JPS6065477A - Battery - Google Patents

Battery

Info

Publication number
JPS6065477A
JPS6065477A JP58172747A JP17274783A JPS6065477A JP S6065477 A JPS6065477 A JP S6065477A JP 58172747 A JP58172747 A JP 58172747A JP 17274783 A JP17274783 A JP 17274783A JP S6065477 A JPS6065477 A JP S6065477A
Authority
JP
Japan
Prior art keywords
battery
conductive polymer
dopant
active material
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58172747A
Other languages
Japanese (ja)
Inventor
Keiichi Kanefuji
敬一 金藤
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58172747A priority Critical patent/JPS6065477A/en
Publication of JPS6065477A publication Critical patent/JPS6065477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To form a battery having the high cell voltage and energy density by doping conductive polymer compounds with an electron receiving dopant and an electron giving dopant respectively for making them into the positive pole and negative pole active materials. CONSTITUTION:A conductive polymer compound such as polythiophene or the like obtainable from a monomer feasible for electrochemical polymerization is doped with an electron receiving dopant for making it into a positive pole active material. Further, an electron said conductive polymer compound is doped with giving dopant for making it into a negative pole active material. Said both active materials are used to assemble a secondary battery or the like. Said battery has the excellent discharge properties as well as the enormous density of the maximum output.

Description

【発明の詳細な説明】 本発明は正極及び負極活物質をいずれも導電性高分子物
質にて構成した電池に関し、更に詳述するとボ1jチオ
フェン、ポリピロール、ボリフェニレンスルフォイド、
ポリビリノビリジン、ポリ7ラン、ポリセレノフェン等
の電気化学重合可能なモノマーから得られる導電性高分
子化合物に電子受容性ドーパントをドーピングしたもの
を正極活物質とし、かつポリチオフェン、ポリピロール
、ポリフェニレンスル7オイド、ポリビリノビリジン、
ポリフラン、ポリセレノフェン等の電気化学重合可能な
モノマーから得られる導電性高分子化合物に電子供与性
ドーパントをドーピングしたものを負極活物質としたこ
とを特徴とする電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery in which both the positive electrode and negative electrode active materials are made of conductive polymer materials, and more specifically, bo1j thiophene, polypyrrole, polyphenylene sulfide,
The positive electrode active material is a conductive polymer compound obtained from an electrochemically polymerizable monomer such as polybilinopyridine, poly7rane, or polyselenophene, and is doped with an electron-accepting dopant. 7oid, polybilinoviridine,
The present invention relates to a battery characterized in that the negative electrode active material is a conductive polymer compound obtained from an electrochemically polymerizable monomer such as polyfuran or polyselenophene, doped with an electron-donating dopant.

最近、ポリアセチレン等に電子受容性ドーパントをドー
ピングした導電性高分子物質を正極活物質とし、リチウ
ム等の金属を負極活物質とした電池か種々提案されてお
り、また負極活物質としてポリアセチレン等に電子供与
性ドーノ母ントをドーピングしたものを使用し、正負極
活物質の両者をいずれも導電性高分子物質にて構成した
電池も提案きれている(特開昭56−52868.56
−71277゜58−54553.58−54554.
58−54567、56−]361169 ■)。
Recently, a variety of batteries have been proposed in which a conductive polymer material such as polyacetylene doped with an electron-accepting dopant is used as the positive electrode active material and a metal such as lithium is used as the negative electrode active material. A battery has also been proposed in which a donor doped matrix is used and both the positive and negative active materials are made of conductive polymer materials (Japanese Patent Laid-Open No. 56-52868.56).
-71277°58-54553.58-54554.
58-54567, 56-]361169 ■).

本発明者らも正負極面活物質をいずれも導電性品分イ物
質とした優れた特性を有する二次電池にだ ついて鋭意研窮を行な弗果、高分子化合物としてポリチ
オフェン、ポリピロール、ボリフェニレンスルフオイド
、ポリピリノビリジン、号?す7ラン、ポリセレノフェ
ン等の電気化学重合可能なモノマーから得られる導電性
高分子化合物が、電池の電極物質として良好な性質を有
し、これら高分子化合物に電子受容性ドーパント及び電
子供与性ドーパントをそれぞれドーピングしたものを正
極活物Jfi及び負極活物質として電池を構成した場合
、セル電圧、エネルギー密度が高く、かつ最大出力密度
の非常に大きい↑+q池がq4tられることを知見し、
本発明をなすに牟ったものである〇 以−ト、本発明につき詳しく説明する。
The present inventors have also conducted intensive research into secondary batteries with excellent properties in which both the positive and negative electrode surface active materials are conductive materials. Phenylene sulfoid, polypyrinobiridine, No.? Conductive polymer compounds obtained from monomers that can be electrochemically polymerized such as polyselenophene and polyselenophene have good properties as electrode materials for batteries, and these polymer compounds can be used as electron-accepting dopants and electron-donating We found that when a battery is constructed using dopants doped as the positive electrode active material Jfi and the negative electrode active material, the cell voltage and energy density are high, and the maximum output density is extremely large ↑ + q cell q4t,
The present invention will be explained in detail below, which constitutes the present invention.

本発明に係る1池は、上述したように、電気化学■〔合
可能なモノマーから得られる導電性高分子化合物に電子
受容性ドーパントをドーピングしたものを正極活物質と
し、かつ電気化学重合可能なモノモーから得られる導電
性高分子化合物に電子供与性ビーパン14−ドーピング
したものを負極活物質としたことを特徴とするものであ
り、これにより高いセル電圧を有すると共に、エネルギ
ー密度が犬きぐ、最大出力U(度の大きいプラスチック
二次電池を得ることができるものである。
As described above, one cell according to the present invention uses a cathode active material obtained by doping a conductive polymer compound obtained from monomers that can be electrochemically polymerized with an electron-accepting dopant, and is electrochemically polymerizable. The negative electrode active material is a conductive polymer compound obtained from Monomo, which is doped with electron-donating bepan-14.As a result, it has a high cell voltage and an extremely high energy density. It is possible to obtain a plastic secondary battery with a large output U (power).

ここで、電気化学重合可能なモノマーから得られる導電
性高分子化合物としては、ポリチオフェン(ポリ−2,
5−チェニレン)、ポリピロール(ポリ−2,5−ビロ
ール)、ポリーp−フエニレンスルフオイド%ポリ−m
−フエニレンスルフオイド、ポリビリノビリノン、ポリ
フラン、ポリセレノフェン等が挙げられるが、これらの
9ぢでは特にポリチオフェンが好ましく用いられる。
Here, as a conductive polymer compound obtained from an electrochemically polymerizable monomer, polythiophene (poly-2,
5-chenylene), polypyrrole (poly-2,5-pyrrole), poly p-phenylene sulfoid% poly-m
Examples include -phenylene sulfide, polybilinobilinone, polyfuran, polyselenophene, etc. Among these, polythiophene is particularly preferably used.

なお、これらの高分子化合物は電気化学乗合によって製
造したものを用いることが好ましいが、必らずしもこれ
に限られるもの−(−゛はなく1例えばボリフエニレン
スルフオイドやポリピリノビリジンなどにおいては他の
方法で重合したものを用いろことかできる。1だ、本発
明において導電性高分子化合物を使用する場合、10−
50−5S’以上、特K 1 (J−” 8crn−’
 以上の導電性を示すようにすることが好ましい。
It is preferable to use these polymer compounds produced by electrochemical hybridization, but they are not necessarily limited to -(-), 1, for example, polyphenylene sulfide or polypyrinobinol. For lysine etc., it is possible to use one polymerized by other methods.1.When using a conductive polymer compound in the present invention, 10-
50-5S' or above, special K 1 (J-"8crn-'
It is preferable to exhibit the above conductivity.

また、前記高分子化合物にドーピングする電子受容性ド
ーパントは、正極で導電性高分子物質から電子を引抜き
、主導性を賦与して金属的導電体をJド威させ得るもの
であわばいずれのものでもよく、例示するとF2 、 
C12、Br2 、 I2.ICl、 1c13゜lB
r、’ lF5等のハC7グン類、PF”s + A”
F5 + SbF+ + BF3 +BC4+ BBr
3+ FeCIJs r ’A11(−11s r Z
r C14+ SOs 等のルイス酸、HF、 HCl
、HBr 、HBF4. HCl0. 、 R2804
1FSO1H、C1803H、’ CF3803 )i
 、 1(NOs等のプロトン酸、その他02 、 X
eOF4 、 XeF2 r AgC1(J4+kBF
<など、或いはこれらのアニオンが挙けられる。
Further, the electron-accepting dopant to be doped into the polymer compound is any one that can extract electrons from the conductive polymer material at the positive electrode and impart initiative to the metal conductor. For example, F2,
C12, Br2, I2. ICl, 1c13゜lB
r,' HaC7 species such as lF5, PF"s + A"
F5 + SbF+ + BF3 +BC4+ BBr
3+ FeCIJs r 'A11(-11s r Z
r C14+ Lewis acids such as SOs, HF, HCl
, HBr, HBF4. HCl0. , R2804
1FSO1H, C1803H,'CF3803)i
, 1 (protonic acids such as NOs, etc. 02 , X
eOF4, XeF2 r AgC1 (J4+kBF
< etc. or these anions can be mentioned.

更に、電子供与性ドーパントは、負極で導電性高分子物
質にη11子を与え、電導性を賦与して金属的導を体を
彫成芒せ44iるものであればいずれのものでもよく、
例示するとLi、 Na、 K、 Rb、 Csといっ
たアルカリ金属、テトラアルキルアンモニラA (R4
N+)、テトラフェニルポスホニウムげられる。
Furthermore, the electron-donating dopant may be any substance that imparts η to the conductive polymer substance at the negative electrode, imparts electrical conductivity, and carves metallic conductivity.
For example, alkali metals such as Li, Na, K, Rb, and Cs, tetraalkyl ammonia A (R4
N+), tetraphenylphosphonium.

なお1本発明において、ドーノセントのドーピング方法
としては化学的方法、電気化学的方法のいずれによって
も差支えない。
In the present invention, the method for doping the donocent may be either a chemical method or an electrochemical method.

本発明電池においては支持軍、 fIl’を剤が使用さ
れ得るが、支持筒1解剤は液体電解質でも固体電哨質で
もよく、例示すると水又は有機化合物、例えばビフェニ
ール、テトラヒドロフラン、プロピオンカーボネート、
アセトニトリル、ベンゾニトリル、L)MF 、ビリノ
ン、ニトロベンゼンなどが挙げられる。
In the battery of the present invention, a supporting force, fIl', may be used, and the dissolving agent in the supporting cylinder 1 may be a liquid electrolyte or a solid electrolyte, and examples thereof include water or an organic compound such as biphenyl, tetrahydrofuran, propion carbonate,
Examples include acetonitrile, benzonitrile, L)MF, birinone, and nitrobenzene.

本発明に係る電池の電気化学友1ノロは、例えば高分子
化合物としてポリチオフェン(Cs H2S ) X 
ヲ使用し、電解剤としてテトラ−n−プチルアンモニウ
ムフルオがレート (TEA’ BF’4− )を含む
アセト=)リル溶液を用いて正極ドーパントをBF4−
1負極ドーパントをTBA+とした場合を例にし−(原
理を説明すると、下記の通りである。
The electrochemical component of the battery according to the present invention is, for example, polythiophene (Cs H2S)
The positive electrode dopant was BF4- using an acetolyl solution containing tetra-n-butylammonium fluorate (TEA'BF'4-) as an electrolyte.
1. Taking as an example the case where TBA+ is used as the negative electrode dopant, the principle is as follows.

正極 (C4112S )X −xye−十xy BIi’4
−負 担【2 (C,h、、S )X + xye −→−XyTBA
−’ここで、本発明電池の構成例を示すと第1図に示す
通りである。即ち、第1図において、lはガラスチュー
ブ、2は集電極、3は導電性高分子化合物、4はセパレ
ータ、5,6はそれぞれリード線で、カラスチューブl
の開口端(A、カラスシール7かなされており、ガラス
チューブ1の内部に電1’l’fi’?’l )lか充
填ailでいるものである。な4.s勿論、不発明電池
の構成は図示のものに限られるものでlh fxい。本
発明においては、前記正極の活物質として」二連したボ
リナオフェン等の高分子化合物に重子受容性ドーパント
をドーピングしたものを使用ず<、、ものであるが、こ
の場合この正極活物質の薄膜を導電性物質板、例えば白
金板、二・ンケル板等に形成したもの又は薄膜を剥離し
、それを導電。
Positive electrode (C4112S)X -xye-xy BIi'4
- Burden [2 (C, h,,S)X + xye -→-XyTBA
-' Here, an example of the structure of the battery of the present invention is shown in FIG. That is, in FIG. 1, l is a glass tube, 2 is a collector electrode, 3 is a conductive polymer compound, 4 is a separator, 5 and 6 are lead wires, and the glass tube l
The open end (A, glass seal 7) is made, and the inside of the glass tube 1 is filled with electricity 1'l'fi'?'l. 4. Of course, the configuration of the uninvented battery is limited to that shown in the drawings. In the present invention, as the active material of the positive electrode, a polymer compound such as ``double borinaophene'' doped with a deuteron-accepting dopant is not used, but in this case, a thin film of the positive electrode active material is A conductive material plate, such as a platinum plate or a Ni-Nkel plate, is formed or a thin film is peeled off to make it conductive.

板上に置くかもしくは導電材料を塗布成りしま蒸着等に
よって集電極材としたものを正極とすることか好ましく
、また負極も負極活物質の薄膜を導電性物質板に形成し
たもの或いは正極と同様に構成したものとすることが好
ましい。
It is preferable to use the positive electrode as a collector electrode material, either by placing it on a plate or by applying a conductive material or coating it with stripes or by vapor deposition.The negative electrode may also be a conductive material plate formed with a thin film of negative electrode active material, or the same as the positive electrode. It is preferable that the configuration is as follows.

この場合、正負極活物質の薄膜の埋さは必ずしも制限さ
れないが、出力缶用を増加させるという観点から0.1
μm〜2000μmとすることか好ましい。また、正負
極活物質の薄膜は互に対向させて配置することが好まし
く、この場合その離間距離は種々変更し得るが、内部抵
抗を小さくするという観点から10μm〜1000μm
とすること力)好ましい。なお、本発明においてガラス
セルやセ、2レーター等か限定されないことは明らかで
ある。
In this case, the depth of the thin film of the positive and negative electrode active materials is not necessarily limited, but from the viewpoint of increasing the capacity for output cans,
It is preferable that the thickness is from μm to 2000 μm. In addition, it is preferable that the thin films of the positive and negative electrode active materials are arranged to face each other, and in this case, the distance between them can be changed in various ways, but from the viewpoint of reducing internal resistance, it is 10 μm to 1000 μm.
force) is preferred. It is clear that the present invention is not limited to glass cells, cells, bilaters, etc.

なお、前記高分子化合物のN膜は電気化学的重合による
得ることができる。例えば、ポリチオフェン薄膜を得る
場合は、正極に導電カラス、白金、ニッケル等の導電材
料を使用し、負極に正極と同様のものを使用し1、チオ
フェンとLiBF4 ヲa trベンゾニトリル溶液を
市解重合することにより、正極にポリチオフェン#膜を
形成することができる。
Note that the N film of the polymer compound can be obtained by electrochemical polymerization. For example, to obtain a polythiophene thin film, a conductive material such as conductive glass, platinum, or nickel is used for the positive electrode, and the same material as the positive electrode is used for the negative electrode. By doing so, a polythiophene # film can be formed on the positive electrode.

この場合、このポリチオフェン薄膜は導電板等の上に形
成することにより、容易に剥離することが−(きる。な
お、このようにして得られたポリチオフェン薄膜はBF
4−等のアニオンがドープされた状態にあるか、例えば
これを電気化学的にアンドープすることもでき、またア
ンモニアガスやアン千ニア水中に数時間浸すことにより
アンドーゾ薄膜を得ることかできる。
In this case, this polythiophene thin film can be easily peeled off by forming it on a conductive plate or the like.
It is doped with an anion such as 4-, or it can be electrochemically undoped, or an andso thin film can be obtained by immersing it in ammonia gas or aqueous ammonia for several hours.

以−ト、実施例を示し、本発明を具体的に説明するか、
本発明O″l、1記の実施例に限定されるもので(Jな
い。
Hereinafter, the present invention will be specifically explained by showing examples.
The present invention is not limited to the first embodiment.

〔実頒J例〕[Example of actual distribution]

負穂(として白金を使用し、正極として1×2cIlの
ln −811オキサイド導電カラス板(IT(J)を
使用し、0.4mol/lチオフェンと0 、5mol
/lL i BF4とを含むベンゾニトリル溶液にアル
ゴンガス雰囲気中でIU〜20V、101ηA〜の電流
を流し、チオフェンを電気化学的に重合して前記正極に
約0.75μmのポリチオフェンフィルムを析出させた
Using platinum as a negative electrode, using 1×2 cIl ln-811 oxide conductive glass plate (IT(J) as a positive electrode, 0.4 mol/l thiophene and 0.5 mol
A current of IU ~ 20 V, 101 ηA ~ was applied to a benzonitrile solution containing /lL i BF4 in an argon gas atmosphere to electrochemically polymerize thiophene and deposit a polythiophene film of about 0.75 μm on the positive electrode. .

このフィルムはBF、−が30〜50 mo1%ドーグ
された状態で、106106s’ (290°K)の導
電性を示す。
This film exhibits a conductivity of 106106s' (290°K) when 30 to 50 mo1% of BF,- is added.

欣に、このフィルムを直ちに同じ電解七ル内で数分間シ
ョートすることによりアンド−70した。
The film was then immediately AND-70'd by shorting it in the same electrolyte for a few minutes.

このようにしてITOガラス板上に形成されたアンド−
シボリチオフィンフィルム2枚を約1cIrLN[間さ
せてガラスセル内に配置はせ、約0.2rnol/lの
テトラ−n−プチルアンモニウムフロオロポレ−) (
TEABF4) を含むア七トニト1ノルカ)らなる雷
、解液15ccに浸漬した。次いで、2,1■以上の間
圧を印荷したところ、充電電流か流rt % Mll 
ML It’(1フイル欠の色が赤から青に変化し、そ
れぞれ向1列1’) −f−、t 7 x ン7 イ/
l/ ムがTBA+及びBk”%−kこ1・゛−フ′さ
れたことが確認された。
In this way, the and-
Two shiborithiophine films were placed in a glass cell with a gap of about 1 cIrLN [about 0.2rnol/l tetra-n-butylammonium fluoropolymer] (
The sample was immersed in 15 cc of a solution of TEABF4) containing attenutonite 1norca). Next, when a pressure of 2.1 cm or more was applied, the charging current rt % Mll
ML It' (The color of one missing file changes from red to blue, each direction is 1 row 1') -f-, t7xn7i/
It was confirmed that the l/me was reduced by TBA+ and Bk"%-k.

なお、上記電池の充電段階における電気1ヒ学反応は下
記の通りである。
The electrochemical reaction during the charging stage of the battery is as follows.

負極において (C,H2S)X十xye−+xyTBA+→C(C4
H2s )−yTBA+y〕工正極において (C4H2S)X−xye−+xyBFt−→[(C,
H2S)+3’(BF4−)y)X全反応 2 (C<H2S)x十xyTBA BF4→[(C山
S)+y(BF4−)y入+C(C4H25)−yTB
A−リ〕工また、放電段階においては上記の逆反応が生
じる。
At the negative electrode (C, H2S)
H2s)-yTBA+y] At the positive electrode (C4H2S)X-xye-+xyBFt-→[(C,
H2S) + 3' (BF4-)y)
A-Rework Also, the above-mentioned reverse reaction occurs during the discharge stage.

なお、ポリチオフェンに対してp型及びn型ドーピング
がなされていることは、吸光厩測定及び元素分析により
確認した。
In addition, it was confirmed by absorption measurement and elemental analysis that the polythiophene was doped with p-type and n-type.

次に、上述した電池を使用し、一定の電圧で充電した後
、直ちに(2〜3秒後)セル電位を測定し、独々のドー
ノぞント濃度に対するセル電位の関係を調べた。結果忙
第2図に示1−0なお、ドーパント濃度は、負荷抵抗1
0にΩにおいて放電させたときのトータルナヤーソから
評価した。
Next, using the above-mentioned battery, after charging at a constant voltage, the cell potential was immediately measured (after 2 to 3 seconds), and the relationship between the cell potential and the concentration of each dome was investigated. The result is 1-0 as shown in Figure 2. Note that the dopant concentration is 1-0 when the load resistance is 1-0.
Evaluation was made from the total nayaso when discharged at 0Ω.

第2図に示した曲線から、エネルギー密度は電極活物質
(両フィルム及びTBABF424rno1%)1kg
に対して75Wh、両フィルム1 kgに対し7て11
0wh であることが計算された。
From the curve shown in Figure 2, the energy density is 1kg of electrode active material (both films and TBABF424rno1%)
75Wh for each film, 7 to 11 for 1 kg of both films
It was calculated to be 0wh.

また、放電特性、即ち種々の抵抗値における放電電圧と
時間との関係を調べ、第3図に示す結果を得た。この場
合、セルとしては、正負極共約0.13 m9のi5り
千オ7エンフイルムヲ用い、3.2■で2分間充電した
ドーノぐン)51i24mo1%のものを使用した。
Further, the discharge characteristics, ie, the relationship between discharge voltage and time at various resistance values, were investigated, and the results shown in FIG. 3 were obtained. In this case, the cell used was an i51i24mo1% film charged at 3.2cm for 2 minutes using an i5107 film with a total area of about 0.13 m9 for both the positive and negative electrodes.

第3図の曲線から、全放電電荷バ1はドーパント濃度2
4 ma1%に相応して約36 mCの一定であること
が計算された。
From the curve in Figure 3, the total discharge charge bar 1 is the dopant concentration 2
A constant of approximately 36 mC was calculated, corresponding to 4 ma1%.

また、内部抵抗による電圧時]・かセル電圧に比較して
無視し?iイる2にΩ以上の負荷抵抗における放電曲線
から、エネルギー密度か両フィルム1kgに対して約9
3Whであることが紹められた。この場合、電極活物質
(両フィルム及び24 mai1%のTBABF4 )
 1 k3iに対するエネルギー密度は63 Wbであ
るが、これは平均放i!寛圧2.7vにおいて24 A
h/に9に相応する。
Also, when the voltage due to the internal resistance] is ignored compared to the cell voltage? From the discharge curve at a load resistance of Ω or more, the energy density is approximately 9 for 1 kg of both films.
It was introduced that it is 3Wh. In this case, the electrode active materials (both films and 24 mai 1% TBABF4)
The energy density for 1 k3i is 63 Wb, which is the average radiation i! 24 A at tolerance pressure 2.7v
Corresponds to 9 to h/.

更に、第3図に小す抵抗値100Ωにおける放1T曲線
から、最大出力密度がフィルム及び電極活物質に対しそ
れぞれ89 KW/に9及び61KW/に9であること
か認められた。この場合、両フィルムの1ソサをそれぞ
れ約0.2μmとした電池を用いると、電極活物質に対
して300 KW/kli1以上の最大出力密度が得ら
れた。(CH)x/Li電池の最大出力密度が35 K
W/kg、 (CH)x/ (C)l)x電流の最大出
力音19がl 7 KW/kl?であるから、本発明電
池の最大出力密度は(CH)x/ (CH) x 電池
の雷力密度の20倍以上であり、また鉛電池の最大出力
密度が1.2KW/kgであるから、本発明電池の最大
出力密度か顕著に大きいものであることが知見された。
Further, from the emission 1T curve at a small resistance value of 100Ω shown in FIG. 3, it was observed that the maximum power density was 89 KW/9 and 61 KW/9 for the film and electrode active material, respectively. In this case, when a battery was used in which each thickness of both films was about 0.2 μm, a maximum output density of 300 KW/kli1 or more was obtained for the electrode active material. The maximum power density of (CH)x/Li battery is 35 K
W/kg, (CH)x/ (C)l)x Maximum output sound 19 of current is l 7 KW/kl? Therefore, the maximum power density of the battery of the present invention is more than 20 times the lightning power density of the (CH) x/ (CH) x battery, and the maximum power density of the lead battery is 1.2 KW/kg. It was found that the maximum power density of the battery of the present invention was significantly higher.

なお、このように本発明電池の最大出力密度が大きい理
由はポリチオフェンフィルムが多孔性で表面積が非常に
大きいこと、史にドーノ+ントのフィルムへの拡散係数
が大きいためである。
The reason why the maximum output density of the battery of the present invention is so large is that the polythiophene film is porous and has a very large surface area, and that the diffusion coefficient of the donor into the film is large.

また、本発明電池は、充電電圧が3.2V以下であれば
→ノイクルに、命は十分長いものであった。
In addition, the battery of the present invention had a sufficiently long life as long as the charging voltage was 3.2 V or less.

以上のことから、ポリチオフェンを池はドーパント濃度
24 mo/%においてセル電圧3.IV、エネルギー
密度110Wh/に9、最大出力密度300 KW/に
9以上であることが認められた。
From the above, it can be seen that polythiophene has a cell voltage of 3.0 at a dopant concentration of 24 mo/%. IV, an energy density of 110 Wh/9 and a maximum output density of 300 KW/9 or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の一構成例を示す断面図、第2図は
本発明のポリチオフェン/ TBABB″4/ア七トニ
トリ/I//ポリチオフェン電池におり゛るセル?l?
、 EEとドーパント濃度との関係を示すグラフ、第3
図は同電池(ドーパント濃1!、!’ 24 mo7%
)の放電特性を示すグラフである。 1・・・カラスチューブ、2・・・集電極、3山専箪性
高分子化合物、5.6・・・リード線、8・・・IQγ
剤。 出願人 金 藤 敬 − 吉野勝美 代理人 弁理士率 島 隆 司 ドーパント濃度 (mo1%) 第3図 11+j 間 (秒)
FIG. 1 is a cross-sectional view showing an example of the structure of the battery of the present invention, and FIG. 2 is a cross-sectional view of a cell included in the polythiophene/TBABB''4/a7tonitri/I//polythiophene battery of the present invention.
, Graph showing the relationship between EE and dopant concentration, 3rd
The figure shows the same battery (dopant concentration 1!,!'24 mo7%)
) is a graph showing the discharge characteristics of the battery. DESCRIPTION OF SYMBOLS 1...Crow tube, 2...Collecting electrode, 3-way exclusive polymer compound, 5.6...Lead wire, 8...IQγ
agent. Applicant Kei Kinfuji - Katsumi Yoshino Agent Patent attorney ratio Takashi Shima Dopant concentration (mo1%) Figure 3 11+j interval (seconds)

Claims (1)

【特許請求の範囲】 1 電気化学重合可能なモノマーから得られる導電性高
分子化合物に電子受容性ドーパントをドーピングしたも
のを正極活物質とし、かつ雷、気化半重合可能なモノマ
ーから得られる導11性高分子化合物に雷、子供与件ド
ーパントをドーピングしたものを負極活物質としたこと
を特徴とする電池。 2、導電性高分子化合物がポリチオフェン、ポリピロー
ル、ボリフエニレンスルフオイド、ポリビリノビリジン
、ポリ7ラン及びポリセレノフェンから選ばれるもので
ある特許請求の範囲第1項記載の電池。
[Claims] 1. A conductive polymer compound obtained from a monomer that can be electrochemically polymerized and doped with an electron-accepting dopant is used as a positive electrode active material, and a conductive polymer compound obtained from a monomer that can be semipolymerized by lightning or vaporization is used as a positive electrode active material. 1. A battery characterized in that a negative electrode active material is a polymer compound doped with a lightning or child dopant. 2. The battery according to claim 1, wherein the conductive polymer compound is selected from polythiophene, polypyrrole, polyphenylene sulfide, polybilinoviridine, poly7rane, and polyselenophene.
JP58172747A 1983-09-19 1983-09-19 Battery Pending JPS6065477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172747A JPS6065477A (en) 1983-09-19 1983-09-19 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172747A JPS6065477A (en) 1983-09-19 1983-09-19 Battery

Publications (1)

Publication Number Publication Date
JPS6065477A true JPS6065477A (en) 1985-04-15

Family

ID=15947569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172747A Pending JPS6065477A (en) 1983-09-19 1983-09-19 Battery

Country Status (1)

Country Link
JP (1) JPS6065477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239562A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239562A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
Matsunaga et al. Development of polyaniline–lithium secondary battery
JPH0454350B2 (en)
US4886572A (en) Composite electrode comprising a bonded body of aluminum and electroconductive polymer and electric cell using such a composite electrode
US20190140317A1 (en) Gel polymer electrolytes comprising electrolyte additive
JPH0315175A (en) Secondary battery furnishing polymer electrodes
EP0165589A2 (en) Secondary battery and method of manufacturing the same
US6274268B1 (en) Polymer secondary battery and method of making same
Kawai et al. Secondary battery characteristics of poly (3-alkylthiophene)
JPS6289749A (en) Electrode material
US6699621B2 (en) Method for electrochemical conditioning polymeric electrodes
Kim et al. An All-solid-state electrochemical supercapacitor based on Poly3-(4-fluorophenylthiophene) composite electrodes
CN110100332B (en) Electrochemical device
JPS6065477A (en) Battery
Dietz et al. Positive polyacetylene electrodes in aqueous electrolytes
Yamamoto et al. Li| LiI| iodine galvanic cells using iodine-poly (2, 5-thienylene) adducts as active materials of positive electrodes
JPS61203565A (en) Secondary battery and its electrode
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP3711015B2 (en) Polarized electrode
JP2934452B2 (en) Rechargeable battery
JP2542221B2 (en) Battery using polyaniline composite electrode
JP2610026B2 (en) Battery electrode
Kawai et al. Secondary battery characteristics of poly (p-phenylene vinylene) derivatives
Jeon et al. A Rechargeable Battery Using Electrochemically-Doped Poly (3-vinylperylene) as an Electrode Material.
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JPS61206170A (en) Secondary battery and its electrode