JPH02147195A - Production of cobalt-chromium-based alloy welding material - Google Patents

Production of cobalt-chromium-based alloy welding material

Info

Publication number
JPH02147195A
JPH02147195A JP29988488A JP29988488A JPH02147195A JP H02147195 A JPH02147195 A JP H02147195A JP 29988488 A JP29988488 A JP 29988488A JP 29988488 A JP29988488 A JP 29988488A JP H02147195 A JPH02147195 A JP H02147195A
Authority
JP
Japan
Prior art keywords
wire
cobalt
chromium
alloy
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29988488A
Other languages
Japanese (ja)
Inventor
Shuichi Inagaki
修一 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP29988488A priority Critical patent/JPH02147195A/en
Publication of JPH02147195A publication Critical patent/JPH02147195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To allow the production of the welding rod consisting of a cobalt- chromium-based alloy by forging, rolling and drawing and to improve the yield thereof by suppressing the content of C in the alloy at specific % in the stage of smelting of a cast ingot, working the alloy to a rod or wire and then increasing the content of the C up to specific % after the working. CONSTITUTION:This welding material contains, by weight %, 20.0 to 40.3% Cr and further, any one or >=2 kinds of 0.10 to 20% W, 0.10 to 10% Mo, 0.10 to 40% Ni, and 0.10 to 5% Fe are incorporated therein. The content of the C in the cobalt-chromium-based alloy which consists of the balance Co aside from C and unavoidable impurities is specified to 0.0001 to 0.10% and the casting ingot of this alloy is smelted. The ingot is subjected to hot rolling to a wire rod after hot forging and is further subjected to warm or cold drawing to form the wire. The large-diameter wire is subjected to a carburization treatment after working to a straight rod and the fine wire is subjected to the above- mentioned treatment as it is to form the wire to increase the content of C of the alloy to 0.10 to 3.50%. The welding rod and welding wire made of the cobalt-chromium-based alloy are thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコバルト・クロム基合金からなる硬質肉盛用の
溶接棒及び溶接線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a welding rod and welding wire for hard overlay made of a cobalt-chromium based alloy.

〔従来の技術〕[Conventional technology]

従来、コバルト・クロム基合金、代表的にはステライト
合金は耐摩耗性及び高温硬さが大きく、熱膨張係数と溶
融温度が鋼に近いため、硬質肉盛用合金として賞月され
ている。特に、600℃以上の温度においては高速度鋼
よりも硬い。
Conventionally, cobalt-chromium-based alloys, typically stellite alloys, have high wear resistance and high temperature hardness, and have thermal expansion coefficients and melting temperatures close to those of steel, so they have been prized as alloys for hardfacing. In particular, it is harder than high speed steel at temperatures above 600°C.

そのため自動車又は航空発動機等の排気弁の盛金等、あ
るいは耐摩耗性を利用して人絹工業、プラスチック製型
設備等に多用されている。
For this reason, it is widely used in the molding of exhaust valves in automobiles and aircraft engines, as well as in the silk industry and plastic molding equipment due to its abrasion resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、ステライト合金からなる溶接棒を得るには遠心鋳
造法あるいは真空吸上法によって製造されているが、そ
の加工方法の制約により長さがたかだか40〜200■
程度の棒しか得られず。
Conventionally, welding rods made of stellite alloy have been manufactured by centrifugal casting or vacuum suction, but due to limitations in the processing method, the length is at most 40 to 200 mm.
I could only get a small stick.

しかも歩留りが極端に低いものであった。Moreover, the yield was extremely low.

そこで、本発明は上記特殊な鋳造方法によらず、鍛造、
圧延によりステライト合金に代表されるコバルト・クロ
ム基合金溶接棒、溶接線を製造し得る方法を提供するこ
とを目的とするものである。
Therefore, the present invention does not rely on the above-mentioned special casting method, but instead uses forging,
The object of the present invention is to provide a method for manufacturing cobalt-chromium-based alloy welding rods and welding wires, such as stellite alloys, by rolling.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は主要構成成分として1重量比でCr:20.0
〜40.0%を含有し、あるいはこれらに更にW:0.
10〜20%、M o : 0.10〜10%、Ni:
0゜10〜40%及びFe:0.10〜5%のいずれか
1種又は2種以上を含有し、残部がC及び不可避不純物
を別にしてCoからなるコバルト・クロム基合金におけ
るC含量を0.0001〜0.10%として鋳塊を溶製
し、これを熱間鍛造後、熱間線材匡延加工し、さらに温
間又は冷間で伸線加工してφ1〜φ5の線を形成し、太
線は直棒加工した後、細線はそのまま浸炭処理して該合
金のC含量を0.10〜3.50%とすることにより、
コバルト・クロム基合金溶接棒、溶接線を製造するもの
である。
The present invention has Cr:20.0 as a main component at a weight ratio of 1.
~40.0%, or additionally W:0.
10-20%, Mo: 0.10-10%, Ni:
The C content in a cobalt-chromium-based alloy containing one or more of the following: 0° 10-40% and Fe: 0.10-5%, with the remainder being Co, excluding C and inevitable impurities. An ingot with a concentration of 0.0001 to 0.10% is produced, hot forged, hot wire rolled, and then warm or cold wire drawn to form wires of φ1 to φ5. However, after processing the thick wire into a straight bar, the thin wire is carburized as it is to make the C content of the alloy 0.10 to 3.50%.
The company manufactures cobalt-chromium-based alloy welding rods and welding wire.

このような本発明は、コバルト・クロム基合金溶接棒、
線を鋳塊から鍛造、圧延加工による成形を可能にする手
段を種々検討する過程の中で、本発明者が見い出したも
のであり、合金中のC含量を鋳塊溶製の段階で0.00
01〜0.10%と低く押え、これにより鍛造、圧延を
可能とし、棒、線に加工した後、浸炭処理によりC含量
を通常の硬質肉盛用コバルト・クロム幇合金のC含量で
ある0、10〜3.50%まで高めることを特徴とする
ものである。
Such the present invention provides a cobalt-chromium based alloy welding rod,
This was discovered by the present inventor in the process of investigating various means to enable wire to be formed from an ingot by forging and rolling, and the C content in the alloy was reduced to 0. 00
By keeping the C content as low as 0.01 to 0.10%, it is possible to forge and roll it, and after processing it into bars and wires, it is carburized to reduce the C content to 0. , 10 to 3.50%.

なお、本発明に係るコバルト・クロム基合金中には不可
避不純物として、脱硫剤としての最大2.0%までのS
i、最大0.5%までのAD、、Ti等が、そして[1
剤としての最大2.0%までのMnの含有を許容し得る
Note that the cobalt-chromium-based alloy according to the present invention contains up to 2.0% S as an unavoidable impurity as a desulfurization agent.
i, AD up to 0.5%, , Ti, etc., and [1
The inclusion of up to 2.0% Mn as an agent is acceptable.

C: 0.0001〜0.10% Cは溶製時に0.10%以上含有させると、その後の鋳
造加工において割れが発生するため0.10%以下に限
定した。
C: 0.0001 to 0.10% C is limited to 0.10% or less because if it is contained in an amount of 0.10% or more during melting, cracks will occur in the subsequent casting process.

浸炭後のC含量:o4o〜3.50% Cが0.10%以下では溶接肉盛部の高温硬さ及び耐摩
耗性が得られない。一方、3.50%以上では溶接肉盛
部の割れ抵抗性が低下するため3.50%以下とした。
C content after carburizing: o4o ~ 3.50% If C is less than 0.10%, high-temperature hardness and wear resistance of the weld build-up part cannot be obtained. On the other hand, if it is 3.50% or more, the cracking resistance of the weld build-up part decreases, so it is set to 3.50% or less.

以下に実施例を示す。Examples are shown below.

実施例 第1表に示されるような試料Nα1〜16の化学成分組
成を有する合金を溶製し、得られた鋳塊の鍛造試験を行
った。鍛造試験条件は以下のようにした。
EXAMPLES Alloys having chemical compositions of samples Nα1 to Nα16 as shown in Table 1 were melted and the resulting ingots were subjected to forging tests. The forging test conditions were as follows.

鋳塊寸法    50kg(D:120mm、 L:6
00mm)鍛造径寸法   50φX3m 温度1200℃ (以下余白) この鍛造試験結果を化学成分とともに第1表に示す。こ
の第1表より、溶製されるコバルト・クロム基台金鋳塊
中のC含量が0.10%を越えると、鋳塊に割れが生じ
、鍛造不能であることがわかる。このことはその後の熱
間線材圧延加工にも耐えられないことを示すものである
。これに対し、鋳塊中のC含量が0.10%以下のもの
では鍛造に際して割れが全く生じないものであることが
わかる。そして、その後の熱間線材圧延加工、温間又は
冷間での伸線加工においても割れが生じずに圧延及び伸
線が可能であった。
Ingot size 50kg (D: 120mm, L: 6
00mm) Forging diameter size: 50φX3m Temperature: 1200°C (blank below) The results of this forging test are shown in Table 1 along with the chemical components. From Table 1, it can be seen that when the C content in the cobalt-chromium base metal ingot to be melted exceeds 0.10%, cracks occur in the ingot and it is impossible to forge. This shows that it cannot withstand the subsequent hot wire rod rolling process. On the other hand, it can be seen that when the C content in the ingot is 0.10% or less, no cracks occur during forging. Further, even in subsequent hot wire rolling and warm or cold wire drawing, rolling and wire drawing were possible without cracking.

次に、試料Nα2,4,6,8,12.14については
鍛造後、1200℃でφ10まで熱間線材圧延加工し、
さらに冷間で伸線加工しφ1〜φ4の線を製造した。φ
4、φ3.2の比較的太線のものは直棒加工した後、浸
炭処理して溶接棒とした。
Next, samples Nα2, 4, 6, 8, and 12.14 were forged and then hot-rolled to φ10 at 1200°C.
Further, wires having diameters of φ1 to φ4 were produced by cold wire drawing. φ
4. A relatively thick wire with a diameter of 3.2 mm was processed into a straight rod and then carburized to make a welding rod.

又φ1.2の比較的細線のものはそのまま浸炭処理し、
第2表に示す如きC含量となるように浸炭処理して溶接
線とした。試料Nαl、3,5゜7.9.13は従来法
の遠心鋳造法により、それぞれ溶接棒とした。上記溶接
材料を使用して肉盛溶接を行った結果、何等問題はなく
、溶接材料を安定して供給することができた。ちなみに
肉盛溶接部の溶着金属層の硬さ(HRC)を謂定したと
ころ、第2表に示すように、本発明によって作製した溶
接棒又は溶接線を用いた溶着金属の硬さは遠心鋳造で得
られたそれとほぼ同一の硬さを示した。このことは本発
明によって作製した溶接棒又は溶接線は従来法によって
作製した溶接棒とその性能において大差のないことを示
すものである。
Also, relatively thin wires of φ1.2 are carburized as they are,
The weld wire was carburized to a C content as shown in Table 2. Samples Nαl and 3.5°7.9.13 were made into welding rods by conventional centrifugal casting. As a result of overlay welding using the above welding material, there were no problems and the welding material could be stably supplied. By the way, when we determined the hardness (HRC) of the weld metal layer of the overlay weld, as shown in Table 2, the hardness of the weld metal using the welding rod or welding wire produced according to the present invention was that of centrifugal casting. It showed almost the same hardness as that obtained in . This shows that the welding rod or welding wire produced by the present invention is not significantly different in performance from the welding rod produced by the conventional method.

(以下余白) さらに、本発明によって作製した溶接棒は任意の長さの
溶接棒又は溶接線が得られ、従来の如き遠心鋳造法で得
られる溶接棒の長さはたかだか40〜200an程度の
ものしか得られないことに比べ、溶接棒の交換作業の回
数が大幅に減少でき、極めて作業効率が向上するもので
あった。
(Left below) Furthermore, the welding rod or welding wire produced by the present invention can be of any length, and the length of the welding rod obtained by conventional centrifugal casting is about 40 to 200 an. The number of times the welding rod needs to be replaced can be significantly reduced, and work efficiency is greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば、硬質肉盛用としてのコバ
ルト・クロム基合金からなる溶接棒及び溶接線が鍛造、
圧延、伸線加工により得られるので、製造歩留りが飛1
1シ的に向上し、製造原価が大幅に低減され、しかも任
意の長さの溶接棒又は溶接線の交換作業回数が低減もし
くは省略でき、作業能率も著しく向上するという効果が
得られる。
According to the present invention as described above, welding rods and welding wires made of a cobalt-chromium based alloy for hard overlay can be forged,
Because it is obtained by rolling and wire drawing, the manufacturing yield is extremely high.
The manufacturing cost is significantly reduced, the number of replacement operations for welding rods or welding wires of arbitrary length can be reduced or omitted, and work efficiency is significantly improved.

特許出願人 大同特殊鋼株式会社Patent applicant: Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、重量比で、Cr:20.0〜40.0%を含有し、
残部がC及び不可避不純物を別にしてCoからなる合金
におけるC含量を0.0001〜0.10%として鋳塊
を溶製し、これを圧延加工し、さらに伸線加工し、これ
を直棒加工した後、もしくはそのまま浸炭処理して該合
金のC含量を0.10〜3.50%とすることを特徴と
するコバルト・クロム基合金溶接材料の製造方法。 2、請求項1記載の方法における合金が、前記組成に更
に、W:0.10〜20%、Mo:0.10〜10%、
Ni:0.10〜40%及びFe:0.10〜5%のい
ずれか1種又は2種以上を含有するコバルト・クロム基
合金溶接材料の製造方法。
[Claims] 1. Contains Cr: 20.0 to 40.0% by weight,
An ingot is produced with a C content of 0.0001 to 0.10% in an alloy in which the balance consists of Co, excluding C and unavoidable impurities, which is then rolled, further wire-drawn, and then made into a straight bar. A method for producing a cobalt-chromium-based alloy welding material, which comprises carburizing the alloy to have a C content of 0.10 to 3.50% after processing or as it is. 2. The alloy in the method according to claim 1 further contains W: 0.10-20%, Mo: 0.10-10%,
A method for producing a cobalt-chromium-based alloy welding material containing one or more of Ni: 0.10 to 40% and Fe: 0.10 to 5%.
JP29988488A 1988-11-28 1988-11-28 Production of cobalt-chromium-based alloy welding material Pending JPH02147195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29988488A JPH02147195A (en) 1988-11-28 1988-11-28 Production of cobalt-chromium-based alloy welding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29988488A JPH02147195A (en) 1988-11-28 1988-11-28 Production of cobalt-chromium-based alloy welding material

Publications (1)

Publication Number Publication Date
JPH02147195A true JPH02147195A (en) 1990-06-06

Family

ID=17878111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29988488A Pending JPH02147195A (en) 1988-11-28 1988-11-28 Production of cobalt-chromium-based alloy welding material

Country Status (1)

Country Link
JP (1) JPH02147195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603407A1 (en) * 1992-05-11 1994-06-29 Sumitomo Electric Industries, Ltd Vapor deposition material and production method thereof
JP2007277710A (en) * 2006-03-15 2007-10-25 Japan Medical Materials Corp Cobalt-chromium base alloy material and method for manufacturing the same
CN103962411A (en) * 2013-01-31 2014-08-06 宝钢特钢有限公司 GH3600 alloy fine thin-walled seamless pipe manufacturing method
CN105127220A (en) * 2015-07-30 2015-12-09 攀钢集团江油长城特殊钢有限公司 High-strength high-temperature alloy rod cold-drawing method
CN111485138A (en) * 2020-04-23 2020-08-04 中国科学院金属研究所 Preparation method of cold-processed cobalt-based alloy rod wire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603407A1 (en) * 1992-05-11 1994-06-29 Sumitomo Electric Industries, Ltd Vapor deposition material and production method thereof
EP0603407A4 (en) * 1992-05-11 1995-02-08 Sumitomo Electric Industries Vapor deposition material and production method thereof.
US5441010A (en) * 1992-05-11 1995-08-15 Sumitomo Electric Industries, Ltd. Evaporation material and method of preparing the same
US6126760A (en) * 1992-05-11 2000-10-03 Sumitomo Electric Industries, Ltd. Evaporation material
JP2007277710A (en) * 2006-03-15 2007-10-25 Japan Medical Materials Corp Cobalt-chromium base alloy material and method for manufacturing the same
CN103962411A (en) * 2013-01-31 2014-08-06 宝钢特钢有限公司 GH3600 alloy fine thin-walled seamless pipe manufacturing method
CN103962411B (en) * 2013-01-31 2016-01-06 宝钢特钢有限公司 A kind of manufacture method of GH3600 alloy fine thin-wall seamless pipe
CN105127220A (en) * 2015-07-30 2015-12-09 攀钢集团江油长城特殊钢有限公司 High-strength high-temperature alloy rod cold-drawing method
CN111485138A (en) * 2020-04-23 2020-08-04 中国科学院金属研究所 Preparation method of cold-processed cobalt-based alloy rod wire

Similar Documents

Publication Publication Date Title
JP7311633B2 (en) Nickel-base alloy for powder and method for producing powder
CA1090168A (en) Oxidation resistant cobalt base alloy
CN101755059B (en) Process for production of duplex stainless steel tubes
Kawahara Effect of additive elements on cold workability in FeCo alloys
CN107250416A (en) The manufacture method of Ni base superalloy
JP4424503B2 (en) Steel bar and wire rod
JP7057935B2 (en) Heat resistant Ir alloy
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
EP0362086B1 (en) Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature
JPH0885838A (en) Ni-base superalloy
JP7069654B2 (en) Mold repair welding material
EP0132371B1 (en) Process for making alloys having a coarse elongated grain structure
CN106636850B (en) High-temperature oxidation resistance high intensity mixes rare-earth alloy material and preparation method
JPH02147195A (en) Production of cobalt-chromium-based alloy welding material
JP2008308745A (en) Hot forging mold and manufacturing method therefor
WO2018117135A1 (en) Heat-resistant ir alloy
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP2745646B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP4194927B2 (en) Steel for machine structure, method for hot forming parts from this steel, and parts obtained thereby
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
JP7470937B2 (en) Heat-resistant Ir alloy
JP2003512524A (en) Linear product, method of manufacturing the same, and wear parts manufactured from the product
Xiao et al. Comparison of Semisolid Microstructure Evolution of Wrought Nickel Based Superalloy GH4037 with Different Solid Fraction
JPH02247365A (en) Plastic working method for b-containing ni-base heat resisting alloy