JPS61239562A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS61239562A
JPS61239562A JP60080565A JP8056585A JPS61239562A JP S61239562 A JPS61239562 A JP S61239562A JP 60080565 A JP60080565 A JP 60080565A JP 8056585 A JP8056585 A JP 8056585A JP S61239562 A JPS61239562 A JP S61239562A
Authority
JP
Japan
Prior art keywords
positive electrode
discharge
battery
electrode active
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60080565A
Other languages
Japanese (ja)
Other versions
JPH081813B2 (en
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60080565A priority Critical patent/JPH081813B2/en
Publication of JPS61239562A publication Critical patent/JPS61239562A/en
Publication of JPH081813B2 publication Critical patent/JPH081813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent fluctuation of charge/discharge curve even upon overdischarge by containing specific conductive macromolecules in the positive electrode. CONSTITUTION:Any one of pyrrole, thiophene or conductive macromolecules to be synthesized from their inducers is contained in the positive electrode. When discharging such a cell, positive electrode active substance such as V2O5, MoO3, MnO2, etc. is reduced. When employing V2O5 and Li respectively for the positive and the negative electride, discharge will advance on the basis of the formula (2) and upon droppage of the potential of the positive electrode to the lower limit of reversibility of positive electrode active substance or about 2V (against Li/Li<+>), reaction shown on the formula (3) will occur. Consequently, the macromolecules (M)n in the positive electrode discharged of ClO4<-> will loss the conductivity thus to become an insulator. Thereby, the resistance in the positive electrode will increase abruptly to promote polarization thus to drop the cell voltage. In other word, the positive electrode substance will be hard to discharge in the over-discharge region to eliminate transfer to non-reversible structure. Consequently, the charge/discharge characteristic of cell is never sacrificed even upon further discharge than the reversible lower limit voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特にその正極の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, particularly to improvements in its positive electrode.

従来の技術 現在捷で、Li、 Na等のアルカリ金属を負極活物質
材料として用い、γ−ブチロラクトン、テトラヒドロフ
ラン、グロピレンカーボネート、ジメトキシエタン等の
溶媒中に、溶質としてLick○4゜LiBF4. L
iCl等を溶解した、いわゆる非水電解27、− 1″′″“、s=*i、tomi″’;Utr b、h
r @ ko    Iしかし、この種の二次電池は1
だ実用化されて     iいない。その理由は、充放
電回数の寿命が短く、     □また充放電に際して
の充放電効率が低いためであ     □す、この性能
劣化の原因は、主に正極及び負極活     :物質。
Conventional technology currently uses alkali metals such as Li and Na as negative electrode active materials, and Lick○4°LiBF4. L
So-called non-aqueous electrolysis in which iCl etc. are dissolved 27, - 1'''''', s = *i, tomi'''; Utr b, h
r @ ko I However, this type of secondary battery is 1
It has not yet been put into practical use. The reason for this is that the lifespan of charging and discharging cycles is short, and the charging and discharging efficiency during charging and discharging is low. The cause of this performance deterioration is mainly the active material of the positive and negative electrodes.

充放、1おけ、イ、よえid工的ユ逆性。     1
低下である。
Charge, 1, 1, 1, 1, 1. 1
It is a decline.

正極活物質につ−ては、これまで、Ti 、 V、 C
r、     ・MO等の層状構造もしくはトンネル構
造を有する     □酸化物及びカルコゲン化合物が
知られている。こ     □れラノ中でT I S2
 、 V S e2  等のカルコゲン化合物    
 :は充放電に際しての可逆性にすぐれる。しかし、[
カルコゲン化合物は密度が小さいため、体積当た   
  ドりの−ネ・・ギー密度が小さい。一方、酸化物は
密     1′度が大きく、また酸化数の高い金属元
素を有する     (1′ 、。ld、 tエヵ、お。、0カ8あ、。、えヵ897
、  !”′カルコゲン化合物より、酸化物を正極活物
質とし・て用いる方が、エネルギー密度を大きくとれる
点から望ましい。
As for positive electrode active materials, Ti, V, C
r, □Oxides and chalcogen compounds having a layered structure or tunnel structure such as MO are known. □This is Rano Naka T I S2
, V S e2 and other chalcogen compounds
: has excellent reversibility during charging and discharging. but,[
Chalcogen compounds have a low density, so the
Dori's density is small. On the other hand, oxides have a high density and a metal element with a high oxidation number.
, ! ``It is preferable to use an oxide as the positive electrode active material rather than a chalcogen compound because it can provide a higher energy density.

v2051MOQ39Mno2等の酸化物は、上述ノヨ
うな高い電圧、犬きV充放電容量、すなわち高エネルギ
ー密度を有する正極活物質として検討されている。寸だ
、これらは、ザイクル特性においても、一定の放電電圧
捷でであれば、良好な可逆性を示す。しかしながら、こ
れより下の電圧まで放電、すなわち過放電を行なうと、
これらの酸化物は不可逆な構造に転移する。この後、再
び放電を行なっても、過放電前の充放電挙動とは全く異
なり、特に、放電曲線は平坦性のない、放電とともに単
調に下がり電池としてd、著しく不都合なものとなる。
Oxides such as v2051MOQ39Mno2 are being considered as positive electrode active materials having the above-mentioned high voltage, high V charge/discharge capacity, that is, high energy density. Indeed, even in cycle characteristics, these exhibit good reversibility at a constant discharge voltage. However, when discharging to a voltage lower than this, that is, overdischarging,
These oxides transform into irreversible structures. Even if the battery is discharged again after this, the charging and discharging behavior is completely different from that before overdischarging, and in particular, the discharge curve is not flat and monotonically decreases as the battery discharges, which is extremely inconvenient for the battery.

また、充放電容量も過放電を行なうとサイクルとともに
急速に減少する。上記のような酸化物の可逆性を良好に
保つためには、放電電位の下限をLi/Li+に対して
約2■にする必要がある。
Furthermore, the charge/discharge capacity rapidly decreases with cycles when overdischarge is performed. In order to maintain good reversibility of the oxide as described above, it is necessary to set the lower limit of the discharge potential to about 2■ with respect to Li/Li+.

これより下の電位1で放電を行なうと以降の充放電挙動
は大きく変化する。
When discharging is performed at a potential 1 lower than this, the subsequent charging/discharging behavior changes significantly.

従来より、正極活物質の過放電を避ける手段としては、
電池組み立て時に、負極活物質の放電容量を正極活物質
のそれよりも少なくするという、負極制限型の電池を構
成していた。しかし、Li等のアルカリ金属を負極活物
質に用いる二次電池では、負極活物質の低い充放電効率
から、逆に正極活物質の放電容量を少なくする正極制限
型の電池を構成しなければならない。このため、この種
の電池は、正極活物質が放電により可逆性の下限にまで
きても、負極活物質が残存するためさらに過放電を行な
うことになり、以降の充放電に支障を招く。
Traditionally, as a means to avoid overdischarge of the positive electrode active material,
When assembling the battery, a negative electrode limited type battery was constructed in which the discharge capacity of the negative electrode active material was lower than that of the positive electrode active material. However, in secondary batteries that use alkali metals such as Li as the negative electrode active material, due to the low charge and discharge efficiency of the negative electrode active material, a positive electrode limited type battery must be constructed that conversely reduces the discharge capacity of the positive electrode active material. . Therefore, in this type of battery, even if the positive electrode active material reaches the lower limit of reversibility due to discharge, the negative electrode active material remains, resulting in further overdischarge, which causes problems in subsequent charging and discharging.

発明が解決しようとする問題点 このように、V2O6,MoO2,MnO2等の酸化物
を正極活物質に用いた非水電解質二次電池は、放電電圧
を制御するという条件下でのみ、充放電挙動を良く、ま
たエネルギー密度を高く保つことができるが、過放電を
行なうと劣化する問題点があった。
Problems to be Solved by the Invention As described above, non-aqueous electrolyte secondary batteries using oxides such as V2O6, MoO2, MnO2, etc. as positive electrode active materials have poor charging and discharging behavior only under the condition that the discharge voltage is controlled. Although it is possible to maintain a high energy density and a high energy density, there is a problem in that it deteriorates when over-discharged.

本発明は、このような従来の欠点を除去するものであり
、高エネルギー密度で、しかも過放電を行な、っても充
放電曲線に変化のない充放電挙動にすぐれた、信頼性の
高い非水電解質二次電池を提供することを目的とする。
The present invention eliminates these conventional drawbacks, and provides a highly reliable battery with high energy density and excellent charge/discharge behavior with no change in the charge/discharge curve even when overdischarged. The purpose is to provide a non-aqueous electrolyte secondary battery.

5、−7 問題点を解決するだめの手段 本発明の非水電解質二次電池は、正極内に、ピロール、
チオフェン、及びこれらの誘導体から合成される導電性
高分子のいずれかを含んでいることを特徴とする。
5,-7 Means for solving the problem The nonaqueous electrolyte secondary battery of the present invention contains pyrrole, pyrrole,
It is characterized by containing any one of conductive polymers synthesized from thiophene and derivatives thereof.

、i   ′″6°4%t’6Kf+−f−1ri、、
 ;hb″゛°“゛11解質にピロール、チオフェン、
あるいはこレラの誘導体を溶かしておき、電池組み立て
後、電池正極側にアノード電流を流すことによシ容易に
正極内に合成される。電解質中の溶質がL IC704
の場合には、反応は次のようになる。
, i ′''6°4%t'6Kf+-f-1ri,,
;hb″゛°“゛11 Solutes include pyrrole, thiophene,
Alternatively, it can be easily synthesized into the positive electrode by melting a derivative of Cholera and, after assembling the battery, passing an anode current to the positive electrode side of the battery. The solute in the electrolyte is L IC704
In this case, the reaction becomes:

nM + nxclo−ニーCM”(ClO,i)、]
。18.(1)M:ピロール、チオフェン等の単量休 作  用 この技術的手段による作用は次のようになる。
nM + nxclo-nee CM” (ClO,i),]
. 18. (1) M: monomer suspension of pyrrole, thiophene, etc. The effect of this technical means is as follows.

上記のような導電性高分子を正極板内に含む電池を放電
すると、V2O5,MoO2,MnO2等の正極j、1
.      活物質が次式により還元される。正極が
V2O5、負極がLl の場合には 6、、− V2O3+ y L 1 +−→V2O5(L 1 y
 )  ・・・(2)となる。他の酸化物も同様である
。(2)式により放電がさらに進み、正極活物質の可逆
性の下限である約2V(対しi/Li勺にまで正極の電
位が下がると次の反応が起こる。
When a battery containing a conductive polymer as described above in its positive electrode plate is discharged, positive electrodes such as V2O5, MoO2, MnO2, etc.
.. The active material is reduced according to the following equation. When the positive electrode is V2O5 and the negative electrode is Ll, 6, -V2O3+ y L 1 +- → V2O5 (L 1 y
)...(2). The same applies to other oxides. According to equation (2), the discharge further progresses, and when the potential of the positive electrode decreases to about 2V (i/Li), which is the lower limit of reversibility of the positive electrode active material, the following reaction occurs.

CM”(CnO,−)x]、 −+ (M)、 + x
cOo4.、、(3)(3)式によりCIO;を放出し
た正極内の高分子(M)nは、導電性を失い絶縁体とな
る。したがって、正極内の抵抗値は急激に増大して分極
が犬きくなシ、電池電圧が低下する。すなわち、正極活
物質の過放電領域の放電が困難となり、正極活物質の不
可逆構造への転移がなくなる。このため、本発明の電池
を用いれば、可逆性の下限である電圧以下よりさらに放
電を行なっても、電池の充放電特性は損われない。
CM”(CnO,−)x], −+ (M), + x
cOo4. ,, (3) According to equation (3), the polymer (M)n in the positive electrode that has released CIO loses its conductivity and becomes an insulator. Therefore, the resistance value within the positive electrode increases rapidly, the polarization becomes weaker, and the battery voltage decreases. That is, the overdischarge region of the positive electrode active material becomes difficult to discharge, and the positive electrode active material does not transition to an irreversible structure. Therefore, if the battery of the present invention is used, the charge/discharge characteristics of the battery will not be impaired even if the battery is further discharged below the voltage that is the lower limit of reversibility.

実施例 以下、本発萌を実施例により詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例1) 正極活物質に■205を用いた。この■20..カーボ
ンブラック、及び四弗化エチレン樹脂を重量比で100
対5対1Qの割合で混合した。混合物400 mgを2
 cm X 2 cTnのチタンのエキスバンドメタル
集電体に成形圧着し、これを正極板とし、チタンリード
線をスポット溶接した。負極には、金属リチウム板をニ
ッケルのエキスバンドメタル集電体に加圧圧着したもの
にニッケルリードを付けたものを用いた。参照極にも金
属リチウム板を用い、負極と同様に構成した。電解液に
は、グロピレンカーボネートとンメトキシエタンを等体
積の割合で混合したものに1モル/lの割合でLiCl
O4を溶解させ、これにピロールを0.05モル/lに
なるよう加えたものを用いた。これらを、ガラスセルに
組み入れた。
(Example 1) ■205 was used as the positive electrode active material. This ■20. .. Carbon black and tetrafluoroethylene resin at a weight ratio of 100
They were mixed at a ratio of 5:1Q. 400 mg of mixture 2
This was molded and crimped onto a titanium expanded metal current collector measuring cm x 2 cTn, used as a positive electrode plate, and a titanium lead wire was spot welded. The negative electrode used was a metal lithium plate pressure-bonded to a nickel expanded metal current collector with a nickel lead attached. A metal lithium plate was also used for the reference electrode, and it was constructed in the same manner as the negative electrode. The electrolyte was a mixture of equal volumes of glopylene carbonate and methoxyethane, and LiCl was added at a rate of 1 mol/l.
O4 was dissolved and pyrrole was added thereto at a concentration of 0.05 mol/l. These were assembled into a glass cell.

この電池に対し、斗ず、1mAのアノード電流を正極側
へ3o分間流した。このときの正極の電!      
位は3.8vであった。分析により、導電性高分子であ
るポリピロールが導電剤のカーボンブラック上に生成し
ていることが認められた。この電池を用いて、充放電を
、2mAの定電流で1.6〜3.5Vの電位の範囲で行
なった。
To this battery, an anode current of 1 mA was applied to the positive electrode side for 30 minutes. The positive electrode voltage at this time!
The voltage was 3.8v. Analysis revealed that polypyrrole, a conductive polymer, was formed on the conductive agent carbon black. Using this battery, charging and discharging were performed at a constant current of 2 mA in a potential range of 1.6 to 3.5 V.

比較例としては、正極中にポリピロールを生成していな
い以外は、同一条件の電池を同様に構成し充放電を行な
った。
As a comparative example, a battery was similarly constructed and charged and discharged under the same conditions except that polypyrrole was not produced in the positive electrode.

第1図は、本発明の電池の第1サイクルと第2サイクル
の放電曲線を描いた図である。これより、v205正極
を過放電させても、放電曲線には変化がないことがわか
る。
FIG. 1 is a diagram depicting the discharge curves of the first cycle and the second cycle of the battery of the present invention. From this, it can be seen that even if the v205 positive electrode is over-discharged, there is no change in the discharge curve.

第2図は、比較例の電池の第1ザイクルと第2サイクル
の放電曲線を描いた図である。これより、正極中に、導
電性高分子であるポリピロールを含んでいない場合には
、v205は2■以下になっても放電を続けることにな
り、不可逆構造へと転移するため、過放電後の放電曲線
に著しい変化が現れることがわかる。
FIG. 2 is a diagram depicting the discharge curves of the first cycle and the second cycle of the battery of the comparative example. From this, if the positive electrode does not contain polypyrrole, which is a conductive polymer, the discharge will continue even if v205 becomes 2■ or less, and it will transition to an irreversible structure, so after overdischarge. It can be seen that a significant change appears in the discharge curve.

(実施例2) 正極活物質にMnO2を用い、扁平型電池にて試験を行
なった。MnO2,カーボンブラック、及び四弗化エチ
レン樹脂を実施例1と同様に調整した。
(Example 2) A test was conducted using a flat battery using MnO2 as a positive electrode active material. MnO2, carbon black, and tetrafluoroethylene resin were prepared in the same manner as in Example 1.

9 ・・−ン その混合物200tng(理論容量53.6 mAh 
)をチタンのエキスバンドメタル集電体をスポット溶接
した電池ケース内に成形し圧着した。正極板の直径は1
7.5Mである。負極には、厚さ0.38 Mの金属リ
チウムを用い、ニッケルのエキスバンドメタル集電体を
スポット溶接した封口板に加圧圧着した。電解液には、
グロピレンカーボネートとジメトキシエタンを等体積の
割合で混合したものに1モル/lの割合でL I C7
04を溶解させ、これにチオフェンを0.05モル/l
の割合で加えたものを用いた。また、金属リチウム極に
発生するデンドライトによる内部短絡を防ぐためにセパ
レータにはポリプロピレン不織布を用いた。
9 ... mixture 200 tng (theoretical capacity 53.6 mAh
) was molded and crimped into a battery case to which a titanium expanded metal current collector was spot welded. The diameter of the positive electrode plate is 1
It is 7.5M. Metallic lithium with a thickness of 0.38 M was used as the negative electrode, and was pressure-bonded to a sealing plate to which a nickel expanded metal current collector was spot-welded. The electrolyte contains
Add L I C7 at a rate of 1 mol/l to a mixture of equal volumes of glopylene carbonate and dimethoxyethane.
04 was dissolved, and 0.05 mol/l of thiophene was added to it.
The mixture was added at a ratio of . In addition, a polypropylene nonwoven fabric was used for the separator to prevent internal short circuits caused by dendrites that occur in the metal lithium electrode.

なお、比較例として用いる電池も、電解液にチオフェン
が加えられていない以外は同様に構成した。
Note that a battery used as a comparative example was constructed in the same manner except that thiophene was not added to the electrolyte.

このように構成した電池を、まず、正極側にアノード電
流を0.5 mAで電池電圧が4.5vになるまで流し
た。分析により、本発明の電池には、実施例1と同様に
、ポリチオフェニレンがカーボン0A−5 粒子」二に生成しているのが認められた。
First, an anode current of 0.5 mA was applied to the positive electrode side of the battery configured in this manner until the battery voltage reached 4.5V. As a result of the analysis, it was found that polythiophenylene was formed in the carbon 0A-5 particles in the battery of the present invention, as in Example 1.

次に、以上の電池を用いて、2mAの定電流で1.2〜
3.8■の電圧の範囲で充放電を行なった。
Next, using the above batteries, at a constant current of 2 mA,
Charging and discharging were performed within a voltage range of 3.8 .

第3図は、本発明の実施例及び比較例の第2サイクルに
おける放電曲線を示したもので、実線が本発明の電池で
あり、破線が比較例の電池である。
FIG. 3 shows the discharge curves in the second cycle of the example of the present invention and the comparative example, where the solid line is the battery of the present invention and the broken line is the battery of the comparative example.

これより、比較例の電池の放電曲線は単調に下がり、平
坦性がなく、電池としては不都合なものであることがわ
かる。
From this, it can be seen that the discharge curve of the battery of the comparative example was monotonically downward, lacked flatness, and was inconvenient as a battery.

第4図は、本実施例(実線)及び比較例(破線)の電池
の各サイクルでの放電容量をプロットした図である。こ
れより、本実施例の電池は、サイクル数の初期では、比
較例より放電容量が小さいものの、サイクルごとの放電
容量はほぼ一定であり、また、サイクル寿命も長く、信
頼性の高い電池となっていることがわかる。
FIG. 4 is a diagram plotting the discharge capacity at each cycle of the batteries of the present example (solid line) and the comparative example (broken line). From this, the battery of this example has a lower discharge capacity than the comparative example at the beginning of the number of cycles, but the discharge capacity for each cycle is almost constant, and the cycle life is long, making it a highly reliable battery. You can see that

なお、ピロール、チオフェンの他に、N−メチルピロー
ル、3−メチルチオフェン等の誘導体から得られる導電
性高分子を用いても同様な結果が得られた。
Note that similar results were obtained using conductive polymers obtained from derivatives such as N-methylpyrrole and 3-methylthiophene in addition to pyrrole and thiophene.

発明の効果 以上のように、本発明によれば、高エネルギー密度で、
しかも過放電を行なっても充放電曲線に変化のな層充放
電挙動のすぐれた非水電解質二次電池が得られる。
Effects of the Invention As described above, according to the present invention, at high energy density,
Furthermore, a non-aqueous electrolyte secondary battery with excellent layer charge-discharge behavior without any change in the charge-discharge curve even when over-discharged is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の非水電解質二次電池におけ
る第1サイクル及び第2サイクルの放電曲線を示す図で
あり、第2図は比較例電池における各サイクルでの放電
曲線を示す図であり、第3図は本発明の実施例2及び比
較例における第2サイクルの放電曲線を描いた図であり
、第4図は実施例2及び比較例の電池の各サイクルでの
放電容量をプロットした図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名^1
1^
FIG. 1 is a diagram showing the discharge curves of the first cycle and the second cycle in the non-aqueous electrolyte secondary battery of Example 1 of the present invention, and FIG. 2 is a diagram showing the discharge curve in each cycle of the comparative example battery. 3 is a diagram depicting the discharge curve of the second cycle in Example 2 of the present invention and the comparative example, and FIG. 4 is a diagram depicting the discharge capacity in each cycle of the battery of Example 2 and the comparative example. FIG. Name of agent: Patent attorney Toshio Nakao and 1 other person ^1
1^

Claims (1)

【特許請求の範囲】[Claims] 正極と、アルカリ金属イオン導伝性の非水電解質と、ア
ルカリ金属を活物質とする負極を構成要素とし、前記正
極内に、ピロール、チオフェン、及びこれらの誘導体か
ら合成される導電性高分子のいずれかを含んでいること
を特徴とする非水電解質二次電池。
The components include a positive electrode, a non-aqueous electrolyte that conducts alkali metal ions, and a negative electrode containing an alkali metal as an active material. A non-aqueous electrolyte secondary battery characterized by containing any of the above.
JP60080565A 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH081813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080565A JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080565A JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS61239562A true JPS61239562A (en) 1986-10-24
JPH081813B2 JPH081813B2 (en) 1996-01-10

Family

ID=13721856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080565A Expired - Fee Related JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH081813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065477A (en) * 1983-09-19 1985-04-15 Keiichi Kanefuji Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065477A (en) * 1983-09-19 1985-04-15 Keiichi Kanefuji Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
US5441832A (en) * 1992-08-01 1995-08-15 United Kingdom Atomic Energy Authority Electrochemical cell

Also Published As

Publication number Publication date
JPH081813B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JPH10255767A (en) Set battery for use in electric vehicle
JPH10188977A (en) Lithium secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH0425676B2 (en)
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPS61239562A (en) Nonaqueous electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JPS62274555A (en) Nonaqueous solvent secondary battery
JPH0558224B2 (en)
JP2692932B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPH11111335A (en) Nonaqueous electrolyte secondary battery
JPH07130359A (en) Nonaqueous electrolyte secondary battery
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPH03112070A (en) Lithium secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPH02281572A (en) Electrolyte for lithium secondary battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees