JPH01157068A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH01157068A
JPH01157068A JP62315919A JP31591987A JPH01157068A JP H01157068 A JPH01157068 A JP H01157068A JP 62315919 A JP62315919 A JP 62315919A JP 31591987 A JP31591987 A JP 31591987A JP H01157068 A JPH01157068 A JP H01157068A
Authority
JP
Japan
Prior art keywords
lithium
niobium pentoxide
alloy
negative electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315919A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Kenichi Takada
高田 堅一
Keiko Takai
高井 啓子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62315919A priority Critical patent/JPH01157068A/en
Publication of JPH01157068A publication Critical patent/JPH01157068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make it resistible to over charge as well as to make improvements in cycle life by using niobium pentoxide mainly for a positive electrode and a lithium occlusion alloy for a negative electrode respectively, and specifying a filling quantity of lithium and a quantity of the niobium pentoxide. CONSTITUTION:In a charging state, a filling quantity of lithium in a lithium occlusion alloy of a negative electrode 6 is set to less than 8% of weight of niobium pentoxide for a positive electrode 4, and a lithium quantity is set to more than 1wt.% to the lithium occlusion alloy. With this constitution, when the niobium pentoxide is discharged, battery voltage is zeroed by a potential rise in the negative electrode before it goes down to 1V with pure lithium. Consequently, even if over charge takes place, electric potential of the niobium pentoxide will not come to less than 1V to the pure lithium, and such a fear that an electrolyte is decomposed and the niobium pentoxide is broken is brought to nothing. Accordingly, it is resistible to the over charge and, what is more, cycle life is thus improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、移動用直流電源、バックアップ電源などに用
いられる充電可能なリチウム二次電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rechargeable lithium secondary battery used as a mobile DC power source, a backup power source, and the like.

従来の技術 リチウムを負極として用いる二次電池は、高密度エネル
ギー、高信頼性を有することが期待され、近年多くの研
究機関で開発されている。たとえば、正極として、酸化
バナジウム、クロム酸化物、マンガン酸化物、あるいは
、2硫化チタン、2硫化モリブデンなどのカルコゲン化
合物、さらには、ポリアセチレン、ポリアニリンなどの
導電性ポリマーなど数多くの物質が検討されている。
BACKGROUND OF THE INVENTION Secondary batteries using lithium as a negative electrode are expected to have high energy density and high reliability, and have been developed by many research institutes in recent years. For example, many materials are being considered as positive electrodes, including vanadium oxide, chromium oxide, manganese oxide, chalcogen compounds such as titanium disulfide and molybdenum disulfide, and conductive polymers such as polyacetylene and polyaniline. .

また、負極として、リチウム単体を用いた場合、充放電
時発生するデンドライトのため、充放電サイクル寿命が
著しく劣化するので、リチウムを吸蔵するアルミニウム
合金あるいは、鉛、ビスマス。
In addition, if lithium alone is used as the negative electrode, the charge/discharge cycle life will be significantly degraded due to dendrites generated during charging/discharging, so aluminum alloys that occlude lithium, lead, or bismuth are recommended.

カドミウム、インジウム、スズなどの可融合金が試みら
れている。
Fusible metals such as cadmium, indium, and tin have been tried.

発明が解決しようとする問題点 正極に五酸化ニオブを用い、対極に純リチウム、電解液
に過塩素酸リチウムを溶解した非水溶媒を用いて放電す
ると、2v付近より放電がスタートし、1■に付近に至
るまで直線的にゆるやかに放電し、その後しばらくして
急激なカーブでoV付近に降下していく放電形態をとる
。そして1■付近では、非水溶媒がたとえば、グロピレ
ンカーボネートの場合、分解してガスを発生する。さら
に、oV付近では、5酸化ニオブの結晶が破壊されて微
粉化し、充電しても、もう元に戻らない。これらのこと
よシ、正極に五酸化ニオブを用いた場合、1v以下の過
放電に弱く抜本的な過放電対策が必要であった。
Problems to be Solved by the Invention When discharging using niobium pentoxide as the positive electrode, pure lithium as the counter electrode, and a non-aqueous solvent in which lithium perchlorate is dissolved as the electrolyte, the discharge starts at around 2V, and the voltage is 1. The discharge mode is such that the discharge occurs linearly and gently until it reaches around 0V, and then after a while it descends in a sharp curve to around oV. Then, at around 1.5 cm, if the non-aqueous solvent is, for example, glopylene carbonate, it decomposes and generates gas. Furthermore, near oV, the crystals of niobium pentoxide are destroyed and become fine powder, and even if the battery is charged, it will not return to its original state. In addition to these, when niobium pentoxide is used for the positive electrode, it is susceptible to overdischarge of 1 V or less, and drastic measures against overdischarge are required.

本発明は、正極として五酸化ニオブ(Nb2o6)、負
極としてリチウム吸蔵合金を用いた系における上記のよ
うな問題を解決し、実用的なリチウム二次電池を提供し
ようとするものである。
The present invention aims to solve the above problems in systems using niobium pentoxide (Nb2o6) as a positive electrode and a lithium storage alloy as a negative electrode, and to provide a practical lithium secondary battery.

問題点を解決するための手段 本発明では、上記の問題点を解決し、かつ充放電サイク
ル寿命を向上させるだめに種々検討したところ、負極に
リチウム吸蔵合金を用い、リチウムの充填量を五酸化ニ
オブの重量の8%以下とし、かつ、リチウム吸蔵合金に
対し、リチウム量が1重量−以上にすればよいことを見
いだした。
Means for Solving the Problems In the present invention, in order to solve the above problems and improve the charge/discharge cycle life, various studies were conducted, and it was found that a lithium storage alloy was used for the negative electrode, and the amount of lithium filled was increased by increasing the amount of lithium pentoxide. It has been found that the amount of lithium should be 8% or less of the weight of niobium, and the amount of lithium should be 1 weight or more with respect to the lithium storage alloy.

作  用 この発明の考え方は、負極側のリチウム量を規制し、6
酸化ニオブを放電したとき、純リチウムに対し1vに至
る前に、負極の電位上昇によって、電池電圧をOvにす
るものである。このようにすれば、いくら過放電状態に
しても、5酸化ニオブの電位は、純リチウムに対し1v
以下になることもなく、電解液が分解することもなく、
ましてや、5酸化ニオブが破壊されることもない。6酸
化ニオブの反応は一般的には下記のような2電子反応と
考えられている。
Function The idea of this invention is to regulate the amount of lithium on the negative electrode side,
When niobium oxide is discharged, the battery voltage becomes Ov due to an increase in the potential of the negative electrode before reaching 1V relative to pure lithium. In this way, no matter how much it is over-discharged, the potential of niobium pentoxide will be 1v compared to pure lithium.
The electrolyte will not decompose, and the electrolyte will not decompose.
Moreover, niobium pentoxide is not destroyed. The reaction of niobium hexoxide is generally considered to be a two-electron reaction as shown below.

Nb2061モルあたり265.8yで、上式よ91モ
ルあたりの電気容量は26.8 X 2 = 53.6
 Ahとなり、これらよシ、Nb2O5の単位重量あた
りの理論電気容量は約201゜6mAh/yである。一
方、リチウムの単位重量あたシ理論電気容量は約386
1 、7mAh/yであり、等電気容量重量比は下記の
如くとなる。
265.8y per mole of Nb206, and according to the above formula, the electric capacity per 91 mole is 26.8 X 2 = 53.6
Ah, and the theoretical capacitance per unit weight of Nb2O5 is approximately 201°6 mAh/y. On the other hand, the theoretical electric capacity per unit weight of lithium is approximately 386
1.7mAh/y, and the equivalent electric capacity weight ratio is as follows.

Nb2O6: Li = 100 : 5.2これより
、理論的にはリチウム量が6.2チ以下であれば良いと
いうことになる。しかしながら、実際には、リチウムは
、電解液に含まれる微量水分や、正極合剤中の水分や導
電剤によって消耗され、さらには、負極合金中に深く入
り込み、反応に与らないリチウムも相当ある。これのこ
とよシ、実験的にはリチウム量は5酸化ニオブの8重量
%以下が適当である。
Nb2O6: Li = 100: 5.2 From this, theoretically, it is sufficient that the lithium amount is 6.2 inches or less. However, in reality, lithium is consumed by trace amounts of water contained in the electrolyte, water in the positive electrode mixture, and conductive agents, and a considerable amount of lithium also penetrates deeply into the negative electrode alloy and does not participate in the reaction. . Regarding this, experimentally, the appropriate amount of lithium is 8% by weight or less of niobium pentoxide.

また、負極合金としては、アルミニウム系合金。In addition, the negative electrode alloy is an aluminum alloy.

鉛、カドミウム、インジウム合金のような可融合金があ
るが、いずれの場合も、リチウムを吸蔵して放電しても
、合金中に残存して出てこないリチウムがある。この量
は、条件によって相当具なるが、長期にわたる過放電を
した場合、大体は約1チ以内であり、単に電池電圧1v
まで放電した場合、数多以上にのぼることもある。
There are fusible alloys such as lead, cadmium, and indium alloys, but in each case, even if lithium is occluded and discharged, some lithium remains in the alloy and does not come out. This amount varies considerably depending on the conditions, but in the case of long-term overdischarge, it is generally within about 1 inch, and is simply a battery voltage of 1 V.
If discharged to a maximum of 1,000,000 yen, there may be more than a few.

さらに、合金中のリチウム量が1重量%以内の場合、長
期にわたる過放電をすると、電解液が分解し、ガス発生
を生ずることがある。これは、リチウムが少ないために
、合金そのものが微量に溶解し、副反応を引き起こして
いるためではないかと考えられる。
Furthermore, if the amount of lithium in the alloy is less than 1% by weight, over-discharge over a long period of time may cause the electrolyte to decompose and generate gas. This is thought to be due to the small amount of lithium in the alloy itself dissolving a small amount and causing side reactions.

これらのことより、リチウムの充填量を6酸化ニオブの
8重量%以下で、かつリチウム吸蔵合金の1重量%以上
にすることによって、過放電に強いリチウム二次電池が
できる。
From these facts, a lithium secondary battery that is resistant to overdischarge can be produced by setting the amount of lithium filled to 8% by weight or less of niobium hexoxide and 1% by weight or more of the lithium storage alloy.

実施例 図は正極に五酸化ニオブ、負極にリチウム吸蔵合金を用
いた本発明のリチウム二次電池の縦断面図である。図中
1は正極端子を兼ねたケース、2はケースと同じ材料を
打ち抜き加工した負極端子を兼ねた封口板、3はケース
と封目板とを絶縁するポリプロピレン製ガスケットであ
る。4は正極であり、五酸化ニオブ86重量部、導電剤
であるカーボンブラック6重量部、フッ素樹脂デイスパ
ージョン固形分10重量部を混練し、乾燥したあと粉砕
し、五酸化ニオブにして260tnLjになるように秤
量し、直径14.0Mのペレットに成形したものである
。6はカーボン塗布層よりなる正極集電体である。6は
リチウム吸蔵合金で、直径14.0騙でリチウムを含め
260■となるようにした。
The example diagram is a longitudinal sectional view of a lithium secondary battery of the present invention using niobium pentoxide for the positive electrode and a lithium storage alloy for the negative electrode. In the figure, 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that is punched out of the same material as the case and also serves as a negative electrode terminal, and 3 is a polypropylene gasket that insulates the case and the sealing plate. 4 is a positive electrode, which is made by kneading 86 parts by weight of niobium pentoxide, 6 parts by weight of carbon black as a conductive agent, and 10 parts by weight of a solid content of fluororesin dispersion, drying and pulverizing it to make niobium pentoxide to 260 tnLj. It was weighed and molded into pellets with a diameter of 14.0M. 6 is a positive electrode current collector made of a carbon coating layer. 6 is a lithium storage alloy, which has a diameter of 14.0mm and has a diameter of 260mm including lithium.

7は負極集電体であり、線径0.1m+11で60メツ
シユのステンレス鋼のネットである。8はポリプロピレ
ン製微孔膜からなるセパレータである。
7 is a negative electrode current collector, which is a 60-mesh stainless steel net with a wire diameter of 0.1 m+11. 8 is a separator made of a microporous membrane made of polypropylene.

電解液は、プロピレンカーボネートと1,2−ジメトキ
シエタンの体積比1:1の混合物に過塩素酸リチウムを
1モル/l溶解したものを用いた。
The electrolytic solution used was one in which 1 mol/l of lithium perchlorate was dissolved in a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1:1.

さて、負極合金組成は第1表のように調整した。Now, the negative electrode alloy composition was adjusted as shown in Table 1.

またリチウムは、所望の量のリチウム箔を合金に圧着し
、電解液中で充電することによって合金へ吸蔵させた。
In addition, lithium was occluded into the alloy by pressing a desired amount of lithium foil onto the alloy and charging it in an electrolyte.

第1表 これらの負極を用い、直径20m、厚さ2.0鵡の電池
を試作した。電池!は第1表の!に対応する。
Table 1 Using these negative electrodes, a battery with a diameter of 20 m and a thickness of 2.0 m was fabricated. battery! is in Table 1! corresponds to

これらの電池について、60”Cにおいて3にΩの定抵
抗負荷で10日間過放電し続け、電池の1KHzでの内
部抵抗及び電池の高さ変化を測定した。
These batteries were continuously overdischarged for 10 days at 60''C under a constant resistance load of 3Ω, and the internal resistance of the batteries at 1 KHz and the change in the height of the batteries were measured.

またその後、1 mAで2vに至るまで充電し、今度は
1 mAの電流で3時間放電(ただし1vカツト)シ、
同電流で3時間充電する充放電を300回繰返し、再度
3にΩで2vより1vまで放電し、初期からの劣化率を
調べた。これらの結果を第2表に示した。
After that, charge it at 1 mA until it reaches 2V, and then discharge it for 3 hours at 1 mA current (but cut off 1V).
Charging and discharging at the same current for 3 hours was repeated 300 times, and discharged again from 2V to 1V at 3Ω to examine the rate of deterioration from the initial stage. These results are shown in Table 2.

第2表 第2表から明らかなように、リチウム濃度が10チ以上
(jσ6.12)になると、電池が異常にふくらみ、内
部抵抗が大巾に上昇し、充放電もできない。これは、リ
チウム量が多いため、6酸化ニオブが純リチウムに対し
て1V以下まで放電し、電解液が分解したためと思われ
る。逆に、リチウム量が逝1,7のように1%を切ると
、高さ変化もやや大きくなるが、これは、リチウム以外
の金属イオンが微量に溶解したため、なんらかの副反応
で電解液が分解したものと考えられる。これらのことか
ら、リチウム濃度が1〜8重量係が適当である。
As is clear from Table 2, when the lithium concentration exceeds 10 g (jσ6.12), the battery swells abnormally, the internal resistance increases significantly, and charging and discharging becomes impossible. This is considered to be because the amount of lithium was large, so that niobium hexoxide was discharged to 1 V or less with respect to pure lithium, and the electrolytic solution was decomposed. On the other hand, when the amount of lithium is less than 1% as in 1,7, the change in height becomes a little large, but this is because a small amount of metal ions other than lithium are dissolved, and the electrolyte decomposes due to some side reaction. It is thought that this was done. For these reasons, a lithium concentration of 1 to 8 parts by weight is appropriate.

一方、Pb −Cd−In合金とAl −M n −I
 n合金を比較した場合、電池の高さ変化はAl −M
 n −I n合金を用いた方が小さく、内部抵抗も同
じ傾向がある。これはPb −Cd−In合金の場合、
e o ’cで過放電し切ったあと、pbやCdのイオ
ンがほんのごく微量溶解したためではないかと考えられ
る。このことから、アルミニウム合金の方がより過放電
に強い傾向がある。ただし、常温での同じ過放電条件で
は、Pb −Cd −I n合金でもリチウム1〜8重
量%でほとんど高さ変化がなかった。
On the other hand, Pb-Cd-In alloy and Al-Mn-I
When comparing n alloys, the height change of the battery is Al-M
The use of the n-I n alloy is smaller, and the internal resistance tends to be the same. In the case of Pb-Cd-In alloy, this is
It is thought that this is because only a very small amount of PB and Cd ions were dissolved after over-discharge at e o 'c. For this reason, aluminum alloys tend to be more resistant to overdischarge. However, under the same overdischarge conditions at room temperature, there was almost no change in height even in the Pb-Cd-In alloy at 1 to 8% by weight of lithium.

なお、ア、ルミニウム合金としてAl −Mn −I 
n合金を用いたが、Alに、Mq 、 Aq  などの
添加した合金もまったく同様の効果があった。
In addition, a. Al-Mn-I as the aluminum alloy
Although an n-alloy was used, alloys in which Mq, Aq, etc. were added to Al had exactly the same effect.

また、実施例では、6酸化ニオブとリチウム吸蔵合金負
極を同重量としたが、必ずしもこうする必要がなく、目
的によって所望の比にすればよい。
Further, in the examples, the niobium hexaoxide and the lithium storage alloy negative electrode were made to have the same weight, but this is not necessarily necessary, and a desired ratio may be used depending on the purpose.

発明の効果 以上のように、本発明は、過放電特性にすぐれるリチウ
ム二次電池を提供するものである。
Effects of the Invention As described above, the present invention provides a lithium secondary battery with excellent overdischarge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例におけるリチウム二次電池の縦断面
図である。 4・・・正極、6・・・・・・負極、8・・・・・・セ
パレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名キー
 f巧 E−一負柘 訃−−℃へ′し−タ
The figure is a longitudinal cross-sectional view of a lithium secondary battery in an example of the present invention. 4...Positive electrode, 6...Negative electrode, 8...Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person Key:

Claims (3)

【特許請求の範囲】[Claims] (1)五酸化ニオブを主とした正極と、リチウム吸蔵合
金からなる負極と、リチウム塩を溶解した非水溶媒から
なる電解液とから構成され、充電状態において、前記リ
チウム吸蔵合金中のリチウム量が前記五酸化ニオブの重
量の8%以下であり、かつ、リチウム吸蔵合金に対し1
重量%以上であることを特徴としたリチウム二次電池。
(1) It is composed of a positive electrode mainly made of niobium pentoxide, a negative electrode made of a lithium storage alloy, and an electrolyte made of a non-aqueous solvent in which lithium salt is dissolved, and in a charged state, the amount of lithium in the lithium storage alloy is is 8% or less of the weight of the niobium pentoxide, and 1% of the weight of the niobium pentoxide is
% or more by weight.
(2)リチウムを吸蔵する合金が鉛、カドミウム及びイ
ンジウムからなる特許請求の範囲第1項記載のリチウム
二次電池。
(2) The lithium secondary battery according to claim 1, wherein the alloy that occludes lithium is composed of lead, cadmium, and indium.
(3)リチウムを吸蔵する合金がアルミニウム合金であ
る特許請求の範囲第1項記載のリチウム二次電池。
(3) The lithium secondary battery according to claim 1, wherein the alloy that occludes lithium is an aluminum alloy.
JP62315919A 1987-12-14 1987-12-14 Lithium secondary battery Pending JPH01157068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315919A JPH01157068A (en) 1987-12-14 1987-12-14 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315919A JPH01157068A (en) 1987-12-14 1987-12-14 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH01157068A true JPH01157068A (en) 1989-06-20

Family

ID=18071182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315919A Pending JPH01157068A (en) 1987-12-14 1987-12-14 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH01157068A (en)

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3332133B2 (en) All-solid lithium secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JPH02114465A (en) Lithium secondary battery
EP0350066B1 (en) Lithium secondary cell
JPH0425676B2 (en)
JP3707801B2 (en) Non-aqueous electrolyte secondary battery
JPS6259412B2 (en)
JPH01157068A (en) Lithium secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH01157066A (en) Lithium secondary battery
JPH01157067A (en) Lithium secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JP3550193B2 (en) Negative electrode and secondary battery using the same
JPH0582128A (en) Lithium secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2000133313A (en) Non-aqueous electrolyte battery
JPS62290073A (en) Organic electrolyte secondary battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPH05258771A (en) Lithium secondary battery
JP2521909B2 (en) Lithium / manganese dioxide secondary battery
JPS61239562A (en) Nonaqueous electrolyte secondary battery
JPH04363862A (en) Lithium secondary battery
JPS6127072A (en) Rechargeable electrochemical system
JPS62219465A (en) Secondary cell