JP2001150122A - Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method - Google Patents

Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method

Info

Publication number
JP2001150122A
JP2001150122A JP33446099A JP33446099A JP2001150122A JP 2001150122 A JP2001150122 A JP 2001150122A JP 33446099 A JP33446099 A JP 33446099A JP 33446099 A JP33446099 A JP 33446099A JP 2001150122 A JP2001150122 A JP 2001150122A
Authority
JP
Japan
Prior art keywords
cold
plastic working
warm plastic
less
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33446099A
Other languages
Japanese (ja)
Inventor
Makoto Komori
誠 小森
Isao Tamura
庸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP33446099A priority Critical patent/JP2001150122A/en
Publication of JP2001150122A publication Critical patent/JP2001150122A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a stock for hot/warm plastic working and its plastic working method to solve a problem of lowering of fatigue strength, etc., and strength reliability due to a carbide crack in cold/ warm plastic working. SOLUTION: A manufacturing method of a stock is so that a molten steel containing C/Cr in term of (Cr+15.5C) of 14.0-42.0 mass % is sprayed to droplets, is collected/solidified to be an ingot, a max length of the carbide in the structure is set to <=5 μm. A plastic working method is so that by using the stock by the manufacturing method, the deformation in elongation or compression having a cross section change rate of >=15 % is applied to at least to part by cold/warm plastic working at <=800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車、家
電製品等の特に駆動系または運動系部品やポンプ部品、
さらに構造部品、ねじ部品のような冷間若しくは温間塑
性加工(以下、冷、温間塑性加工と記す)によって成
形、製造される部品や、鍛造等の塑性加工用の金型等、
工具の冷、温間塑性加工品およびそれに用いる素材の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, in particular, drive or motion parts and pump parts of automobiles and home appliances, for example.
Furthermore, parts that are formed and manufactured by cold or warm plastic working (hereinafter, referred to as cold and warm plastic working) such as structural parts and screw parts, dies for plastic working such as forging, etc.
The present invention relates to a method for manufacturing a cold and warm plastic processed product of a tool and a material used therefor.

【0002】[0002]

【従来の技術】自動車のエンジンやその周辺部に用いら
れる駆動系または運動系部品は、近年の環境問題の高ま
りとともに、高耐熱化、高耐摩耗化の要求が高まってお
り、構造用鋼から耐摩耗性に優れる工具鋼系等へ、その
材質の転換が始まっている。部品の成形、製造方法には
大きく分けて、切削加工と塑性加工があり、切削加工で
は、加工能率や素材の歩留りが低くコスト低減が難しい
こと、また塑性加工で得られる連続した鍛流線(ファイ
バー・フロー)形成による強度向上が得られないことか
ら、他方の塑性加工が、コストを下げながら強度向上が
計れる成形、製造方法として期待されている。このう
ち、冷、温間塑性加工は、優れた表面性状と高い寸法精
度を併せ持っている。従来の構造用鋼系では冷間あるい
は温間での鍛造や引き抜き等によって部品またはその素
材の成形、製造がされてきた。しかし最近では、従来、
不可能とされていたJIS SKD11の冷間鍛造を工
業的に可能とすることに関する技術報告書等が発表され
ている。
2. Description of the Related Art In recent years, environmental problems have been increasing, and demands for high heat resistance and high wear resistance have been increasing in drive systems and motion system components used in automobile engines and peripheral parts thereof. Conversion of materials to tool steels and the like with excellent wear resistance has begun. The method of forming and manufacturing parts can be broadly divided into cutting and plastic working. In cutting, it is difficult to reduce costs due to low processing efficiency and material yield. Since the strength cannot be improved by forming a fiber flow, the other plastic working is expected as a molding and manufacturing method capable of improving the strength while reducing the cost. Of these, cold and warm plastic working have both excellent surface properties and high dimensional accuracy. In a conventional structural steel system, a part or its material has been formed and manufactured by forging or drawing in a cold or warm state. However, recently,
A technical report and the like have been published regarding industrially enabling cold forging of JIS SKD11, which was considered impossible.

【0003】[0003]

【発明が解決しようとする課題】夏目らの「日本機械学
会 材料力学講演会講演論文集‘90 P.323」の
報告によると、合金工具鋼を冷間塑性加工すると、鋼中
に内在する炭化物が冷間塑性加工で割れて、鋼中にボイ
ド(空隙)を形成し、疲労強度のばらつきが多くなるこ
とが指摘されている。このことは、強度上の信頼性を第
一に考えるエンジン、その周辺部品や金型においては致
命的な弱点であり、このことが、加工の困難性もさるこ
とながら、高い塑性加工率を必要とし、かつ材料強度が
求められる上記用途への冷、温間塑性加工品として、耐
熱性や耐摩耗性には優れるにもかかわらず、炭化物量の
多い工具鋼が普及しない理由の一つであった。本発明の
目的は、冷、温間塑性加工時の炭化物割れを防止して、
疲労強度等、強度上の信頼性の低下を解決し、さらに低
コストでかつ耐摩耗性、またはさらには耐熱性を兼備し
た冷、温間塑性加工品およびそれに用いる冷、温間塑性
加工用素材を提供することにある。
According to the report of Natsume et al., “Transactions of the Japan Society of Mechanical Engineers, Material Mechanics Lecture Collection '90 P.323”, when the alloy tool steel is subjected to cold plastic working, carbides contained in the steel are found. Have been pointed out that they are cracked by cold plastic working, form voids (voids) in the steel, and the fatigue strength increases. This is a critical weakness for engines, peripheral components and molds that place the highest priority on reliability in terms of strength, which requires a high plastic working rate, as well as processing difficulties. This is one of the reasons why tool steel with a large amount of carbide is not popularized, despite its excellent heat resistance and wear resistance, as a cold and warm plastic processed product for the above applications where material strength is required. Was. The object of the present invention is to prevent carbide cracking during cold and warm plastic working,
A cold and warm plastic processed product and a cold and warm plastic processed material used to solve the reduction in reliability such as fatigue strength, which is lower in cost and has wear resistance or heat resistance. Is to provide.

【0004】[0004]

【課題を解決するための手段】本発明者は、冷、温間塑
性加工品に最適な素材に関して検討を重ね、素材の成
分、炭化物の大きさ、製造工程を最適化することによ
り、冷、温間塑性加工品の疲労強度等、強度上の信頼性
を大きく改善できることを見出し本発明に到達した。す
なわち本発明は、CおよびCrを、(Cr+15.5
C)で14.0〜42.0質量%含有する溶鋼を、液滴
にスプレーし該液滴を集合して凝固させてインゴットと
することにより、組織中の炭化物の最大長さを5μm以
下とすることを特徴とする冷間若しくは温間塑性加工用
素材の製造方法、および前記製造方法による冷間若しく
は温間塑性加工用素材を用い、800℃以下の冷間若し
くは温間塑性加工により、少なくとも一部に断面変化率
が15%以上の伸びまたは圧縮の変形を加えることを特
徴とする冷間若しくは温間塑性加工方法である。すなわ
ち、本発明の塑性加工用素材は、800℃以下で、少な
くともその一部に断面変化率が15%以上の伸びまたは
圧縮の変形を加える冷、温間塑性加工条件に対して特に
有効である。
Means for Solving the Problems The inventor of the present invention has been studying the most suitable material for a cold and warm plastic processed product, and optimizing the material composition, the size of the carbide, and the manufacturing process. The present inventors have found that the reliability in terms of strength, such as the fatigue strength of a warm plastic processed product, can be greatly improved, and have reached the present invention. That is, in the present invention, C and Cr are converted to (Cr + 15.5)
By spraying molten steel containing 14.0 to 42.0 mass% in (C) on droplets and collecting and solidifying the droplets to form an ingot, the maximum length of carbides in the structure is reduced to 5 μm or less. A method for producing a material for cold or warm plastic working characterized by doing, and using a material for cold or warm plastic working according to the method for producing, by cold or warm plastic working at 800 ° C. or less, at least This is a cold or warm plastic working method characterized by partially applying elongation or compression deformation having a cross-sectional change rate of 15% or more. That is, the material for plastic working of the present invention is particularly effective under cold and warm plastic working conditions in which at least a part of the material is subjected to elongation or compression deformation of 15% or more in cross section at 800 ° C. or less. .

【0005】本発明の素材は、形状的にはインゴットの
ままでも良いが、より望ましくは圧延、鍛造等の公知の
塑性加工方法により、棒状、板状、塊状等量産に適する
形状の鋼材とし、またこれらの塑性加工方法により被塑
性加工性を向上させることがそれぞれ望ましい。また、
本発明において、素材または加工品の組成を、MoとW
の1種または2種を(Mo+1/2W)で15.0質量
%以下およびVを5.0質量%以下含有するものとする
こと、および、質量%で、Si:2%以下、Mn:2%
以下、Ni:5%以下、Nb:1%以下、Co:12%
以下、S:0.2%以下の1種または2種以上を含有す
るものとすることの一方または両方がそれぞれ望まし
い。本発明において、断面変化率15%以上の伸びまた
は圧縮の変形とは、材料が特定の方向に、伸び変形する
場合はその方向に直角の断面積が15%以上減少し、圧
縮変形する場合はその方向に直角の断面積が15%以上
増加する変形を含む。なお、本発明に係る冷、温間塑性
加工は、型鍛造、押出し、絞り、転造、スピニング等各
種の塑性加工方法を含む。
[0005] The material of the present invention may be an ingot in shape, but more preferably, a steel material having a shape suitable for mass production such as a bar, a plate, or a block by a known plastic working method such as rolling and forging. It is also desirable to improve the plastic workability by these plastic working methods. Also,
In the present invention, the composition of the raw material or the processed product is defined as
(Mo + 1 / 2W) to contain 15.0% by mass or less and V 5.0% by mass or less, and, by mass%, Si: 2% or less, Mn: 2 %
Hereinafter, Ni: 5% or less, Nb: 1% or less, Co: 12%
Hereinafter, one or both of those containing one or more of S: 0.2% or less are desirable. In the present invention, elongation or compression deformation with a cross-sectional change rate of 15% or more means that a material expands or deforms in a specific direction, the cross-sectional area perpendicular to that direction decreases by 15% or more, and the material deforms or compresses. Includes deformation in which the cross-sectional area perpendicular to that direction increases by 15% or more. The cold and warm plastic working according to the present invention includes various plastic working methods such as die forging, extrusion, drawing, rolling, and spinning.

【0006】[0006]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、冷、温間塑性加工品またはその素材の成分、炭
化物の大きさ、製造工程の最適化を行ったことにある。
まず本発明者は、本発明の効果を得るに好ましい対象材
料として、CおよびCrを、(Cr+15.5C)で1
4.0〜42.0質量%を含有するもの、このうち望ま
しくは、MoおよびWの1種以上を(Mo+1/2W)
で15.0質量%以下およびVを5.0質量%以下含有
するものを選定した。これらには、各種の工具鋼が挙げ
られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that the components of cold and warm plastically processed products or their materials, the size of carbides, and the manufacturing process have been optimized.
First, the present inventors set C and Cr as 1 (Cr + 15.5C) as preferable target materials for obtaining the effects of the present invention.
Those containing 4.0 to 42.0 mass%, preferably one or more of Mo and W (Mo + / W)
And those containing not more than 15.0% by mass and not more than 5.0% by mass of V were selected. These include various tool steels.

【0007】冷、温間塑性加工品の耐摩耗性を向上させ
るには多量の炭化物の含有が必要である。この耐摩耗性
を向上させる炭化物は主にMの組成のものであ
り、CおよびCrを(Cr+15.5C)で14.0質
量%以上含有するもので得られる。また、M炭化
物の他に、MC炭化物、MC炭化物、MC炭化物を金
属組織中に存在させると、より耐摩耗性を向上させるこ
とができる。このMC炭化物、MC炭化物、MC炭化
はMo、W、Vを添加することによって形成される。さ
らに、これらの元素を添加すると、耐摩耗性の他に耐熱
性の向上が可能となる。しかし、過度に多量の合金元素
の添加は、素材の脆弱化を招くため、CおよびCrは、
(Cr+15.5C)で42.0質量%以下とすること
が必要であり、Mo、Wは(Mo+1/2W)で15.
0質量%以下、Vは5.0質量%以下とするのが望まし
い。また、高価な元素であるW、Mo、Vを無添加と
し、もしくは添加量を節減して耐摩耗性を保持させるに
は、C:1.0質量%以上、Cr:6.0質量%以上の
一方または双方とすることが望ましい。
[0007] In order to improve the wear resistance of cold and warm plastic processed products, it is necessary to contain a large amount of carbide. The carbide for improving the wear resistance is mainly of a composition of M 7 C 3 and is obtained by containing C and Cr at (Cr + 15.5C) at 14.0% by mass or more. Further, when M 2 C carbide, MC carbide, and M 6 C carbide are present in the metal structure in addition to M 7 C 3 carbide, the wear resistance can be further improved. The M 2 C carbide, MC carbide and M 6 C carbide are formed by adding Mo, W and V. Furthermore, when these elements are added, heat resistance can be improved in addition to wear resistance. However, since the addition of an excessively large amount of alloying elements causes the material to become brittle, C and Cr are
(Cr + 15.5C) needs to be 42.0% by mass or less, and Mo and W are (Mo + 1 / 2W).
It is desirable that the content be 0% by mass or less and V be 5.0% by mass or less. Further, in order to keep the wear resistance by not adding the expensive elements W, Mo, and V or to reduce the amount of addition, C: 1.0% by mass or more, Cr: 6.0% by mass or more. It is desirable to use one or both.

【0008】また、Siは耐酸化性、硬さを付与するた
めに添加し、Mn、Niは大型製品の場合の焼入性を付
与させるため添加する。さらにNiは基地の本質的な延
性改善のためにも添加する。NbはCと結合しやすくN
bCを形成して、結晶粒を微細化させて靭性を向上さ
せ、またNbCは耐摩耗性を向上させる。Nbはこれら
の効果を得るために添加する。Coは高温強度、硬さを
増すために添加する。Sは冷、温間塑性加工品に一部切
削加工、研削加工が入る場合に被削性を改善させるため
に添加する。これらの合金元素の多量添加はNi、Co
を除いて素材の脆弱化を招き、またNi、Coの多すぎ
る添加は添加に見合うだけの改善が見られずコスト・メ
リットが下がる。
[0008] Further, Si is added for imparting oxidation resistance and hardness, and Mn and Ni are added for imparting hardenability in the case of large products. Further, Ni is also added to improve the essential ductility of the matrix. Nb is easily bonded to C
By forming bC, the crystal grains are refined to improve the toughness, and NbC improves the wear resistance. Nb is added to obtain these effects. Co is added to increase high-temperature strength and hardness. S is added to improve the machinability when a part of the cold or warm plastic processed product is subjected to cutting and grinding. The addition of a large amount of these alloy elements is Ni, Co
Except for the above, the material becomes brittle, and addition of too much Ni or Co does not show the improvement corresponding to the addition, and lowers the cost and merit.

【0009】それぞれの添加量は、質量%で、Si:2
%以下、Mn:2%以下、Ni:5%以下、Nb:1%
以下、Co:12%以下、S:0.2%以下とすると良
く、これらの1種または2種以上を適宜添加するとよい。
本発明が対象とする工具鋼等の材料は、その材料の製造
工程や使用用途に応じて様々な特性を付与させるべく、
上記に加えて、Ti、Cu、N、Al、REMの1種また
は2種以上を合計で1質量%以下含有しても良く、これ
は本発明の効果に支障をきたさない。上述のように、本
発明の効果は金属組織中に炭化物が多量に存在する上記
の工具鋼等にて顕著に達成されるものである。しかもこ
の多量の炭化物が存在しないと耐摩耗性に優れる冷、温
間塑性加工品が得られない。
The amount of each additive is expressed in terms of mass%, Si: 2
%, Mn: 2% or less, Ni: 5% or less, Nb: 1%
Hereinafter, the content of Co is preferably 12% or less and the content of S is 0.2% or less, and one or more of these may be appropriately added.
Materials such as tool steels targeted by the present invention, in order to impart various properties depending on the manufacturing process and use of the material,
In addition to the above, one or more of Ti, Cu, N, Al, and REM may be contained in a total of 1% by mass or less, which does not hinder the effects of the present invention. As described above, the effect of the present invention is remarkably achieved in the above-mentioned tool steel or the like in which a large amount of carbide exists in the metal structure. Moreover, unless this large amount of carbide is present, a cold and warm plastically processed product having excellent wear resistance cannot be obtained.

【0010】次に、本発明の最大の特徴について述べ
る。本発明の最大の特徴は、炭化物の最大長さを5μm
以下に規定し、かつ出発材料としてインゴットをスプレ
ー・フォーミング法で製造するとしたことである。炭化
物の最大長さが5μmを超えると、例えば、800℃以
下で断面変化率が15%以上の塑性加工で炭化物割れを
生じることが分った。この炭化物割れは前述のように、
鋼中にボイド(空隙)を形成し、冷、温間塑性加工品の
疲労強度等、強度上のばらつきを増大させる。そしてこ
のことは、本発明が解決しようとする課題である、強度
上の信頼性を第一に考えるエンジンやその周辺部品や金
型においては致命的な弱点である。したがって、炭化物
の最大長さを5μm以下とすることが必須である。
Next, the most important feature of the present invention will be described. The most important feature of the present invention is that the maximum length of the carbide is 5 μm.
It is defined below and that the ingot is to be produced by a spray forming method as a starting material. It has been found that when the maximum length of the carbide exceeds 5 μm, for example, carbide cracks are generated by plastic working at a temperature of 800 ° C. or less and a cross-sectional change rate of 15% or more. As described above, this carbide crack
Voids (voids) are formed in the steel, and the variation in strength, such as the fatigue strength of cold and warm plastic processed products, is increased. This is a fatal weak point in the engine, its peripheral parts, and the mold, which is the problem to be solved by the present invention, which places the highest priority on reliability in terms of strength. Therefore, it is essential that the maximum length of the carbide be 5 μm or less.

【0011】一般的に耐摩耗性に優れる工具鋼は、前記
の合金元素を含有した鋼を、電気炉等の溶解設備を使用
して溶融し、これを鋳型に鋳造して鋼塊を作製し、該鋼
塊に熱間鍛練等を施して実用に供する。この際の鋼塊の
サイズは工業的には数百kgまたはそれ以上である。炭
化物の大きさは鋼塊の凝固速度に大きく影響され、凝固
速度が遅くなるほど炭化物は大きくなる。しかし、ほん
の10kgの鋼塊においてさえも、耐摩耗性を得るのに
必要な(Cr+15.5C)で14.0質量%以上を含
有した鋼の金属組織中には10μm程度の長さの炭化物
が形成される。すなわち、一般的な溶製、鋳造法では、
耐摩耗性に優れかつ冷、温間塑性加工での炭化物の割れ
を防止した実用素材を得ることができない。
In general, tool steel having excellent wear resistance is obtained by melting steel containing the above-mentioned alloy element using a melting facility such as an electric furnace and casting it into a mold to form a steel ingot. Then, the steel ingot is subjected to hot forging or the like and put to practical use. The size of the steel ingot at this time is industrially several hundred kg or more. The size of the carbide is greatly affected by the solidification rate of the steel ingot, and the carbide increases as the solidification rate decreases. However, even in a steel ingot of only 10 kg, carbide having a length of about 10 μm is contained in the metallographic structure of steel containing 14.0% by mass or more of (Cr + 15.5C) necessary for obtaining wear resistance. It is formed. In other words, in general melting and casting methods,
It is not possible to obtain a practical material having excellent wear resistance and preventing cracking of carbides during cold and warm plastic working.

【0012】微細な鋼中炭化物を得るのに良く知られた
方法として粉末冶金法がある。これは、所定の合金元素
を含有した金属溶湯を、アトマイズ法等を用いて直径が
1μm程度等の粉末とし、これを缶に封入して熱間静水
圧プレスを用いて、例えば1000気圧、1100℃の
温度で圧密すること等により鋼塊を製造する方法であ
る。この方法を用いると、本発明が対象とする炭化物の
最大長さが5μm以下の工具鋼等の出発材料を製造する
ことができると考えられる。しかし、一般的な溶製法に
比べて工程が増加する粉末冶金法は、コンタミネーショ
ンの発生機会が増加するため、この粉末冶金法で製造し
た鋼は清浄度が一般的な溶製材に比べて低くなると考え
られる。清浄度の低い冷、温間塑性加工品は強度上のば
らつきが大きくなる可能性をはらんでおり、強度上の信
頼性を第一に考えるエンジンやその周辺部品や金型にお
いては致命的な弱点である。
A well-known method for obtaining fine carbides in steel is powder metallurgy. In this method, a molten metal containing a predetermined alloy element is formed into a powder having a diameter of about 1 μm or the like by using an atomizing method or the like, which is sealed in a can, and is subjected to hot isostatic pressing, for example, at 1000 atm. This is a method of producing a steel ingot by consolidating at a temperature of ° C. It is believed that this method can be used to produce starting materials such as tool steel, where the maximum length of carbides targeted by the present invention is 5 μm or less. However, the powder metallurgy method, in which the number of steps increases compared to the general melting method, increases the chances of contamination.Therefore, the steel produced by this powder metallurgy method has a lower degree of cleanliness than general melting materials. It is considered to be. Cold and warm plastic products with low cleanliness are likely to have large variations in strength, and are critical for engines, peripheral components, and molds where reliability is considered first. It is a weak point.

【0013】さらに、粉末冶金法は上述のように鋼塊を
製造するプロセスが煩雑で多大な時間を要するために出
発材料の価格を押し上げる。この材料を用いることはコ
スト削減を第一義に考えるエンジンやその周辺部品への
採用意欲を低下させ、実際に採用しているところはな
い。本発明の目的は、切削加工を冷、温間塑性加工に変
えることにより、低コストでしかも高性能な製品を提供
することにあるから、粉末冶金法は本発明の目的に合致
しない。
Further, the powder metallurgy method raises the price of starting materials because the process of producing steel ingots is complicated and takes a lot of time as described above. The use of this material reduces the willingness to adopt it in engines and its peripheral parts where cost reduction is the primary consideration, and there is no actual use. An object of the present invention is to provide a low-cost and high-performance product by changing the cutting process to cold and warm plastic working, so that powder metallurgy does not meet the object of the present invention.

【0014】スプレー・フォーミング法とは、保護雰囲
気中で溶湯をノズルより噴射して、液滴としこれを回転
する台(コレクター)上で急速凝固、蓄積させてインゴ
ットを製造する方法である。この製造方法を利用した材
料としては、例えば、OSPREYMETALSより半
導体パッケージ用Si−Al合金(特許WO97037
75)、SANDVIKよりごみ処理プラント用耐食N
i合金(特許WO9809751)等が紹介されてい
る。しかし本発明の対象である冷、温間塑性加工品用の
素材に関してはこれまで報告がない。
The spray forming method is a method in which a molten metal is jetted from a nozzle in a protective atmosphere to form droplets, which are rapidly solidified and accumulated on a rotating base (collector) to produce an ingot. As a material using this manufacturing method, for example, a Si-Al alloy for a semiconductor package (patent WO97037) from OSPREMETALS
75), from SANVIK Corrosion resistant N for waste treatment plant
An i-alloy (patent WO9809751) and the like are introduced. However, there has been no report on a material for a cold or warm plastic work product which is an object of the present invention.

【0015】本発明者はこの製造法を採用すれば、炭化
物の最大長さが5μm以下の前記組成の工具鋼等のイン
ゴットを製造できることを新たに発見し、本発明を着想
した。スプレー・フォーミング法は、粉末冶金法のよう
な煩雑な製造プロセスを必要としないため製造コストの
増大を招かず、しかも多量のガスとの接触機会が少ない
ため、不可避的に酸化皮膜を有する粉末を圧密する粉末
冶金法よりも清浄度が高くなる。したがって、本発明で
はスプレー・フォーミング法で出発材料を製造すること
を最大の特徴とする。
The present inventor has newly found that if this manufacturing method is adopted, it is possible to manufacture an ingot of a tool steel or the like having the above-described composition having a maximum carbide length of 5 μm or less, and has conceived the present invention. The spray forming method does not require a complicated manufacturing process such as the powder metallurgy method, and thus does not cause an increase in manufacturing cost.Moreover, since there is little opportunity for contact with a large amount of gas, powder having an oxide film is inevitably used. Higher cleanliness than compacting powder metallurgy. Therefore, the most significant feature of the present invention is that the starting material is manufactured by the spray forming method.

【0016】さらに、本発明では、上記のインゴットを
出発材料とする素材に加えられる冷、温間塑性加工とし
て、望ましくは加工温度を800℃以下で、少なくとも
その一部に断面変化率15%以上の伸びまたは圧縮の変
形を加える冷間若しくは温間塑性加工を施すものであ
る。熱間塑性加工では炭化物割れで生成したボイドに能
率良く金属相が流入してボイドを消失させることは良く
知られた現象である。しかし、この金属相の流入は80
0℃以下の冷、温間塑性加工では起こり難い。本発明で
は、組織中の炭化物の最大長さを5μm以下とすること
で炭化物の割れが防止されているから、金属相の流入の
必要性がなく、したがって、本発明の効果は特にこの範
囲で発揮される。望ましい塑性加工条件として上記のよ
うに指定する理由ここにある。
Further, in the present invention, the cold and warm plastic working to be applied to the raw material starting from the ingot is preferably performed at a working temperature of 800 ° C. or less, and at least a part thereof has a sectional change rate of 15% or more. Cold or warm plastic working to add elongation or compression deformation. It is a well-known phenomenon that, in hot plastic working, a metal phase efficiently flows into voids formed by carbide cracks to eliminate the voids. However, the inflow of this metal phase is 80
It hardly occurs in cold and warm plastic working at 0 ° C or less. In the present invention, since the crack of the carbide is prevented by setting the maximum length of the carbide in the structure to 5 μm or less, there is no need for the inflow of the metal phase, and therefore, the effect of the present invention is particularly within this range. Be demonstrated. This is the reason why the desired plastic working conditions are specified as described above.

【0017】次に、変形の断面変化率15%以上の伸び
または圧縮の変形を推奨する理由について述べる。炭化
物割れは大きな塑性変形が起こることによって、塑性変
形能が金属相に比べて小さい炭化物がその変形量に追随
できないため生じると考えられる。断面変化率10%以
下の冷、温間塑性加工では炭化物割れが比較的生じにく
い。しかし実用素材となる、例えば一般的な溶製法を用
いて作成した2500kg鋼塊による素材では断面変化
率10%の冷、温間塑性加工でも炭化物割れは生じる。
したがって断面変化率15%以上の冷、温間塑性加工に
よる炭化物割れのない製品は、これまでの素材では不可
能であった。また、エンジンやその周辺部品や金型は一
般に凹凸に富む形状であり、塑性加工で成形、製造する
場合、全体または局部での歪率は断面変化率で15%以
上となる場合が多い。したがって、本発明は断面変化率
15%以上の冷、温間塑性加工で製造される場合に対し
て、発明の価値を発揮するのである。
Next, the reason for recommending elongation or compression deformation with a deformation cross-sectional change rate of 15% or more will be described. It is considered that carbide cracks occur because large plastic deformation occurs, and a carbide having a low plastic deformation ability cannot follow the deformation amount as compared with the metal phase. Cold and warm plastic working with a cross-sectional change rate of 10% or less hardly causes carbide cracks. However, in the case of a practical material, for example, a 2500 kg steel ingot produced using a general melting method, carbide cracks occur even in cold and warm plastic working with a cross-sectional change rate of 10%.
Therefore, a product having no cross-sectional change rate of 15% or more and having no carbide crack due to cold and warm plastic working has been impossible with conventional materials. Further, the engine, its peripheral parts, and the mold are generally rich in irregularities, and in the case of forming and manufacturing by plastic working, the entire or local strain rate is often 15% or more in terms of cross-sectional change rate. Therefore, the present invention exerts its value in the case where it is manufactured by cold and warm plastic working with a sectional change rate of 15% or more.

【0018】[0018]

【実施例】以下、本発明の実施例について述べる。表1
に示す各組成の工具鋼溶鋼から、表2に示す条件により
試験材料を作成した。すなわち、各組成の溶鋼から、ス
プレー・フォーミング法および溶製法により表中に記入
した重量の鋼塊を作製し、1100℃にて鍛練成形比
を、試料1Xは4、試料2Xは10、試料3Xは16でそ
れぞれ鍛造した。ここでXは表1の組成a、b、cのそれぞ
れである。各鍛造材を850℃で焼き鈍しした後、それ
ぞれの鋼片より直径35mm、長さ1mの棒材試料を採
取するとともに、その中心部における炭化物の最大長さ
を測定した。
Embodiments of the present invention will be described below. Table 1
Test materials were prepared from the molten tool steels having the respective compositions shown in Table 2 under the conditions shown in Table 2. That is, from the molten steel of each composition, a steel ingot having the weight indicated in the table was prepared by the spray forming method and the smelting method, and the forging ratio at 1100 ° C. was 4 for sample 1X, 10 for sample 2X, and 3X for sample. Were forged at 16. Here, X is each of the compositions a, b, and c in Table 1. After annealing each forged material at 850 ° C., a bar sample having a diameter of 35 mm and a length of 1 m was taken from each steel slab, and the maximum length of carbide at the center was measured.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】次に、上記各棒材試料に対して室温にて、
減面率が10%、15%、20%および36%の冷間引
抜き加工を行ない、この各冷間引抜き加工品の中心部に
おけるボイドの有無を確認した。ボイドの有無はバフ研
磨により鏡面に仕上げた試料を光学顕微鏡および電子顕
微鏡で観察することにより確認した。表1の組成aの試
料ついて上記の炭化物の最大長さ測定結果およびボイド
の有無チェックの結果を表3に示す。なお、組成bおよ
び組成cの結果は組成aとほぼ同様であった。表3か
ら、試料2aと試料3a、すなわち一般的な溶製法を用い
て作成した鋼塊による試料は、引抜き前の炭化物の最大
長さが、それぞれ12μmと84μmであり、これに1
5%以上の減面率の冷間引抜き加工を行うと、いずれの
試料もボイドが形成されることが分る。また試料1a、
すなわち本発明であるスプレー・フォーミング法を用い
て作成した鋼塊によるた試料は、炭化物最大長さが5μ
mであり、このため、最大36%の冷間引抜き加工を加
えても、ボイドが形成されないことが分る。
Next, at room temperature for each of the above bar samples,
Cold drawing was performed at a reduction in area of 10%, 15%, 20% and 36%, and the presence or absence of voids in the center of each cold drawn product was confirmed. The presence or absence of voids was confirmed by observing a sample finished to a mirror surface by buffing with an optical microscope and an electron microscope. Table 3 shows the results of the above-described maximum length measurement of the carbides and the results of checking for the presence or absence of voids for the samples having composition a in Table 1. The results of composition b and composition c were almost the same as composition a. From Table 3, it can be seen that Samples 2a and 3a, that is, samples made of a steel ingot prepared by using a general melting method, had a maximum carbide length before drawing of 12 μm and 84 μm, respectively.
It can be seen that voids are formed in any of the samples when cold drawing is performed with a surface reduction rate of 5% or more. Sample 1a,
That is, a sample made of a steel ingot prepared by using the spray forming method of the present invention has a maximum carbide length of 5 μm.
m. Therefore, it can be seen that no void is formed even when a maximum of 36% cold drawing is performed.

【0022】[0022]

【表3】 [Table 3]

【0023】さらに、ボイドの発生状況とそれによる影
響を定量的に把握するために、組成aの各冷間引抜き加
工品に、焼入温度1030℃、焼戻し温度530℃×2
回の熱処理を施した試料を作成してそれらの密度と硬さ
を測定した。測定結果を表4に示す。表4から、ボイド
が形成、増加するほど密度は小さくなり、また焼戻し硬
さが低くなることが分る。引き抜き加工なしおよび減面
率10%の冷間引抜き加工においては、試料1a、試料
2aの密度は7.71g/cmであり、硬さも60H
RC以上が得られるが、試料2aでは減面率15%以
上、試料3aでは減面率10%以上の冷間引抜き加工を
行うと密度が低くなり、また硬さも60HRC以上が得
られなくなることが分る。本発明である試料1aはいず
れの加工においても密度の変化はなく、また硬さも60
HRC以上が得られる。なお、試料の都合で疲労試験は
できなかったが、ボイド、したがってノッチの形成によ
る応力集中により、疲労強度がばらつき、低下すること
は容易に想像できる。
Further, in order to quantitatively grasp the state of generation of voids and its influence, each of the cold-drawn products having the composition a was subjected to a quenching temperature of 1030 ° C. and a tempering temperature of 530 ° C. × 2.
Samples that had been subjected to heat treatments were prepared and their density and hardness were measured. Table 4 shows the measurement results. From Table 4, it can be seen that the density decreases and the tempering hardness decreases as the voids are formed and increased. In the case of no drawing and cold drawing with a reduction in area of 10%, the density of sample 1a and sample 2a was 7.71 g / cm 2 and the hardness was 60H.
Although RC or higher can be obtained, the density becomes low when cold drawing is performed with a reduction in area of 15% or more in sample 2a and 10% or more in sample 3a, and the hardness cannot be obtained in 60HRC or more. I understand. In the sample 1a of the present invention, the density did not change in any processing, and the hardness was 60%.
HRC or better is obtained. Although the fatigue test could not be performed due to the sample, it is easy to imagine that the fatigue strength varies and decreases due to the stress concentration due to the formation of voids and therefore notches.

【0024】[0024]

【表4】 [Table 4]

【0025】この結果をまとめると、試料2は鋼塊が小
さいため炭化物は比較的小さいが、5μmを超える長さ
のものが存在するため、減面率15%以上の冷間引抜き
でボイドが発生する。試料3aは鋼塊が大きいため凝固
時に生成する炭化物が大きく、鍛造比16と大きな鍛造
比で熱間鍛造しても炭化物は十分小さくならず、5μm
を超える長さのものが存在するため、減面率10%以上
の冷間引抜きでボイドが発生する。本発明である試料1
aは比較的大きな鋼塊で、しかも鍛造比4と比較的小さ
な鍛造比で熱間鍛造しても最大長さが5μm以下の炭化
物しか見られなかった。そのため減面率36%の冷間引
抜き加工でもボイドが発生しなかった。さらにボイドの
発生状況と熱処理後の密度、硬さは相関があり、本発明
の効果が定量的に把握された。
To summarize the results, sample 2 has a relatively small carbide due to the small ingot, but has a length of more than 5 μm, so that voids are generated by cold drawing with a reduction in area of 15% or more. I do. In sample 3a, since the steel ingot is large, the carbide generated at the time of solidification is large. Even when hot forging is performed at a forging ratio of 16 and a large forging ratio, the carbide is not sufficiently small, and is 5 μm.
, Voids are generated by cold drawing with a reduction in area of 10% or more. Sample 1 of the present invention
a was a relatively large ingot, and even when hot forging was performed with a forging ratio of 4 and a relatively small forging ratio, only carbides having a maximum length of 5 μm or less were found. For this reason, no void was generated even in cold drawing with a reduction in area of 36%. Furthermore, there was a correlation between the state of generation of voids and the density and hardness after the heat treatment, and the effects of the present invention were quantitatively grasped.

【0026】[0026]

【発明の効果】以上に述べたように本発明によれば、低
コストでかつ耐熱性、耐摩耗性を兼備し、冷、温間塑性
加工時の炭化物割れによる強度信頼性の低下を抑制した
冷、温間塑性加工用素材を得ることができ、これらは、
冷、温間塑性加工の特性から、低コスト、高精度で、高
い機械的特性を備えた各種部品の実用化を可能とするも
のである。
As described above, according to the present invention, low cost, heat resistance and wear resistance are attained, and a decrease in strength reliability due to carbide cracks during cold and warm plastic working is suppressed. Cold and warm plastic working materials can be obtained,
From the characteristics of cold and warm plastic working, it is possible to commercialize various parts with low cost, high precision, and high mechanical properties.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CおよびCrを(Cr+15.5C)で
14.0〜42.0質量%含有する溶鋼を、液滴にスプ
レーし該液滴を集合して凝固させてインゴットとするこ
とにより、組織中の炭化物の最大長さを5μm以下とす
ることを特徴とする冷間若しくは温間塑性加工用素材の
製造方法。
1. Spraying molten steel containing 14.0 to 42.0% by mass of C and Cr in (Cr + 15.5C) into droplets and collecting and solidifying the droplets to form an ingot, A method for producing a raw material for cold or warm plastic working, wherein the maximum length of carbides in a structure is 5 μm or less.
【請求項2】 インゴットは、塑性加工により鋼材とさ
れる請求項1の冷間若しくは温間塑性加工用素材の製造
方法。
2. The method for producing a raw material for cold or warm plastic working according to claim 1, wherein the ingot is formed into a steel material by plastic working.
【請求項3】 インゴットは、MoとWの1種または2
種を(Mo+1/2W)で15.0質量%以下およびV
を5.0質量%以下含有する請求項1または2の冷間若
しくは温間塑性加工用素材の製造方法。
3. An ingot is made of one or two of Mo and W.
Up to 15.0% by weight of the species at (Mo + 1 / 2W) and V
The method for producing a raw material for cold or warm plastic working according to claim 1 or 2, which contains 5.0% by mass or less.
【請求項4】 インゴットは、質量%で、Si:2%以
下、Mn:2%以下、Ni:5%以下、Nb:1%以
下、Co:12%以下およびS:0.2%以下の1種ま
たは2種以上を含有する請求項1〜3のいずれかの冷間
若しくは温間塑性加工用素材の製造方法。
4. An ingot having a mass% of Si: 2% or less, Mn: 2% or less, Ni: 5% or less, Nb: 1% or less, Co: 12% or less, and S: 0.2% or less. The method for producing a raw material for cold or warm plastic working according to any one of claims 1 to 3, which contains one or more types.
【請求項5】 請求項1ないし4のいずれかの冷間若し
くは温間塑性加工用素材を用い、800℃以下の冷間若
しくは温間塑性加工により、少なくとも一部に断面変化
率が15%以上の伸びまたは圧縮の変形を加えることを
特徴とする冷間若しくは温間塑性加工方法。
5. The cold or warm plastic working material according to claim 1, wherein at least a part thereof has a sectional change rate of 15% or more by cold or warm plastic working at 800 ° C. or less. Cold or warm plastic working method characterized by applying elongation or compression deformation.
JP33446099A 1999-11-25 1999-11-25 Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method Pending JP2001150122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33446099A JP2001150122A (en) 1999-11-25 1999-11-25 Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33446099A JP2001150122A (en) 1999-11-25 1999-11-25 Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method

Publications (1)

Publication Number Publication Date
JP2001150122A true JP2001150122A (en) 2001-06-05

Family

ID=18277647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33446099A Pending JP2001150122A (en) 1999-11-25 1999-11-25 Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method

Country Status (1)

Country Link
JP (1) JP2001150122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111194A (en) * 2006-10-27 2008-05-15 Boehler Edelstahl Gmbh Steel alloy for cutting tool
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
CN113009102A (en) * 2021-02-26 2021-06-22 柳州钢铁股份有限公司 Method for determining composition of scrap and processing equipment for detecting composition sample of scrap

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111194A (en) * 2006-10-27 2008-05-15 Boehler Edelstahl Gmbh Steel alloy for cutting tool
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
WO2015132977A1 (en) * 2014-03-06 2015-09-11 日本高周波鋼業株式会社 Steel for mold for plastic with high specularity
CN106460108A (en) * 2014-03-06 2017-02-22 日本高周波钢业株式会社 Steel for mold for plastic with high specularity
CN113009102A (en) * 2021-02-26 2021-06-22 柳州钢铁股份有限公司 Method for determining composition of scrap and processing equipment for detecting composition sample of scrap

Similar Documents

Publication Publication Date Title
CN101379207B (en) Steel plate having excellent fine blanking processability and method for manufacture thereof
CN102134681B (en) Steel for saw blade substrate and manufacturing method thereof
CN101379208B (en) Steel plate having excellent fine blanking processability and method for manufacture thereof
CN1316869A (en) Iron-aluminium metal compound used as stratie
JP4424503B2 (en) Steel bar and wire rod
EP0362086B1 (en) Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature
JP2005194550A (en) Steel with high strength and excellent cold headability, fastening parts, such as screw and bolt, or formed article, such as shafts, with excellent strength and their manufacturing methods
CN109312434B (en) Rolled steel bar for hot forging
JP2005320630A (en) High-strength steel wire or steel bar with excellent cold workability, high-strength formed article, and process for producing them
JP2001150122A (en) Manufacturing method of stock for cold/warm plastic working and its cold/warm plastic working method
JP4915762B2 (en) High-strength steel wire or steel bar excellent in cold workability, high-strength molded article, and production method thereof
JP2002509987A (en) Cold worked steel
JP2841468B2 (en) Bearing steel for cold working
CN113789478B (en) Production method of cold heading steel bar
JP2019218584A (en) bolt
JP4032915B2 (en) Wire for machine structure or steel bar for machine structure and manufacturing method thereof
JPH03254339A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP2004100038A (en) Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2009144230A (en) Steel wire rod, bolt, and method for manufacturing steel wire rod
JP4920144B2 (en) Steel for constant velocity joint outer
CN115369311B (en) Cold forging steel and manufacturing method thereof
JP2020094236A (en) Carburized component, shaped material for carburized component, and method for producing same
JP2003512524A (en) Linear product, method of manufacturing the same, and wear parts manufactured from the product
CN100340678C (en) A method for enduing high-vanadium high-cobalt high-speed steel with superplasticity property