前後であるのに対し、熱間
粉末鍛造の場合はニアネットシェイプであるため通常9
8%以上である。また、押し出し用のビレットは大型の
ものが多く、その加熱に長時間を要することが多い。そ
の点、熱間粉末鍛造の場合は、ニアネットシェイプであ
るため必要最小限の大きさで良く、加熱に要する時間も
少なくて済む。
Usually, an extruded material obtained by hot extrusion or the like tends to have anisotropy between the extrusion direction and a direction perpendicular to the extrusion direction.
A difference of about 20% may occur. On the other hand, in the case of hot powder forging, even if such anisotropy exists, the difference is usually 5% or less. The yield of the extruded material is usually around 70%, whereas the yield ratio is usually 9% in the case of hot powder forging because of the near net shape.
8% or more. In addition, many extruded billets are large and often require a long time for heating. On the other hand, in the case of hot powder forging, since it is a near-net shape, the required minimum size is sufficient, and the time required for heating can be reduced.

【0032】本発明アルミニウム合金は、広い温度範囲
にわたって良好な延性を有するため、複雑な形状の部品
であっても熱間粉末鍛造によって製造可能であり、また
準結晶から粗大な化合物の生成を防止するという意味で
も加熱時間の短い熱間粉末鍛造法が好ましい。一方、単
純な形状の製品(例えば、棒状、パイプ状等)の場合
は、装置、金型等の設備面で押し出しの方が有利な場合
もある。従って、本発明アルミニウム合金においては、
最終製品の形状等に応じて適宜成形方法を選択すれば良
い。
Since the aluminum alloy of the present invention has good ductility over a wide temperature range, it can be manufactured by hot powder forging even for a component having a complicated shape, and prevents formation of a coarse compound from a quasicrystal. In this sense, a hot powder forging method having a short heating time is preferable. On the other hand, in the case of a product having a simple shape (for example, a bar shape, a pipe shape, or the like), extrusion may be more advantageous in terms of equipment such as a device and a mold. Therefore, in the aluminum alloy of the present invention,
What is necessary is just to select a molding method suitably according to the shape of a final product, etc.

【0033】本発明アルミニウム合金は、大気中での熱
間成形が可能であるが、用途等により酸素量が問題であ
れば、必要に応じて脱ガス工程、不活性ガス中での処理
等を行っても良い。また、本発明アルミニウム合金は、
室温での変形能も有するので、冷間鍛造、プレス等によ
り歪み等の矯正やかしめ、機械加工等の複雑加工も容易
に実施できる。
The aluminum alloy of the present invention can be hot-formed in the atmosphere. However, if the amount of oxygen is a problem depending on the application, a degassing step, a treatment in an inert gas, etc., may be performed as necessary. You may go. Further, the aluminum alloy of the present invention,
Since it also has a deformability at room temperature, it is possible to easily perform correction such as distortion or caulking by cold forging or pressing, or complicated processing such as machining.

【0034】[0034]

【発明の効果】本発明アルミニウム合金は、その合金組
織内の準結晶相及び結晶質金属間化合物が主として耐熱
性の向上に寄与する。特に、準結晶相は、組織内に微細
かつ均一に分散しており、加工又は成形温度でも安定し
ているので、粗大化又は相変態による特性の劣化を生じ
ない。また、マトリックス中に変形抵抗となるものが比
較的少なく、熱間成形性に優れ、その後の冷間加工性も
良好である。さらに、室温での靱性に優れる。
In the aluminum alloy of the present invention, the quasicrystalline phase and the crystalline intermetallic compound in the alloy structure mainly contribute to the improvement of heat resistance. In particular, the quasicrystalline phase is finely and uniformly dispersed in the structure, and is stable even at the processing or molding temperature, so that the characteristics do not deteriorate due to coarsening or phase transformation. In addition, there is relatively little deformation resistance in the matrix, excellent hot formability, and good cold workability thereafter. Furthermore, it has excellent toughness at room temperature.

【0035】より具体的には、本発明アルミニウム合金
は、常温から約300℃の高温に至る広い温度範囲内で
優れた強度と延性を併せもつ。また、成形性にも優れ、
合金内に生じた準結晶相も安定であるので、その諸特性
を維持したまま加工・熱処理できるという利点を有す
る。また、室温での靱性にも優れることから、種々の加
工が可能であり、各種用途における材料としての信頼性
が高い。
More specifically, the aluminum alloy of the present invention has excellent strength and ductility in a wide temperature range from room temperature to a high temperature of about 300 ° C. Also excellent in moldability,
Since the quasicrystalline phase generated in the alloy is also stable, there is an advantage that processing and heat treatment can be performed while maintaining its various characteristics. Further, since it is excellent in toughness at room temperature, various processes are possible, and the reliability as a material for various uses is high.

【0036】このような特長をもつ本発明アルミニウム
合金は、構造用材料、機械材料、輸送機械部材等に幅広
く利用することができる。
The aluminum alloy of the present invention having such features can be widely used for structural materials, mechanical materials, transportation machinery members and the like.

【0037】[0037]

【実施例】以下、実施例及び比較例を示し、本発明の特
徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

【0038】実施例1 表1に示す組成の合金溶湯を調製し、アトマイズ法によ
り粉化した。得られた粉末を−45μmに分級し、直径
30mm×高さ約80mmのビレットに冷間予備成形し
た。その後、350℃で30分加熱し、同温度で押出比
10で押し出した。
Example 1 An alloy melt having the composition shown in Table 1 was prepared and pulverized by an atomizing method. The obtained powder was classified into −45 μm and cold preformed into a billet having a diameter of 30 mm and a height of about 80 mm. Thereafter, the mixture was heated at 350 ° C. for 30 minutes and extruded at the same temperature at an extrusion ratio of 10.

【0039】得られた押し出し棒から引張試験片を作製
し、室温、200℃及び300℃の各温度で100時間
保持した後、同温度で引張試験を行った。それらの結果
を表1〜3に示す。また、室温におけるシャルピー試験
を行った。シャルピー試験は、JIS Z2242に準
拠して行った。なお、シャルピー試験片には断面が約7
mm×11mmである長方形の押し出し材からJIS3
号試験片の1/2幅サイズでUノッチ付きのものを切り
出して用いた。その結果を表1に示す。
A tensile test piece was prepared from the obtained extruded rod, and kept at room temperature, 200 ° C. and 300 ° C. for 100 hours, and then a tensile test was conducted at the same temperature. The results are shown in Tables 1 to 3. In addition, a Charpy test was performed at room temperature. The Charpy test was performed according to JIS Z2242. The cross section of the Charpy test specimen was about 7
JIS3 from rectangular extruded material of mm × 11mm
A test piece with a U-notch in a half width size of the test piece was cut out and used. Table 1 shows the results.

【0040】また、熱間成形/加工性の指標として、限
界据込率を測定した。一般に、この値が大きいほど変形
能に優れる。その結果も表1に示す。なお、限界据込率
の測定方法は、まず上記押し出し棒からφ10×15m
mのテストピースを切り出し、各10個用意し、各テス
トピースを円柱状の金型間に狭持し、450℃で鍛造速
度70mm/秒により据込率を変えて限界据込率EhC
(%)を下記式に従って求めた。
The critical upsetting ratio was measured as an index of hot forming / workability. Generally, the larger the value, the better the deformability. Table 1 also shows the results. In addition, the method of measuring the critical upsetting rate is as follows:
m, 10 test pieces were prepared, each test piece was sandwiched between cylindrical molds, and the upsetting rate was changed by changing the upsetting rate at 450 ° C. at a forging speed of 70 mm / sec.
(%) Was determined according to the following equation.

【0041】EhC=(h0−hc)×100/h0 (但し、h0:変形前の試料の高さ(15mm)、h
c:変形後の試料の高さ)
EhC = (h0−hc) × 100 / h0 (where h0 is the height (15 mm) of the sample before deformation, h
c: height of sample after deformation)

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】実施例2 実施例1で得られた原料粉末を用い、冷間プレスでφ5
9×50mm(H)に予備成形したものをφ61の金型
内で熱間鍛造(鍛造温度:350℃、保持時間:15
分)を行った。得られた鍛造体から各試験片を作製し、
実施例1と同様の試験を行った。それらの結果を表4〜
6に示す。
Example 2 The raw material powder obtained in Example 1 was used in a cold press to obtain φ5.
Hot forging of a preform of 9 × 50 mm (H) in a φ61 mold (forging temperature: 350 ° C., holding time: 15
Min). Each test piece was prepared from the obtained forged body,
The same test as in Example 1 was performed. Table 4-
6 is shown.

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【表6】 [Table 6]

【0049】以上の結果より、本発明アルミニウム合金
は、成形性が良好であり、室温から300℃の温度範囲
において優れた強度、延性等を示し、室温での耐衝撃性
にも優れることがわかる。
From the above results, it can be seen that the aluminum alloy of the present invention has good formability, exhibits excellent strength and ductility in the temperature range from room temperature to 300 ° C., and also has excellent impact resistance at room temperature. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の焼結体におけるX線回折分析の結果
を示す図である。
FIG. 1 is a view showing a result of an X-ray diffraction analysis of a sintered body of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楠井 潤 大阪府大阪市中央区久太郎町三丁目6番8 号 東洋アルミニウム株式会社内 (72)発明者 久保 幸平 大阪府大阪市中央区久太郎町三丁目6番8 号 東洋アルミニウム株式会社内 (72)発明者 松木 賢司 富山県富山市五福3190 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Kusui 3-6-8 Kutaro-cho, Chuo-ku, Osaka City, Osaka Prefecture Inside Toyo Aluminum Co., Ltd. (72) Kohei Kubo 3-chome Kutaro-cho, Chuo-ku, Osaka City, Osaka No. 6-8 Inside Toyo Aluminum Co., Ltd. (72) Inventor Kenji Matsuki 3190 Gofuku, Toyama City, Toyama Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムをベースとする合金であっ
て、(1)Fe:2〜7重量%、Cr:2〜12重量%
及びNi:1〜10重量%(但し、7重量%≦Fe+C
r+Ni≦15重量%)を含有し、(2)合金組織の少
なくとも一部が準結晶であり、(3)シャルピー衝撃値
が2J/cm2以上であることを特徴とするアルミニウ
ム合金。
An alloy based on aluminum, comprising: (1) 2 to 7% by weight of Fe, 2 to 12% by weight of Cr
And Ni: 1 to 10% by weight (however, 7% by weight ≦ Fe + C
(2) At least a part of the alloy structure is a quasicrystal, and (3) a Charpy impact value is 2 J / cm 2 or more.
【請求項2】アルミニウムをベースとする合金であっ
て、(1)Fe:2〜7重量%、Cr:2〜12重量
%、Ni:1〜10重量%及びZr:0.01〜2.5
重量%(但し、7重量%≦Fe+Cr+Ni+Zr≦1
5重量%)を含有し、(2)合金組織の少なくとも一部
が準結晶であり、(3)シャルピー衝撃値が2J/cm
2以上であることを特徴とするアルミニウム合金。
2. An alloy based on aluminum, comprising: (1) 2 to 7% by weight of Fe, 2 to 12% by weight of Cr, 1 to 10% by weight of Ni, and 0.01 to 2% of Zr. 5
Wt% (however, 7 wt% ≦ Fe + Cr + Ni + Zr ≦ 1
(2) at least a part of the alloy structure is a quasicrystal, and (3) the Charpy impact value is 2 J / cm.
Aluminum alloy characterized by being 2 or more.
【請求項3】準結晶のサイズが0.2μm以下である請
求項1又は2に記載のアルミニウム合金。
3. The aluminum alloy according to claim 1, wherein the size of the quasicrystal is 0.2 μm or less.
【請求項4】準結晶の体積分率が0.1〜20体積%で
ある請求項1又は2に記載のアルミニウム合金。
4. The aluminum alloy according to claim 1, wherein the volume fraction of the quasicrystal is 0.1 to 20% by volume.
JP7531197A 1997-03-27 1997-03-27 Aluminum alloy Pending JPH10265918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7531197A JPH10265918A (en) 1997-03-27 1997-03-27 Aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7531197A JPH10265918A (en) 1997-03-27 1997-03-27 Aluminum alloy

Publications (1)

Publication Number Publication Date
JPH10265918A true JPH10265918A (en) 1998-10-06

Family

ID=13572594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7531197A Pending JPH10265918A (en) 1997-03-27 1997-03-27 Aluminum alloy

Country Status (1)

Country Link
JP (1) JPH10265918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
US7563517B2 (en) * 2004-02-16 2009-07-21 Saint Gobain Centre de Recherches et d-Etudes European “Les Miroirs” Metal coating for a kitchen utensil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
US7473327B2 (en) 2002-02-28 2009-01-06 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in caulking property and extruded product made thereof
US7563517B2 (en) * 2004-02-16 2009-07-21 Saint Gobain Centre de Recherches et d-Etudes European “Les Miroirs” Metal coating for a kitchen utensil

Similar Documents

Publication Publication Date Title
JP2021527758A (en) High-performance Al-Zn-Mg-Zr-based aluminum alloy for welding and additive manufacturing
US6471797B1 (en) Quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability and method of making the same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
WO2010122960A1 (en) High-strength copper alloy
EP3456853A1 (en) Manufacturing of high strength and heat resistant aluminium alloys strengthened by dual precipitates
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
JP4925028B2 (en) Aluminum alloy molding material
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JP2005163100A (en) Heat resistant/high toughness aluminum alloy, its production method, and engine component
JPH06330263A (en) Production of high toughness al-si series alloy
JP2024508801A (en) Al-Mn-Zr alloy for high temperature applications
JPH10265918A (en) Aluminum alloy
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JPH01242749A (en) Heat-resistant aluminum alloy
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JP2917999B2 (en) Method for producing high-strength aluminum alloy compact
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same