JPH01161848A - Manufacture of semiconductor device with field oxide film - Google Patents
Manufacture of semiconductor device with field oxide filmInfo
- Publication number
- JPH01161848A JPH01161848A JP32081987A JP32081987A JPH01161848A JP H01161848 A JPH01161848 A JP H01161848A JP 32081987 A JP32081987 A JP 32081987A JP 32081987 A JP32081987 A JP 32081987A JP H01161848 A JPH01161848 A JP H01161848A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide film
- si3n4
- field oxide
- resistant mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000003647 oxidation Effects 0.000 claims abstract description 43
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 239000010703 silicon Substances 0.000 abstract description 9
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 7
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 229910052681 coesite Inorganic materials 0.000 abstract description 6
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 6
- 229910052682 stishovite Inorganic materials 0.000 abstract description 6
- 229910052905 tridymite Inorganic materials 0.000 abstract description 6
- 230000005611 electricity Effects 0.000 abstract description 5
- 230000003068 static effect Effects 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910005091 Si3N Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
集積回路において回路素子を構成する半導体島領域を互
いに電気的に分離するフィールド酸化膜を有する半導体
装置の製造方法に関し、静電気によるフィールド酸化膜
境界部の破壊を未然に防止することを目的とし、
半導体基板上の第1の酸化膜上に耐酸化マスクを被着し
た後熱酸化処理を行なって第2の酸化膜を形成し、その
後該耐酸化マスクを除去する工程を、該耐酸化マスクの
サイズを各工程毎にlli調的に変化させつつ一定回数
繰り返すことにより、多段階の段差からなる傾斜部を有
する酸化膜を素子分離用フィールド酸化膜として形成す
る工程を含むよう構成する。Detailed Description of the Invention [Summary] A method for manufacturing a semiconductor device having a field oxide film that electrically isolates semiconductor island regions constituting circuit elements in an integrated circuit from each other, which prevents destruction of field oxide film boundaries due to static electricity. In order to prevent this from occurring, an oxidation-resistant mask is deposited on the first oxide film on the semiconductor substrate, a thermal oxidation treatment is performed to form a second oxide film, and then the oxidation-resistant mask is removed. By repeating this process a certain number of times while changing the size of the oxidation-resistant mask in a lli scale for each process, an oxide film having a sloped portion consisting of multiple steps is formed as a field oxide film for element isolation. Configure to include processes.
本発明はフィールド酸化膜を有する半導体装置の製造方
法に係り、特に集積回路において回路素子を構成する半
導体島領域を互いに電気的に分離するフィールド酸化膜
を有する半導体装置の製造方法に関する。The present invention relates to a method of manufacturing a semiconductor device having a field oxide film, and more particularly to a method of manufacturing a semiconductor device having a field oxide film that electrically isolates semiconductor island regions forming circuit elements in an integrated circuit.
第4図(A>は集積回路内に使用されるCMOSトラン
ジスタの構造説明用平面図、同図(B)は同図(A)の
A−A’線に沿う断面図を示す。第4図(A)、(B)
中、1はシリコン基板、2はフィールド酸化膜、3はゲ
ート酸化膜、4は多結晶シリコンによるゲート電極、5
は保護膜、6はアルミニウム配線、7aと7bはP+拡
散層、8aと8bはn+拡散層である。ゲート電極4は
コンタクトホールを介してアルミニウム配線6と接続さ
れている。FIG. 4 (A> is a plan view for explaining the structure of a CMOS transistor used in an integrated circuit, and FIG. 4 (B) is a cross-sectional view taken along line AA' in FIG. 4 (A). (A), (B)
Inside, 1 is a silicon substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode made of polycrystalline silicon, 5
6 is a protective film, 6 is an aluminum wiring, 7a and 7b are P+ diffusion layers, and 8a and 8b are n+ diffusion layers. Gate electrode 4 is connected to aluminum wiring 6 via a contact hole.
P+拡散層7a、7b、ゲート酸化膜3及びゲート電極
4はPヂャンネルMO8型電界効果トランジスタ(FE
T)を構成しており、n+拡散層8a、 8b、ゲート
酸化膜3及びゲート電極4はNチャンネルMO8型電界
効果トランジスタ(FET)を構成しており、またこれ
らのFE[はフィールド酸化膜2により電気的に分離さ
れている。The P+ diffusion layers 7a, 7b, the gate oxide film 3, and the gate electrode 4 are a P channel MO8 type field effect transistor (FE).
The n+ diffusion layers 8a and 8b, the gate oxide film 3, and the gate electrode 4 constitute an N-channel MO8 type field effect transistor (FET), and these FE [are field oxide films 2 and 4]. electrically isolated by
かかるCMOSトランジスタを製)告する場合、通常は
シリコン基板1の上に二酸化シリコン(SiOz)より
なる酸化膜と窒化シリコン(StaN4)膜とを順次に
積層した後、所定のパターンにエツチングし、その後に
8!3N4膜を耐酸化マスクとして熱酸化処理を行ない
、はぼ900℃で適切な膜厚(例えば約8000人)の
酸化膜5fOzをシリコン基板1の表面上にフィールド
酸化膜2として形成する。When manufacturing such a CMOS transistor, normally an oxide film made of silicon dioxide (SiOz) and a silicon nitride (StaN4) film are sequentially laminated on a silicon substrate 1, and then etched into a predetermined pattern. Then, a thermal oxidation process is performed using the 8!3N4 film as an oxidation-resistant mask, and an oxide film of 5fOz with an appropriate thickness (for example, about 8000 layers) is formed on the surface of the silicon substrate 1 as a field oxide film 2 at approximately 900°C. .
その後、5I3Na膜を除去し、その除去部分下のゲー
ト酸化膜3上等に多結晶シリコンのゲート電極4を作成
した後、ソース領域、ドレイン領域としてP+拡散層7
aと7bをイオン注入により形成し、更に同様にしてn
+拡散層8aと8bも形成する。After that, the 5I3Na film is removed and a polycrystalline silicon gate electrode 4 is formed on the gate oxide film 3 under the removed portion, and then a P+ diffusion layer 7 is formed as a source region and a drain region.
a and 7b are formed by ion implantation, and then n is formed in the same manner.
+ Diffusion layers 8a and 8b are also formed.
しかるに、第4図(B)に9で示す如く、フィールド酸
化膜2とゲート酸化膜3との境界は大なる段差となるた
め、配線6を介して静電気によるノイズ等の極めて高い
電圧が入力されると、その段差部(フィールド酸化膜境
界部)に電荷の集中が発生する。これにより、上記の場
合は第4図(A)に破線で囲んだ段差部分10において
静電破壊が生ずることがあるという問題点があった。However, as shown by 9 in FIG. 4(B), the boundary between the field oxide film 2 and the gate oxide film 3 has a large step, so that extremely high voltages such as noise due to static electricity are inputted via the wiring 6. As a result, charge concentration occurs at the stepped portion (field oxide film boundary portion). As a result, in the above case, there is a problem in that electrostatic discharge damage may occur in the step portion 10 surrounded by the broken line in FIG. 4(A).
本発明は上記の点に鑑みてなされたもので、静電気によ
るフィールド酸化膜境界部の破壊を未然に防止すること
ができるフィールド酸化膜を有する半導体装置の製造方
法を提供することを目的とする。The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing a semiconductor device having a field oxide film, which can prevent destruction of the boundary portion of the field oxide film due to static electricity.
本発明のフィールド酸化膜を有する半導体装置の製造方
法は、半導体基板上の第1の酸化膜上に耐酸化マスクを
被着した後熱酸化処理を行なって第2の酸化膜を形成し
、その後′M耐酸化マスク除去するI稈を、耐酸化マス
クのサイズを各工程毎に単調的に変化させつつ一定回数
繰り返すようにしたものである。The method of manufacturing a semiconductor device having a field oxide film according to the present invention includes depositing an oxidation-resistant mask on a first oxide film on a semiconductor substrate, performing thermal oxidation treatment to form a second oxide film, and then forming a second oxide film. The I culm in which the oxidation-resistant mask 'M is removed is repeated a fixed number of times while monotonically changing the size of the oxidation-resistant mask for each step.
耐酸化マスクはその勺イズが各:[程毎に単調的に変化
されるから、まず半導体基板上の第1の酸化膜上に耐酸
化マスクを被着した後熱酸化処理により第2の酸化膜が
形成される。次に少なくとも上記の第1の酸化膜が形成
されていない部分に上記の耐酸化マスクとはサイズが縮
小された(又は増加された)別の耐酸化マスクを被着し
た後、第3の酸化膜を上記第2の酸化股上に形成する。Since the oxidation-resistant mask changes monotonically with each step, the oxidation-resistant mask is first deposited on the first oxide film on the semiconductor substrate, and then the second oxidation film is applied by thermal oxidation treatment. A film is formed. Next, a different oxidation-resistant mask whose size is reduced (or increased) from the above-mentioned oxidation-resistant mask is deposited on at least the portion where the first oxide film is not formed, and then a third oxidation-resistant mask is applied. A film is formed on the second oxide crotch.
ここで、上記の2つの耐酸化マスクはサイズが異なるか
ら、第2及び第3の酸化膜の境界部分では段差がつき、
全体として傾斜部となる。Here, since the above two oxidation-resistant masks have different sizes, there is a step at the boundary between the second and third oxide films.
The entire area becomes a slope.
以下、上記と同様にして耐酸化マスクのサイズは順番に
縮小(又は増加)される][稈を繰り返すことにより、
多段階の段差からなる傾斜部を有する酸化膜が形成され
る。Thereafter, the size of the oxidation-resistant mask is sequentially reduced (or increased) in the same manner as above] [By repeating the culm,
An oxide film having a sloped portion consisting of multiple steps is formed.
上記の多段階の段差の各々は従来のフィールド酸化膜の
境界部分の段差よりもはるかに小であるため、その1段
当りの段差への電荷の集中は少なく、全体として分散さ
れる。Since each of the above-mentioned multi-level steps is much smaller than the step at the boundary of a conventional field oxide film, the concentration of charge on each step is small and is dispersed as a whole.
第1図は本発明の第1実施例の各工程の説明図を示す。 FIG. 1 shows an explanatory diagram of each process of the first embodiment of the present invention.
まず、シリコン基板12上に5iOz膜13とSi3N
4膜14とを順次に積層した後所定パターンでエツチン
グして第1図(A)に示す如く、幅W1のサイズの5f
Oz膜13及びSi3N4膜14を形成する。First, a 5iOz film 13 and a Si3N film are placed on a silicon substrate 12.
After sequentially stacking the four films 14, they are etched in a predetermined pattern to form a 5f film with a width W1 as shown in FIG. 1(A).
An Oz film 13 and a Si3N4 film 14 are formed.
次にSi3N4膜14を耐酸化マスクとして熱酸化処理
を行なう。ここで、熱酸化処理は例えば900℃の温度
下で行なった場合、第2図に示す如く60分の処理時間
で8000人の膜厚の酸化膜(S ! 02膜)が形成
され、また処理時間に略指数関数的に比例した膜厚の酸
化膜が形成される。Next, thermal oxidation treatment is performed using the Si3N4 film 14 as an oxidation-resistant mask. Here, when the thermal oxidation treatment is carried out at a temperature of, for example, 900°C, an oxide film (S!02 film) with a thickness of 8000 mm is formed in a treatment time of 60 minutes as shown in Fig. An oxide film is formed whose thickness is approximately exponentially proportional to time.
そこで、第1図(A>に示す半導体装置に対する熱酸化
処理は第2図にaで示す如り600分行なうことにより
8000人の膜厚の酸化膜が形成される。Therefore, the thermal oxidation treatment for the semiconductor device shown in FIG. 1 (A>) is carried out for 600 minutes as shown in FIG.
その後で、上記のSiO2膜13及び3i3N4膜14
が夫々公知の手段で除去されることにより、第1図(B
)に示す如<、−3i3N4膜14が存在しなかったシ
リコン基板12の露出表面に上記の膜厚8000人の酸
化膜(SiO2)15だけが形成されたものとなる。After that, the above-mentioned SiO2 film 13 and 3i3N4 film 14 are
1 (B) are removed by known means, respectively.
), only the oxide film (SiO2) 15 with a thickness of 8000 nm is formed on the exposed surface of the silicon substrate 12 where the -3i3N4 film 14 was not present.
次に第1図(C)に示す如く、再び前記Si3N4膜1
4が位置した場所に、幅W2 (W2 <W+)の5
i3N4816を例えば化学気相成長法(CVD法)に
より被着する。その後で熱酸化処理を第2図にbで示す
時間行なって8000人より小なる3i02WJを成長
させ、S!3N4膜16を除去する。Next, as shown in FIG. 1(C), the Si3N4 film 1 is again
5 of width W2 (W2 < W+)
i3N4816 is deposited, for example, by chemical vapor deposition (CVD). Thereafter, thermal oxidation treatment was carried out for the time indicated by b in FIG. 2 to grow 3i02WJ smaller than 8000, and S! The 3N4 film 16 is removed.
これにより、第1図(D)に示す如く、Si3N4膜1
6の幅W2がSi3N4膜14の幅W+よりも小なので
、5tOz膜15よりも穏やかな傾斜をもち、かつ、途
中に18で示す如く段差のある5fOz膜17が形成さ
れる。As a result, as shown in FIG. 1(D), the Si3N4 film 1
Since the width W2 of 6 is smaller than the width W+ of the Si3N4 film 14, a 5fOz film 17 is formed which has a gentler slope than the 5tOz film 15 and has a step as shown at 18 in the middle.
以下、上記と同様にして前回のSi3N4膜より幅の狭
い(リイズの小さい)SisN4膜の被着→前回より時
間の短い熱酸化処理−→5iaNa膜の除去という一連
の工程を所定回数繰り返すことにより、最終的に第1図
(E)に示す如く、基板12の表面に多段階の段差を有
する傾斜部を持つSiO2膜19がフィールド酸化膜と
して形成される。なお、13は3i3N4glにより酸
化されないようにしていた部分の5iOz膜で、ゲート
酸化膜として用いられる。Thereafter, in the same manner as above, the series of steps of depositing a SisN4 film having a narrower width (smaller rise) than the previous Si3N4 film -> thermal oxidation treatment for a shorter time than the previous time -> removing the 5iaNa film - is repeated a predetermined number of times. Finally, as shown in FIG. 1(E), an SiO2 film 19 having a sloped portion having multiple steps is formed on the surface of the substrate 12 as a field oxide film. Note that 13 is a portion of the 5iOz film that is protected from oxidation by 3i3N4gl, and is used as a gate oxide film.
次に本発明の第2実施例について第3図と共に説明する
。第1実施例ではSi3N4膜を各工程毎に徐々に狭め
ていったが、本実施例は逆に徐々に広げていくようにし
たものである。Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, the Si3N4 film was gradually narrowed in each step, but in this embodiment, on the contrary, it was gradually widened.
すなわち、シリコン基板21上に順次に5IOz膜22
.5t3N4膜23を形成した後、幅W3の5ixN4
膜を耐酸化マスクとして熱酸化処理を短時間行ない、そ
の後に5tOzWA22及び5isN4膜23を除去す
る。すると、第3図(B)に示す如く膜厚の薄い5iO
zl!a24がS!3N4膜23の存在しなかった基板
露出面上に生成される。That is, a 5IOz film 22 is sequentially formed on a silicon substrate 21.
.. After forming the 5t3N4 film 23, a 5ixN4 film of width W3 is formed.
A thermal oxidation process is performed for a short time using the film as an oxidation-resistant mask, and then the 5tOzWA film 22 and the 5isN4 film 23 are removed. Then, as shown in Figure 3(B), a thin 5iO film is formed.
zl! a24 is S! It is produced on the exposed surface of the substrate where the 3N4 film 23 did not exist.
次に第3図(C)に示す如く、S!3N4膜23が存在
していた場所を含む幅W4 (W4 >W3)(7)
位!HC8i 3 N4膜25がCVD法等により被着
される。そして、この5izNt膜25を耐酸化マスク
として熱酸化処理を前記最初の処理時間よりも長い時間
かけて行なう。Next, as shown in FIG. 3(C), S! Width W4 including the area where the 3N4 film 23 was present (W4 > W3) (7)
Rank! A HC8i 3 N4 film 25 is deposited by CVD or the like. Then, using this 5izNt film 25 as an oxidation-resistant mask, thermal oxidation treatment is performed for a longer time than the first treatment time.
そして、上記のSi3N4膜25を除去すると、シリコ
ン基板21の表面には、第3図(D)に示す如く、1段
の段差27のある傾斜部を持つ5tO2膜26が形成さ
れる。When the Si3N4 film 25 is removed, a 5tO2 film 26 having an inclined portion with a single step 27 is formed on the surface of the silicon substrate 21, as shown in FIG. 3(D).
以下、上記と同様にして前回のS i 3N、4膜より
幅の広い(サイズの大ぎい)Si3N4膜の被着→前回
より時間の長い熱酸化処理−→5i3Na膜の除去とい
う一連の工程を所定の回数繰り返すことにより、最終的
に第3図(E)に示す如く、基板21の表面に多段階の
段差を有する傾斜部を持つ5iOz膜28がフィールド
酸化膜として形成される。Hereinafter, in the same manner as above, a series of steps were performed: deposition of a Si3N4 film that was wider (larger in size) than the previous Si3N, 4 film -> thermal oxidation treatment that took longer than the previous time -> removal of the 5i3Na film. By repeating the process a predetermined number of times, a 5iOz film 28 is finally formed on the surface of the substrate 21 as a field oxide film, as shown in FIG. 3(E).
上述の如く、本発明によれば、フィールド酸化膜の境界
部分を、各々小なる多段の段差からなる傾斜部に作成し
たので、従来にくらべて静電気の電荷の集中がなく、分
散されるので、静電気による上記境界部分の破壊を未然
に防止する゛ことができ、またフィールド酸化膜の境界
部分に隣接するゲート酸化膜も十分に作成させることが
できる等の特長を有するものである。As described above, according to the present invention, the boundary portion of the field oxide film is formed into an inclined portion consisting of multiple small steps, so that electrostatic charges are not concentrated and are dispersed compared to the conventional method. This method has the advantage that it is possible to prevent the boundary portion from being destroyed by static electricity, and that the gate oxide film adjacent to the boundary portion of the field oxide film can also be sufficiently formed.
第1図及び第3図は夫々本発明の各実施例の各工程説明
図、
第2図は熱酸化時間と膜厚との関係図、第4図はCMO
Sトランジスタの構造説明図である。
図において、
12.21はシリコン基板、
13.15,17.19,22.24.26゜28はS
iO2膜、
14.16.23.25はS!aN4膜、18.27は
段差
を示す。
特許出願人 富 士 通 株式会社
同 株式会社
九州富士通エレクトロニクス
第1図
(時間)600分
選も西史イ乙吟閣と月糺季との関イ示図第2図
CMO5)ラシジスタの構造都乙明図
第4図Figures 1 and 3 are explanatory diagrams of each process of each embodiment of the present invention, Figure 2 is a diagram showing the relationship between thermal oxidation time and film thickness, and Figure 4 is a CMO
FIG. 2 is a structural explanatory diagram of an S transistor. In the figure, 12.21 is a silicon substrate, 13.15, 17.19, 22.24.26°28 is S
iO2 film, 14.16.23.25 is S! aN4 film, 18.27 indicates a step. Patent Applicant: Fujitsu Co., Ltd. Kyushu Fujitsu Electronics Co., Ltd. Figure 1 (Time) 600 minutes Diagram showing the relationship between Saishi Itsuginkaku and Tsuki Tadasuki Figure 2 CMO 5) Structure of Lasisister Ming map figure 4
Claims (1)
化マスクを被着した後熱酸化処理を行なつて第2の酸化
膜を形成し、その後該耐酸化マスクを除去する工程を、
該耐酸化マスクのサイズを各工程毎に単調的に変化させ
つつ一定回数繰り返すことにより、多段階の段差からな
る傾斜部を有する酸化膜(19、28)を素子分離用フ
ィールド酸化膜として形成する工程を含むことを特徴と
するフィールド酸化膜を有する半導体装置の製造方法。After depositing an oxidation-resistant mask on the first oxide film on the semiconductor substrate (12, 21), a thermal oxidation treatment is performed to form a second oxide film, and then the step of removing the oxidation-resistant mask is performed. ,
By repeating the process a certain number of times while monotonically changing the size of the oxidation-resistant mask for each process, an oxide film (19, 28) having a sloped portion consisting of multiple steps is formed as a field oxide film for element isolation. 1. A method of manufacturing a semiconductor device having a field oxide film, the method comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32081987A JPH01161848A (en) | 1987-12-18 | 1987-12-18 | Manufacture of semiconductor device with field oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32081987A JPH01161848A (en) | 1987-12-18 | 1987-12-18 | Manufacture of semiconductor device with field oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01161848A true JPH01161848A (en) | 1989-06-26 |
Family
ID=18125584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32081987A Pending JPH01161848A (en) | 1987-12-18 | 1987-12-18 | Manufacture of semiconductor device with field oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01161848A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5714414A (en) * | 1996-08-19 | 1998-02-03 | Micron Technology, Inc. | Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate |
US5780352A (en) * | 1995-10-23 | 1998-07-14 | Motorola, Inc. | Method of forming an isolation oxide for silicon-on-insulator technology |
JP2008260463A (en) * | 2007-04-13 | 2008-10-30 | Takata Corp | Belt guide anchor and seat belt device provided with the same |
-
1987
- 1987-12-18 JP JP32081987A patent/JPH01161848A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780352A (en) * | 1995-10-23 | 1998-07-14 | Motorola, Inc. | Method of forming an isolation oxide for silicon-on-insulator technology |
US5714414A (en) * | 1996-08-19 | 1998-02-03 | Micron Technology, Inc. | Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate |
US5989980A (en) * | 1996-08-19 | 1999-11-23 | Micron Technology, Inc. | Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate |
JP2008260463A (en) * | 2007-04-13 | 2008-10-30 | Takata Corp | Belt guide anchor and seat belt device provided with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002343879A (en) | Semiconductor device and method of manufacturing the same | |
US4923826A (en) | Method for forming dielectrically isolated transistor | |
JPH01161848A (en) | Manufacture of semiconductor device with field oxide film | |
US4775644A (en) | Zero bird-beak oxide isolation scheme for integrated circuits | |
JPS6242382B2 (en) | ||
US5434099A (en) | Method of manufacturing field isolation for complimentary type devices | |
JP2000133797A (en) | Mos semiconductor device and manufacture thereof | |
JPS5870567A (en) | Manufacture of semiconductor device | |
JPH0316150A (en) | Manufacture of semiconductor element | |
JPS59181639A (en) | Manufacture of semiconductor device | |
JPS58213444A (en) | Manufacture of semiconductor device | |
JPH027558A (en) | Semiconductor device and manufacture thereof | |
JPH0334425A (en) | Manufacture of semiconductor device | |
KR0179155B1 (en) | Method of manufacturing semiconductor device | |
JPS61295653A (en) | Manufacture of cmos semiconductor circuit device | |
JPH05335407A (en) | Manufacture of semiconductor device | |
JPS58122769A (en) | Manufacture of semiconductor device | |
JPS62131538A (en) | Manufacture of semiconductor device | |
JPH0443663A (en) | Semiconductor device and its manufacture | |
JPH01223741A (en) | Semiconductor device and manufacture thereof | |
JPH11176925A (en) | Manufacture of semiconductor device | |
JPH04105346A (en) | Manufacture of semiconductor device | |
JPH03159240A (en) | Manufacture of semiconductor device | |
JPH02159041A (en) | Manufacture of semiconductor device | |
JP2002222854A (en) | Semiconductor device and its manufacturing method |