JP3550193B2 - Negative electrode and secondary battery using the same - Google Patents

Negative electrode and secondary battery using the same Download PDF

Info

Publication number
JP3550193B2
JP3550193B2 JP24470194A JP24470194A JP3550193B2 JP 3550193 B2 JP3550193 B2 JP 3550193B2 JP 24470194 A JP24470194 A JP 24470194A JP 24470194 A JP24470194 A JP 24470194A JP 3550193 B2 JP3550193 B2 JP 3550193B2
Authority
JP
Japan
Prior art keywords
negative electrode
gallium
gallium oxide
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24470194A
Other languages
Japanese (ja)
Other versions
JPH0883612A (en
Inventor
清史 荒木
利哉 北村
文洋 佐藤
典也 石田
陵 坂本
真樹子 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP24470194A priority Critical patent/JP3550193B2/en
Priority to US08/340,725 priority patent/US5462821A/en
Publication of JPH0883612A publication Critical patent/JPH0883612A/en
Application granted granted Critical
Publication of JP3550193B2 publication Critical patent/JP3550193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、酸化ガリウムまたは酸化ガリウムと他の金属酸化物との組み合せを導電性炭素系材料と混練したものを多孔体内部に充填せしめた負極およびそれを用いることを特徴とする新規な二次電池に関する。
【0002】
【従来の技術】
従来から電池用の負極活物質として種々の物質を単独でまたはいくつか組み合わせて使用することが研究されてきたが、水溶液系電解質を用いた電池用負極活物質は、亜鉛、鉛、カドミウム、水素吸蔵合金などに限られていた。
【0003】
このような従来の技術においては、電池の基本性能を左右する負極活物質の種類が上記のように少なく、特に充放電可能な二次電池の種類としては、鉛蓄電池、ニッケル−カドミウム電池、水素吸蔵電池のほぼ3種類だけが実用化されているにすぎない。このように既存の電池の種類は少く、互いに他の電池が有する欠点を十分に補うことができる状況ではなく、従来の電池には次のような欠点があった。
【0004】
▲1▼亜鉛電池は、充放電に伴ない電極表面にデンドライトが生成し、サイクル寿命を悪化させるため亜鉛は二次電池材料としては不適切である。
【0005】
▲2▼リチウム電池はリチウムが化学的に活性な物質で、電池用電解液には非水性電解質を使用するため自然発火しやすく製造、使用の段階で火災事故等発生の危険性がある。またこれを防止するために負極にグラファイト極を使用したり、数々の安全装置を設ける等の必要があり製造費が高くなる。
【0006】
▲3▼鉛電池は鉛が環境上問題となる毒性を有し、また、鉛の重量が大きいため単位重量当たりの電気容量が小さい。
【0007】
▲4▼カドミウム電池は電圧が低く、またカドミウムが上記同様環境上問題となる毒性を有している。
【0008】
▲5▼水素吸蔵合金を用いる電池については電圧が低い上、現段階では製造費が高い。
【0009】
【発明が解決しようとする課題】
上述のように従来実用化された電池では、負極活物質の種類が少ないことから、それぞれの電池が有する短所を互いに補うことができないことに鑑み、本発明者等はこれらの短所を補うために使用することのできる新規な物質として、酸化ガリウムを主体とする物質を用いた負極体を開発した。これによって、無公害、高放電電圧、高電気容量、高サイクル特性を有し、かつコスト的に安価な二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は斯かる課題を解決するために鋭意研究したところ、常温付近で液体であるために極板化しにくいGaの代りに酸化ガリウムまたは酸化ガリウムと他の金属酸化物との組み合せと導電性炭素系材料とを混練あるいは酸化ガリウムと他の金属酸化物との組み合わせと金属ガリウム粉とを混練した混練物を多孔体内部に充填することによって電池用負極体として容易に利用できることを見いだし、本発明を提供することができた。
【0011】
すなわち本発明は、第1に、酸化ガリウムまたは酸化ガリウムとSnO、ZnO、In、Ag、CdO、PbOもしくはBiとの組み合せを導電性炭素系材料と混合して得た混練物を多孔体内部に充填してなり、該酸化ガリウムを負極活物質とすることを特徴とする二次電池用負極;第2に、酸化ガリウムまたは酸化ガリウムとSnO、ZnO、In、Ag、CdO、PbOもしくはBiとの組み合せを金属ガリウム粉と混合して得た混練物を多孔体内部に充填してなり、該酸化ガリウムと該金属ガリウムを負極活物質とすることを特徴とする二次電池用負極;第3に、前記第1または第2に記載の負極を用いたことを特徴とする二次電池を提供するものである。
【0012】
【作用】
一般的に負極活物質としてはZn、Cd、Pb等の金属が用いられている。その他の金属も電池用電極に用いられる可能性を有しているが、それらが実用的な電池となり得るかは問題であった。
【0013】
ガリウムを電池用負極活物質として用いることについては、ガリウムがは約30℃以上で液体となる他、他の金属と反応しやすく電池としての特性が不安定であることがこれまで電池材料として用いられなかった主たる理由である。
【0014】
しかしながら本発明の電極体中には負極活物質としてGaが用いられる。Gaは周期律表第31番元素で、電気化学反応に伴なう価数変化は3であり、アルカリ水溶液中では
Ga + 3H O = GaO 3− + 6H + 3e (1)
の反応で溶解すると考えられている。その上、Gaの化学当量は23.24であり、これはZnの化学当量32.70と比較してもかなり小さく、理論的にGaは高容量の電池材料となり得ることがわかる。
【0015】
そこで本発明者等は、酸化ガリウムを多孔性物質で包み、集電部から脱落しないような構造とすることにより
▲1▼脱落による負極活物質の非活用化の防止
▲2▼多孔性物質を通じての電解液と負極活物質との反応の確保
▲3▼脱落した負極活物質による電池反応に関与しない副反応発生の防止と、それら副反応からくる電池特性への悪影響の防止
を行うことができ、従来の問題の大部分を解決することができた。
【0016】
この場合、多孔性物質の導電性の有無は特に問題でないことがわかった。導電性を有する多孔性物質としては、ケッチェンブラック、アセチレンブラック、グラファイト等の炭素系材料がガリウムと反応せず有効であり、また集電体としてはガリウムとの反応性が低いNiやCuメッシュ等の金属網等が有効で実用的である。
【0017】
非導電性の多孔性物質としては、各種のプラスチック性のものや従来の電池で使用されているセパレーター等も使用可能であるが、これらは材質にとらわれず充電時にGaまたはGa合金が液化したときに洩れない限度で、極力空孔率が高い材質が適している。
【0018】
ガリウムを主体とする負極活物質としては、当初金属ガリウムおよびその合金のみが使用できると考えていたが、その後の研究でガリウムの化合物、例えば酸化ガリウムまたは酸化ガリウムと他の金属酸化物との組み合せ等も特定条件下で電池用電極として機能することがわかった。
【0019】
上記反応は極めて複雑で正確には同定できないが、ガリウムの酸化物あるいは水酸化物と金属ガリウムとの電荷移動によるものと推定される。
【0020】
尚、酸化ガリウムを当初多孔体内部に充填しても、充放電過程を経ると金属ガリウムの存在が認められるが、これは酸化ガリウムが金属ガリウムまで還元される以下の反応が生じているためと考えられる。
Ga +3H O+6e = 2Ga+6OH (2)
この時生成する金属ガリウムの存在は単に負極活物質としての働きをするにとどまらず、導電性の低いガリウム化合物に対する極めて良好な集電体となるため、酸化ガリウムに金属ガリウムを意識的に添加して用いてもよい。
【0021】
本発明における酸化ガリウムと他の金属酸化物との混合物としては、Ga 70〜100wt% に対してSnO 、ZnO、In 、Ag 等を、あるいはそのほかにさらに、CdO、PbO 、Bi 等を合計量で30〜0wt% 添加したものを用いても同様な結果が得られることを確認した。
【0022】
以下実施例をもって詳細に本発明を説明するが、本発明はこれらに限定されるものではない。
【0023】
【実施例1】
酸化ガリウム(同和鉱業(株)製純度99.99%)3gに、導電性を持たせる目的で0.1gのケッチェンブラックを混合し練り合わせ、図2に示す底部が袋状の円筒型に成型したセパレーター内に注入して負極として用い、負極集電体にはステンレス製の細線を使用した他、電解液として30wt% −KOH水溶液、正極には水酸化ニッケルを使用して図1に示す簡易セルを構成した。
【0024】
上記簡易セルを用いて充放電試験を行ったところ、第1回目の充電によって負極内部の酸化ガリウムは、一部還元されて金属ガリウムとなっていることが目視からも明らかに確認された。
【0025】
また充電直後の開回路電位は1.92Vと高電位が得られ、電流も負極活物質1グラム当たりの電流値として約250mA/g取り出すことができた。さらに電解液量を適当に調節することにより、二次電池としてのサイクル特性は200回程度まで向上することが確認できた。
【0026】
【実施例2】
酸化ガリウム1.5gに対し金属ガリウムを等量(1.5g)混合したものに、グラファイト粉を0.08g混合して練り合わせたものを図3に示す円筒型多孔質炭素極に充填して負極とした以外は、実施例1と同様な簡易セルを構成して、充放電試験を行った。
【0027】
その結果、開回路電圧、サイクル特性はほぼ同様であったが、充電電流値は負極活物質1グラム当たりの電流値が約320mA/gとなり実施例1の場合よりも向上していた。
【0028】
【実施例3】
Ga に対して金属酸化物としてそれぞれ約10wt% のSn、In、Ag、Zn、Pb、Bi、Cdの各酸化物を添加した他は実施例2と同様の簡易セルを用いて充放電試験を行ったところ、上記程度の添加量においては開回路電圧に変化は見られなかった。
【0029】
しかしながら添加量を調整したところ、10wt% のSn、8wt% のIn、5wt% のZn、2wt% のBi、4wt% のCd、の各酸化物との混合物を用いた時に、放電電位の平坦性が向上することが確認できた。
【0030】
【発明の効果】
上述のように本発明の負極には酸化ガリウムまたは酸化ガリウムと他の金属酸化物との混合物を炭素系材料と混練して用いることによって実用可能であることが確認された。本発明の電池には、充放電に伴なうデンドライトの析出がなく、正極に水酸化ニッケルを用いた場合は従来のニッケル−カドミウム電池や水素吸蔵電池より高い電圧が得られ、さらに毒性が低い等の利点がある。
【図面の簡単な説明】
【図1】実施例1における電池の構成図である。
【図2】実施例1において用いた負極の概略図である。
【図3】実施例2において用いた負極の概略図である。
【符号の説明】
1 多孔質容器
2 負極活物質
3 ステンレス線(負極)
4 水酸化ニッケル極(正極)
5 30wt% −KOH水溶液
6 PP製フタ
7 PP製セル
8 底部袋状円筒型セパレーター
9 多孔質炭素極
[0001]
[Industrial applications]
The present invention provides a negative electrode, which is obtained by kneading a mixture of gallium oxide or a combination of gallium oxide and another metal oxide with a conductive carbon-based material and filling the inside of the porous body, and using the negative electrode. Battery.
[0002]
[Prior art]
Conventionally, it has been studied to use various materials alone or in combination of several as a negative electrode active material for a battery, but negative electrode active materials for a battery using an aqueous electrolyte include zinc, lead, cadmium, and hydrogen. It was limited to occlusion alloys.
[0003]
In such a conventional technique, the types of the negative electrode active materials that affect the basic performance of the battery are small as described above. In particular, the types of the secondary batteries that can be charged and discharged include a lead storage battery, a nickel-cadmium battery, and a hydrogen battery. Only three types of occlusion batteries have been put into practical use. As described above, the types of the existing batteries are few, and it is not in a situation where the disadvantages of the other batteries can be sufficiently compensated. Conventional batteries have the following disadvantages.
[0004]
{Circle around (1)} In a zinc battery, dendrite is generated on the electrode surface during charging and discharging, and the cycle life is deteriorated. Therefore, zinc is not suitable as a secondary battery material.
[0005]
(2) A lithium battery is a substance in which lithium is chemically active. Since a non-aqueous electrolyte is used for the battery electrolyte, the battery is apt to spontaneously ignite, and there is a risk of a fire accident or the like occurring at the stage of use. In order to prevent this, it is necessary to use a graphite electrode for the negative electrode or to provide various safety devices, which increases the manufacturing cost.
[0006]
(3) Lead batteries have the toxicity that lead poses an environmental problem, and the electric capacity per unit weight is small due to the large weight of lead.
[0007]
{Circle around (4)} Cadmium batteries have low voltage, and cadmium has toxicity which is environmentally problematic as described above.
[0008]
(5) The battery using the hydrogen storage alloy has a low voltage, and the production cost is high at this stage.
[0009]
[Problems to be solved by the invention]
As described above, in the batteries that have been practically used in the past, since the types of the negative electrode active material are small, it is not possible to compensate for the disadvantages of each battery. As a new substance that can be used, a negative electrode body using a substance mainly composed of gallium oxide has been developed. Accordingly, it is an object to provide a secondary battery having no pollution, high discharge voltage, high electric capacity, high cycle characteristics, and being inexpensive.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem, and found that instead of Ga, which is a liquid near room temperature, it is difficult to form an electrode plate, and instead of gallium oxide or a combination of gallium oxide and other metal oxides and conductive material. It has been found that a porous carbon-based material can be easily used as a battery negative electrode body by filling a kneaded material obtained by kneading or kneading a combination of gallium oxide with another metal oxide and metal gallium powder, or The present invention could be provided.
[0011]
That is, the present invention firstly mixes gallium oxide or a combination of gallium oxide with SnO 2 , ZnO, In 2 O 3 , Ag 2 O 3 , CdO, PbO 2 or Bi 2 O 3 with a conductive carbon-based material. A negative electrode for a secondary battery, wherein the kneaded material obtained by the above is filled in a porous body and the gallium oxide is used as a negative electrode active material; secondly, gallium oxide or gallium oxide and SnO 2 , ZnO , In 2 O 3 , Ag 2 O 3 , CdO, PbO 2 or Bi 2 O 3, and a kneaded product obtained by mixing the mixture with a metal gallium powder is filled in a porous body. Thirdly, a negative electrode for a secondary battery characterized by using metal gallium as a negative electrode active material; Thirdly, a negative electrode for use in the negative electrode according to the first or second aspect is provided. .
[0012]
[Action]
Generally, metals such as Zn, Cd, and Pb are used as the negative electrode active material. Other metals have the potential to be used for battery electrodes, but it was a problem whether they could be practical batteries.
[0013]
As for the use of gallium as a negative electrode active material for batteries, gallium has been used as a battery material in addition to being liquid at about 30 ° C. or higher, and being easily reacted with other metals and having unstable characteristics as a battery. This is the main reason why it was not done.
[0014]
However, Ga is used as the negative electrode active material in the electrode body of the present invention. Ga is a periodic table 31 th element, accompanied valence change in the electrochemical reaction is 3, is an alkaline aqueous solution Ga + 3H 2 O = GaO 3 3- + 6H + + 3e - (1)
Is thought to dissolve in the reaction. In addition, the chemical equivalent of Ga is 23.24, which is considerably smaller than the chemical equivalent of Zn of 32.70, indicating that Ga can theoretically be a high-capacity battery material.
[0015]
Therefore, the present inventors wrapped gallium oxide with a porous material and made it so that it did not fall off from the current collector by (1) preventing the negative electrode active material from being deutilized by falling off (2) through the porous material (3) It is possible to prevent the occurrence of side reactions that are not involved in the battery reaction due to the dropped negative electrode active material and to prevent the adverse effects on the battery characteristics caused by these side reactions. Most of the conventional problems could be solved.
[0016]
In this case, it turned out that the presence or absence of the conductivity of the porous substance was not particularly a problem. As the conductive porous material, a carbon-based material such as Ketjen black, acetylene black, and graphite is effective without reacting with gallium, and as a current collector, Ni or Cu mesh having low reactivity with gallium is used. Are effective and practical.
[0017]
As the non-conductive porous material, various plastic materials, separators used in conventional batteries, and the like can also be used.However, these materials are not limited to materials, and when Ga or Ga alloy is liquefied during charging. A material having as high a porosity as possible is suitable as long as the material does not leak.
[0018]
As a negative electrode active material mainly composed of gallium, we initially thought that only metal gallium and its alloys could be used, but later studies showed that gallium compounds, such as gallium oxide or a combination of gallium oxide and other metal oxides It was also found that these compounds function as battery electrodes under specific conditions.
[0019]
Although the above reaction is extremely complicated and cannot be accurately identified, it is presumed to be due to charge transfer between gallium oxide or hydroxide and metal gallium.
[0020]
Incidentally, even if gallium oxide is initially filled in the porous body, the presence of metallic gallium is recognized after the charge / discharge process.This is because the following reaction occurs in which gallium oxide is reduced to metallic gallium. Conceivable.
Ga 2 O 3 + 3H 2 O + 6e = 2Ga + 6OH (2)
The presence of metallic gallium generated at this time does not only function as a negative electrode active material, but also serves as an extremely good current collector for low-conductivity gallium compounds.Therefore, metallic gallium is intentionally added to gallium oxide. May be used.
[0021]
As a mixture of gallium oxide and another metal oxide in the present invention, SnO 2 , ZnO, In 2 O 3 , Ag 2 O 3, etc. based on 70 to 100 wt% of Ga 2 O 3 , or in addition, It was confirmed that similar results were obtained even when CdO, PbO 2 , Bi 2 O 3 and the like were added in a total amount of 30 to 0 wt%.
[0022]
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0023]
Embodiment 1
3 g of gallium oxide (purity: 99.99%, manufactured by Dowa Mining Co., Ltd.) is mixed and kneaded with 0.1 g of ketjen black for the purpose of imparting conductivity, and the bottom shown in FIG. 2 is formed into a bag-shaped cylindrical shape. The separator shown in FIG. 1 was used as a negative electrode by injecting it into a separator, using a stainless steel thin wire as a negative electrode current collector, a 30 wt% -KOH aqueous solution as an electrolytic solution, and nickel hydroxide as a positive electrode. The cell was configured.
[0024]
When a charge / discharge test was performed using the simple cell, it was clearly confirmed visually that gallium oxide inside the negative electrode was partially reduced to metal gallium by the first charge.
[0025]
Further, a high potential of 1.92 V was obtained immediately after charging, and a current of about 250 mA / g was obtained as a current value per gram of the negative electrode active material. Furthermore, it was confirmed that by appropriately adjusting the amount of the electrolyte, the cycle characteristics of the secondary battery could be improved up to about 200 times.
[0026]
Embodiment 2
A mixture of 1.5 g of gallium oxide and an equal amount (1.5 g) of metal gallium mixed with 0.08 g of graphite powder and kneaded was filled into a cylindrical porous carbon electrode shown in FIG. A charge / discharge test was conducted by constructing a simple cell similar to that of Example 1 except that the above-mentioned conditions were satisfied.
[0027]
As a result, although the open circuit voltage and the cycle characteristics were almost the same, the charging current value was about 320 mA / g per gram of the negative electrode active material, which was higher than that of Example 1.
[0028]
Embodiment 3
The same simple cell as in Example 2 was used, except that about 10 wt% of each oxide of Sn, In, Ag, Zn, Pb, Bi, and Cd was added to Ga 2 O 3 as a metal oxide. When a discharge test was performed, no change was observed in the open circuit voltage at the above-mentioned amount of addition.
[0029]
However, when the amount of addition was adjusted, the flatness of the discharge potential when using a mixture of each oxide of 10 wt% of Sn, 8 wt% of In, 5 wt% of Zn, 2 wt% of Bi, and 4 wt% of Cd was used. Was confirmed to be improved.
[0030]
【The invention's effect】
As described above, it was confirmed that the negative electrode of the present invention can be practically used by kneading gallium oxide or a mixture of gallium oxide and another metal oxide with a carbon-based material. The battery of the present invention has no dendrite precipitation accompanying charge / discharge, and when nickel hydroxide is used for the positive electrode, a higher voltage is obtained than a conventional nickel-cadmium battery or hydrogen storage battery, and the toxicity is further reduced. There are advantages such as.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a battery in Example 1.
FIG. 2 is a schematic diagram of a negative electrode used in Example 1.
FIG. 3 is a schematic diagram of a negative electrode used in Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous container 2 Negative electrode active material 3 Stainless steel wire (negative electrode)
4 Nickel hydroxide electrode (positive electrode)
5 30 wt% -KOH aqueous solution 6 PP lid 7 PP cell 8 Bottom bag-shaped cylindrical separator 9 Porous carbon electrode

Claims (3)

酸化ガリウムまたは酸化ガリウムとSnO 、ZnO、In 、Ag 、CdO、PbO もしくはBi との組み合せを導電性炭素系材料と混合して得た混練物を多孔体内部に充填してなり、該酸化ガリウムを負極活物質とすることを特徴とする二次電池用負極。A porous material is obtained by mixing gallium oxide or a combination of gallium oxide with SnO 2 , ZnO, In 2 O 3 , Ag 2 O 3 , CdO, PbO 2 or Bi 2 O 3 with a conductive carbon-based material. A negative electrode for a secondary battery, wherein the negative electrode is filled inside and the gallium oxide is used as a negative electrode active material. 酸化ガリウムまたは酸化ガリウムとSnO 、ZnO、In 、Ag 、CdO、PbO もしくはBi との組み合せを金属ガリウム粉と混合して得た混練物を多孔体内部に充填してなり、該酸化ガリウムと該金属ガリウムを負極活物質とすることを特徴とする二次電池用負極。A kneaded product obtained by mixing gallium oxide or a combination of gallium oxide and SnO 2 , ZnO, In 2 O 3 , Ag 2 O 3 , CdO, PbO 2 or Bi 2 O 3 with metal gallium powder is placed inside the porous body. A negative electrode for a secondary battery, which is filled and uses the gallium oxide and the metal gallium as a negative electrode active material. 請求項1または2記載の負極を用いたことを特徴とする二次電池。A secondary battery comprising the negative electrode according to claim 1.
JP24470194A 1993-11-19 1994-09-13 Negative electrode and secondary battery using the same Expired - Fee Related JP3550193B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24470194A JP3550193B2 (en) 1994-09-13 1994-09-13 Negative electrode and secondary battery using the same
US08/340,725 US5462821A (en) 1993-11-19 1994-11-16 Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24470194A JP3550193B2 (en) 1994-09-13 1994-09-13 Negative electrode and secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH0883612A JPH0883612A (en) 1996-03-26
JP3550193B2 true JP3550193B2 (en) 2004-08-04

Family

ID=17122649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24470194A Expired - Fee Related JP3550193B2 (en) 1993-11-19 1994-09-13 Negative electrode and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3550193B2 (en)

Also Published As

Publication number Publication date
JPH0883612A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US6617072B2 (en) Positive active electrode composition with graphite additive
US5462821A (en) Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode
LT4233B (en) High capacity rechargeable cell having manganese dioxide electrode
KR102576419B1 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
US11637278B2 (en) Alkaline dry batteries
CN113140708B (en) Alkaline storage battery based on tin negative electrode
JP3550193B2 (en) Negative electrode and secondary battery using the same
JPH1021897A (en) Secondary battery electrode
JPH04212269A (en) Alkaline storage battery
JPH06243870A (en) Nonaqeous secondary battery
JP2005032573A (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using it
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPH05258771A (en) Lithium secondary battery
JPH0542114B2 (en)
JP3737534B2 (en) Manufacturing method of alkaline secondary battery
JP3550200B2 (en) Ga-coated or surface-coated negative electrode and secondary battery using the same
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JPH06163072A (en) Metal-hydride secondary battery
JPH05217580A (en) Nickel electrode for alkaline storage battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPH01157066A (en) Lithium secondary battery
KR20190070445A (en) Anode for nickel zinc rechargeable battery with bimodal packing structure
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH01157067A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees