JPS61203565A - Secondary battery and its electrode - Google Patents

Secondary battery and its electrode

Info

Publication number
JPS61203565A
JPS61203565A JP60044295A JP4429585A JPS61203565A JP S61203565 A JPS61203565 A JP S61203565A JP 60044295 A JP60044295 A JP 60044295A JP 4429585 A JP4429585 A JP 4429585A JP S61203565 A JPS61203565 A JP S61203565A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
battery
atoms
heterocyclic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044295A
Other languages
Japanese (ja)
Inventor
Ryuichi Hirai
隆一 平井
Katsumi Fukazawa
深沢 勝美
Isao Maruyama
功 丸山
Yoshihiro Sakon
左近 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP60044295A priority Critical patent/JPS61203565A/en
Publication of JPS61203565A publication Critical patent/JPS61203565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce a highly-efficient light battery by preparing the electrodes from an unsaturated heterocyclic compound having condensed three hexarings where the central hexaring contains two different atoms located at para- positions and these atoms are selected from a group including O, S and N. CONSTITUTION:Electrodes 4 and 7 are prepared from a powder of phenoxazine, phenothiazine or a similar compound which is an unsaturated heterocyclic compound having condensed three hexarings where the central hexaring contains two different atoms located at para-positions and these atoms are selected from among O, S, N and substituted N atoms. After the electrodes 4 and 7 are packed into the central holes of glass fiber filter paper pieces 3 and 6 in an argon atmosphere, a diaphragm 5 made of glass fiber filter paper or similar material is compressed between the paper pieces 3 and 6 thereby constituting a secondary battery. By the means mentioned above, it is possible to produce a light battery with a high electric charge density per unit weight by performing reversible electrochemical doping on electrodes made of a usual low-molecular- weight organic compound without performing any polymerization.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、中央6員環が2個のヘテロ原子をパラ位に含
有し、前記ヘテロ原子がO、S、Nおよび置換Nからな
る群から選ばれている縮合6゜6.6員不飽和複素環化
合物からなる電気化学的二次電池用電極およびそれを用
(・た電気化学的二次電池に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a group consisting of O, S, N, and substituted N, wherein the central six-membered ring contains two heteroatoms at para positions, and the heteroatoms are O, S, N, and substituted N. The present invention relates to an electrode for an electrochemical secondary battery comprising a fused 6°6.6-membered unsaturated heterocyclic compound selected from the following, and an electrochemical secondary battery using the same.

公害問題およびエネルギー問題が重要視されるにつれて
無公害の電気自動車等の開発に対する期待が高まってい
る。これに対応して軽量かつ高いエネルギー密度の新し
い型の電池の開発が盛んになり、種々の材料を電極に石
川する試みがなされてきた。その結果、最近になって高
分子化合物を電極とする新しい二次電池が開発されつ瓦
ある。
As pollution and energy issues become more important, expectations for the development of non-polluting electric vehicles and the like are increasing. In response to this, development of new types of batteries that are lightweight and have high energy density has become active, and attempts have been made to use various materials as electrodes. As a result, new secondary batteries using polymer compounds as electrodes have recently been developed.

本発明は、これらの新しい型の二次電池およびそれに用
いる電極に関するものである。
The present invention relates to these new types of secondary batteries and electrodes used therein.

(従来の技術) 本来絶縁体である高分子重合体圧ドーピングという操作
を行なうことにより電気伝導度か半導体または良導体の
領域まで向上することが見出された。これらの高分子重
合体の例としては、ポリアセチレン、ポリフェニレン、
ポリチオフェンおよびポリピロール等が挙げられる。ド
ーピング操作の方法としては一般に次の2つの方法が採
用されている。
(Prior Art) It has been found that by carrying out a pressure doping operation on a polymer which is originally an insulator, its electrical conductivity can be improved to the level of a semiconductor or a good conductor. Examples of these high molecular weight polymers include polyacetylene, polyphenylene,
Examples include polythiophene and polypyrrole. Generally, the following two methods are employed for the doping operation.

(1)高分子重合体とドーパントを気相、液相または固
相で接触または混合する方法でドーパントとしてルイス
酸性を示す物質(例えばI2、PF5、SO3、FeC
J3等)およびアルカリ金属(Li、Na%に等)を用
いる化学的ドーピング。
(1) Substances exhibiting Lewis acidity (e.g. I2, PF5, SO3, FeC
J3 etc.) and chemical doping with alkali metals (Li, Na% etc.).

(2)高分子重合体を電解質と液相または固相で接触さ
せ、高分子重合体に正または負の電圧を加えて、電解質
のイオン解離によって生じたカチオンまたはアニオンを
ドープする電気化学的ドーピング法。
(2) Electrochemical doping, in which a polymer is brought into contact with an electrolyte in a liquid or solid phase, a positive or negative voltage is applied to the polymer, and the polymer is doped with cations or anions generated by ion dissociation of the electrolyte. Law.

以上の2つのドーピング方法の内、(2)の電気化学的
ドーピングにおいてはドーピングされたドーパントは脱
ドーピングすることも出来、通常ドーピング操作と脱ド
ーピング操作は可逆的に起るのでこの原理′を応用した
二次電池が提案されている。
Of the above two doping methods, in (2) electrochemical doping, the doped dopant can also be undoped, and since the doping operation and undoping operation usually occur reversibly, this principle' is applied. A secondary battery has been proposed.

先に述べたとおり可逆的な電気化学的ドーピングおよび
脱ドーピング現象を応用した新しいタイプの二次電池が
最近相法いで発明された。
As mentioned above, a new type of secondary battery that utilizes reversible electrochemical doping and dedoping phenomena has recently been invented using a phase process.

例えば、ポリアセチレンを主体とする電極を用いる二次
電池(%開閉56−136469、特開昭57−121
168等)、ポリパラフェニレンを主体とした電極を用
いる二次電池(%開閉59−46760等)およびボ1
1チオフェンを主体とした電極を用いろ二次電池(%開
閉57−197759等)があるっ 一方、正極に高分子重合体でない通常の有機化合物であ
る2、4.7−)リニトロー9−フルオレノン等を使用
し、負極にリチウム金属を用いた電池も若干の例が知ら
れている(J、Elect−rochem−E3oc、
、 131巻、1号、57頁(1984年)参照)。
For example, a secondary battery using an electrode mainly composed of polyacetylene (% open/close 56-136469, JP-A-57-121
168, etc.), secondary batteries using electrodes mainly made of polyparaphenylene (% opening/closing 59-46760, etc.) and batteries
While there are secondary batteries (such as % open/close 57-197759) that use electrodes mainly composed of 1-thiophene, the positive electrode is made of 2,4.7-)linitrol-9-fluorenone, which is an ordinary organic compound that is not a polymer. Some examples of batteries using lithium metal as the negative electrode are also known (J, Elect-rochem-E3oc,
, Vol. 131, No. 1, p. 57 (1984)).

(解決しようとする問題点) 本発明者らは、軽量で高エネルギー密度が得られろ電池
の開発を鋭意研究した結果、重合体ではない通常の単1
体である特定の構造を有る不飽和複素環化合物が優れた
電気化学的二次電池用電極の材料となり得ることを見出
し、本発明を完成した。
(Problems to be Solved) As a result of intensive research into the development of batteries that are lightweight and have high energy density, the present inventors found that
The present invention was completed based on the discovery that an unsaturated heterocyclic compound having a specific structure can be an excellent material for electrodes for electrochemical secondary batteries.

すなわち、本発明の目的は、有機材料である特定の構造
を有する不飽和複素環化合物を構成材料とする軽量で高
エネルギー密度の電気化学的二次電池ならびにそれに用
いる電極を与えることである。
That is, an object of the present invention is to provide a lightweight, high-energy-density electrochemical secondary battery made of an organic material, an unsaturated heterocyclic compound having a specific structure, and an electrode for use therein.

本発明の他の目的は、電極材料の製造に重合などの特殊
な操作を必要とせず、一般の低分子量有機化合物をその
まま用いる電気化学的二次電池およびそれに用いる電極
を与えることである。
Another object of the present invention is to provide an electrochemical secondary battery that does not require special operations such as polymerization to produce electrode materials, and uses common low-molecular-weight organic compounds as they are, and electrodes for use therein.

本発明のさらに他の目的は□、不用となった電極を容易
に焼却処分できる電気化学的二次電池およびそれに用い
る電極l与えろことである。
Still another object of the present invention is to provide an electrochemical secondary battery and an electrode for use therein, in which the electrodes that are no longer used can be easily disposed of by incineration.

(問題点を解決するための手段) 従って、本発明の要旨は、中央6員環が2個のヘテロ原
子をパラ位に含有し、該ヘテロ原子がO、S、Nおよび
置換N原子からなる群から選ばれている縮合6.6.6
員不飽和複素環化合物を電極構成材料としてなる電気化
学的二次IE池用電極および上記した電極を少なくとも
1つの電極として用いる電気化学的二次電池に存する。
(Means for Solving the Problems) Therefore, the gist of the present invention is that the central six-membered ring contains two heteroatoms at para positions, and the heteroatoms are composed of O, S, N and substituted N atoms. Condensation selected from the group 6.6.6
The present invention relates to an electrode for an electrochemical secondary IE cell using a member-unsaturated heterocyclic compound as an electrode constituent material, and an electrochemical secondary battery using the above-mentioned electrode as at least one electrode.

本発明の電池および電極は、前述した2種のドーピング
操作のうち(2)の電気化学的なドーピング操作用する
ものであり、そして従来提案されてきた高分子重合体を
使用せずに、通常の有機化合物を使用したところIc%
徴がある。
The battery and electrode of the present invention are for electrochemical doping operation (2) of the above-mentioned two types of doping operation, and do not use the conventionally proposed high molecular weight polymer. When using an organic compound of
There are signs.

本発明の電池ならびに電極の作用機構の理解を容易なら
しめるために、以下に電気化学的には類似の機構によつ
【働くポリアセチレンt。
In order to facilitate understanding of the mechanism of action of the battery and electrode of the present invention, the electrochemical description will be made below using polyacetylene t, which works by a similar mechanism.

の場合を例にとり説明する。ボッ1アセチレンを正極お
よび負極の両極に用いた場合には、正極における反応は
電解質物質(塩)の解離によって生じたアニオンのポリ
アセチレンへの取す込み(ドーピング)による光層反応
とアニオンの放出(脱ドーピング)による放電反応であ
り、負極の反応はカチオンの取り込みによる充電反応と
カチオンの放出による放電反応である。
This will be explained using the case of . When Bot 1 acetylene is used for both the positive and negative electrodes, the reaction at the positive electrode is a photolayer reaction due to the incorporation (doping) of anions generated by the dissociation of the electrolyte substance (salt) into the polyacetylene, and an anion release ( The negative electrode reaction is a charging reaction due to the uptake of cations and a discharging reaction due to the release of cations.

この場合に、電解質として過塩素酸リチウム(LICl
 04 )を用い、ポリアセチレンを(CH)nで示す
と正負両極における反応はそれぞれ以下の式で表わされ
ろ。
In this case, lithium perchlorate (LICl) is used as the electrolyte.
04), and if polyacetylene is represented by (CH)n, the reactions at both the positive and negative poles can be expressed by the following formulas.

正極反応 (CH)n +n x CA’ 04−負極反応 (CH) +n、re+nxL+ このように電気化学的に酸化または還元され得ろポリア
セチレンは二次電池の正極または負極として使用出来る
ので、ポリアセチレン以外の負極または正極と組合わせ
ることは勿論、両極ともにポリアセチレンχ用いても二
次電池な構成することが出来る。
Positive electrode reaction (CH)n +n x CA' 04-Negative electrode reaction (CH) +n, re+nxL+ Polyacetylene, which can be electrochemically oxidized or reduced in this way, can be used as a positive electrode or negative electrode of a secondary battery, so a negative electrode other than polyacetylene can be used. Alternatively, a secondary battery can be constructed not only by combining it with a positive electrode but also by using polyacetylene χ for both electrodes.

一方、正極にポリアセチレン、負極にリチウムを使用し
た場合の正負両極における反応式はそれぞれ以下の式で
示される。
On the other hand, when polyacetylene is used for the positive electrode and lithium is used for the negative electrode, the reaction formulas at both the positive and negative electrodes are shown by the following formulas.

正極反応 (CH) +n、z:(JO4− これらのポリアセチレン等の高分子重合体は単量体を重
合反応させることにより合成しなければならないが、本
発明において使用される縮合6.6.6員不飽和複素環
化合物は高分子重合体とすることな(単量体そのま〜で
二次電池用電極に使用され得ろ。従って高分子重合体の
製造に必要な重合工程が不要であるので製造コストの面
からも有利である。
Positive electrode reaction (CH) +n, z: (JO4- These high molecular weight polymers such as polyacetylene must be synthesized by polymerizing monomers, but condensation 6.6.6 used in the present invention Member-unsaturated heterocyclic compounds do not need to be made into high-molecular polymers (monomers can be used as they are in electrodes for secondary batteries. Therefore, the polymerization process required for the production of high-molecular polymers is not required. It is also advantageous in terms of manufacturing costs.

また単量体の精製は重合体の精製に比べて極めて容易で
あるので高純度品の入手が容易である。本発明の電池ま
たは電極として使用されろ不飽和複素環化合物の純度は
%に規制されないが、純度が高い方が良いことは勿論で
ある。電極として作用しない不純物の量が多ければ、そ
れだけ単位重量あたりの電極として作用し得ろ物質の量
が少なくなり、単位重量あたりのエネルギー密度が低下
することになるばかりでなく、不純物の種類によっては
ドーピングおよび脱ドーピングの作用を減殺し、電極材
料としての機能を阻害することも考えられるからである
Furthermore, since purification of monomers is much easier than purification of polymers, it is easy to obtain highly purified products. Although the purity of the unsaturated heterocyclic compound used as the battery or electrode of the present invention is not limited to %, it goes without saying that higher purity is better. The larger the amount of impurities that do not act as electrodes, the less the amount of substances that can act as electrodes per unit weight, which not only lowers the energy density per unit weight, but also causes doping depending on the type of impurity. This is because it is also possible that the dedoping effect is reduced and the function as an electrode material is inhibited.

本発明において電極材料に使用される、中央6員環が2
個のヘテロ原子をパラ位に含有し、前記ヘテロ原子がO
、S、Nおよび置換N原子からなる群から選ばれている
縮合6.6.6員不飽和複素環化合物のうち代表的なも
のを以下に示しブこが、これらに限定されろものではな
い。
In the present invention, the central six-membered ring used in the electrode material has two
heteroatoms in the para position, and the heteroatoms are O
Representative examples of fused 6.6.6-membered unsaturated heterocyclic compounds selected from the group consisting of , S, N and substituted N atoms are shown below, but are not limited to these. .

フェノチアジン   フェノキサジン    フェナジ
ンチアントレン 本発明における縮合6.6.6員不飽和複素環化合物は
市販品を特別に加工することなくそのまま使用すること
か可能である。本発明の電極は正負いずれの極にも使用
し得るが、正極に使用する方が充放電の繰り返し性、充
放電クーロン効率および充電状態におけろ保存性および
放電時の平坦性が%に優れているので好ましい。
Phenothiazine Phenoxazine Phenazinethianthrene The condensed 6,6,6-membered unsaturated heterocyclic compound in the present invention can be used as a commercially available product without any special processing. The electrode of the present invention can be used as either a positive or negative electrode, but when used as a positive electrode, it is superior in charge/discharge repeatability, charge/discharge coulombic efficiency, storage stability in charged state, and flatness during discharge. It is preferable because

先に述べたとおり、ポリアセチレンを正負両極に用いた
電池の充電時の反応において、電解質である過塩素酸リ
チウム(Li C104)の解離により生じた11チク
ムカチオン(Ll)および過塩素酸アニオン((JO4
−)はそれぞれ負極および正極罠ドープされ、放電時に
はこれらのイオンが脱ドープされる。一方、正極にポリ
アセチレンおよび負極にリチウムを用いた電池の充電時
の反応においては、過塩素酸アニオンは正極のポリアセ
チレンにドープされ、リチウムカチオンは還元されて負
極のリチウム処析出し、放電時には逆反応によりこれら
のイオンは脱ドープされる。
As mentioned earlier, in the reaction during charging of a battery using polyacetylene as the positive and negative electrodes, the 11-thickum cation (Ll) and perchlorate anion ((JO4
−) are trap-doped at the negative and positive electrodes, respectively, and these ions are dedoped during discharge. On the other hand, in the reaction during charging of a battery that uses polyacetylene as the positive electrode and lithium as the negative electrode, perchlorate anions are doped into the polyacetylene of the positive electrode, lithium cations are reduced and lithium is deposited on the negative electrode, and the reverse reaction occurs during discharge. These ions are dedoped.

一方、先に述べたとおり二次に池の正極に高分子重合体
でない有機化合物例えば2,4.7−ト11ニトロ−9
−フルオレノン等の電子受容体を用いる例が知られてい
るが、これらは必ず正極にのみ用いられ負極には金属リ
チウムが使用さ電過程において負極のリチウムがイオン
化してリチウムカチオンとなり、これが正極の電子受容
体にドープされるものとされている。従ってこれらの電
池においては過塩素酸アニオンがドーピングに関与しな
いでリチウムカチオンのみがドープおよび脱ドープされ
るので、ポリアセチレンを用いた電池の場合とは異なり
両極ともに同一物質である電子受容体を用いた電池を造
ることはできない。
On the other hand, as mentioned above, an organic compound other than a polymer, such as 2,4,7-11nitro-9, is used as the positive electrode of the secondary pond.
- Examples of using electron acceptors such as fluorenone are known, but these are always used only in the positive electrode, and metallic lithium is used in the negative electrode.During the electrical process, the lithium in the negative electrode is ionized and becomes lithium cations, which are then used in the positive electrode. It is believed that the electron acceptor is doped. Therefore, in these batteries, perchlorate anions do not participate in doping, and only lithium cations are doped and dedoped, so unlike batteries using polyacetylene, both electrodes use the same electron acceptor. You can't make batteries.

本発明において用いられる縮合6.6.6員不飽和複素
環化合物は従来のポリアセチレン電極と同様同時に両極
に使用することが可能であり、上記の電子受容体である
低分子化合′f!l!Jヲ用いる電極とは異なるタイプ
のものであり過塩素酸等のアニオンもドーピングされる
The condensed 6,6,6-membered unsaturated heterocyclic compound used in the present invention can be used for both electrodes at the same time as in the conventional polyacetylene electrode, and the low-molecular compound 'f! l! It is of a different type from the electrode used in J, and is also doped with anions such as perchloric acid.

本発明の11池において内部抵抗を少なくするために縮
合6.6.6員不飽和複素環化合物に金属板、金属網、
グラファイト、カーボン繊維紙等の補助集電極(電極)
を裏張りすることが好ましい。また電極として前記の不
飽和複素環化合物そのものを用いる代りに、カーボンブ
ラックと混合して用いることも表面積を増大させ、接触
を良くする効果が得られるので一つの実施態様である。
In order to reduce the internal resistance in the 11th cell of the present invention, a metal plate, a metal mesh, a 6-membered unsaturated heterocyclic compound, etc.
Auxiliary collector electrodes (electrodes) made of graphite, carbon fiber paper, etc.
It is preferable to line it with Further, instead of using the unsaturated heterocyclic compound itself as an electrode, it is also possible to use it in combination with carbon black, since this has the effect of increasing the surface area and improving contact.

本発明において使用される電解質は充電および放電の際
にドープされるドーパントとしての機能を有しており、
これには各稽の電解質たとえば過塩素酸リチウム、Li
BFい テトラアルキルアンモニウムバークロレート、
LiPF6などが用いられる。またこれらの電解質を溶
解する非水溶媒としては、プロピレンカーボネート、ジ
クロロメタン、スルホランp−等を挙げることが出来る
。用 いる電極がいずれも水に対して安定である場合には水も
溶媒として用いることが可能であり、この場合にはドー
パントとしてヨウ化カリウム等の広い範囲の電解質が使
用され得る、陰極として金属材料を用いる場合にはリチ
ウム金属を用いるのが通常であるが、物にリチウムに限
定されるものではなく、用いる電解質によっては亜鉛、
アルミニウムなど他の金属も使用され得て、場合によっ
ては炭素を用いることも可能である。
The electrolyte used in the present invention has a function as a dopant that is doped during charging and discharging,
This includes various electrolytes such as lithium perchlorate, Li
BF Tetraalkylammonium barchlorate,
LiPF6 or the like is used. Examples of non-aqueous solvents that dissolve these electrolytes include propylene carbonate, dichloromethane, and sulfolane p-. Water can also be used as a solvent if the electrodes used are both water-stable, in which case a wide range of electrolytes can be used, such as potassium iodide as a dopant, metallic materials as a cathode, etc. When using lithium metal, it is usual to use lithium metal, but it is not limited to lithium, and depending on the electrolyte used, zinc,
Other metals may also be used, such as aluminum and, in some cases, carbon.

本発明の電池において負極として金属リチウムを使用す
る場合には、taをアルゴン雰囲気下に保つことが必要
である。負極の材料および用いる電解質の種類によって
はそれ以外の雰囲気も使用可能であるが、一般にはアル
ゴン雰囲気の使用が確実である。
When using metallic lithium as the negative electrode in the battery of the present invention, it is necessary to maintain ta under an argon atmosphere. Although other atmospheres can be used depending on the material of the negative electrode and the type of electrolyte used, it is generally reliable to use an argon atmosphere.

(実施例) 以下に実施例を示して本発明をさらに具体的に説明する
が、これらは単に例示であって本発明を制限するもので
はない。
(Examples) The present invention will be explained in more detail with reference to Examples below, but these are merely illustrative and do not limit the present invention.

実施例1 電極材料としてフェノキサジンの粉末、集電体としてカ
ーボンを主体としy、=liUI(日本カーボン製、商
品名 カーボロン)、および隔膜としてガラス繊維涙紙
ン用いて第1図および第2図に示すようなサンドイッチ
構造の1池を組立てた。
Example 1 Phenoxazine powder was used as the electrode material, carbon was used as the current collector, and =liUI (manufactured by Nippon Carbon Co., Ltd., trade name: Carboron) was used, and glass fiber tear paper was used as the diaphragm. A pond with a sandwich structure as shown in the figure was assembled.

第1図は本実施例で用いた電池の構成χ示した概略説明
図であり、第2図はその展開図である。
FIG. 1 is a schematic explanatory diagram showing the structure of the battery used in this example, and FIG. 2 is a developed diagram thereof.

1および9は集電端子、2および8は集電体(何れも1
2X17龍の長方形で厚さ0.31m)、3および6は
ガラス線維v5紙で中央に10X15鶴の長方形の窓を
開け、その中に50mJFのフェノキサジン粉末(4お
よび7)を充填したもの、5はガラス繊維戸紙隔膜をそ
れぞれ表丁。10はテフロン板、モして11は直径が3
2mのポリエチレン製の容器である。テフロン板10を
設けた目的は電池の各層の接触を良好かつ均一にするた
めに上からスフ11ニーで押えた力を全体に分散させろ
ため、および金属性のスクリューが電池に直接触れない
ようにするためのものである。
1 and 9 are current collector terminals, 2 and 8 are current collectors (both 1
2 x 17 dragon rectangles with a thickness of 0.31 m), 3 and 6 are made of glass fiber V5 paper with a 10 x 15 crane rectangular window in the center, and 50 m JF of phenoxazine powder (4 and 7) is filled in the window. 5 is a front cover of each glass fiber door paper diaphragm. 10 is a Teflon plate, and 11 is a diameter of 3
It is a 2m polyethylene container. The purpose of providing the Teflon plate 10 is to disperse the force applied from above with the knee of the cover 11 to ensure good and uniform contact between each layer of the battery, and to prevent the metal screw from directly touching the battery. It is for the purpose of

電池Y組立てた後、上部より押えつけγこま〜の状態で
、過塩素酸リチウムのプロピレンカーボネート溶液(1
モル/l)を3TrLl加え10のテフロン板が浸るよ
うにした後に充放電試験を行なった。尚、電池の組立て
および充放電試験等はすべてアルゴン雰囲気下で行なっ
た。
After assembling the battery Y, press it down from the top and add a propylene carbonate solution of lithium perchlorate (1
A charge/discharge test was conducted after adding 3TrLl of mol/l) so that 10 Teflon plates were immersed in the solution. All battery assembly, charge/discharge tests, etc. were conducted under an argon atmosphere.

充電は集電端子の両端KLOmAの定電流を60分流し
続けて行ない、放電は0.5mAの定電流で端子l圧が
1.Ovになる迄放電を行なった。
Charging is performed by continuously flowing a constant current of KLOmA across the collector terminals for 60 minutes, and discharging is performed with a constant current of 0.5mA until the terminal voltage is 1.5mA. Discharge was performed until the voltage reached Ov.

このサイクルy!′10回繰り返すこ、!:ニより以下
の結果が得られた。10回目の充放Iサイクルを例にと
って説明すると、端子;圧は充電開始直後には2.7V
Y示したがその後徐々に高くなり60分後に3.2■と
なり、また放電開始直後には3.OVを示したがその後
徐々に低下して83分後に1.OVに達したところで放
電を停止した。
This cycle is so good! 'Repeat 10 times! : The following results were obtained from D. Taking the 10th charge/discharge I cycle as an example, the terminal voltage is 2.7V immediately after charging starts.
It showed Y, but after that it gradually increased to 3.2■ after 60 minutes, and 3.2 immediately after the start of discharge. It showed OV, but then it gradually decreased to 1.0 after 83 minutes. Discharge was stopped when OV was reached.

実施例2 実施例Iにおいて正極にフェノキサジンの粉末50mj
iおよび負極にリチウム箔(縦15耀、横10m、厚さ
0.2騙)を使用した以外は実施例1と同様の1池を組
立てて充放電試験を行なった。
Example 2 In Example I, 50 mj of phenoxazine powder was used as the positive electrode.
A battery was assembled in the same manner as in Example 1, except that lithium foil (length: 15 m, width: 10 m, thickness: 0.2 m) was used for the i and negative electrodes, and a charge/discharge test was conducted.

1mAの定電流で60分間充電し、0.5mAの定電流
で端子電圧が1.0■になるまで放電するサイクルを1
5回繰り返し下記の結果を得た。
1 cycle of charging at a constant current of 1 mA for 60 minutes and discharging at a constant current of 0.5 mA until the terminal voltage reaches 1.0 ■.
This was repeated five times and the following results were obtained.

15回目の充放電のサイクルを例にとり説明すると、充
電時の端子電圧は4.4vから4.8Vまで徐々に高く
なった。放電時の端子電圧は放電開始直後に3.Ovを
示していたが96分後に2.4v迄低下しその後急激に
低下し118分後に1.OVに達したところで放電を停
止した。
Taking the 15th charge/discharge cycle as an example, the terminal voltage during charging gradually increased from 4.4V to 4.8V. The terminal voltage during discharge is 3. immediately after the start of discharge. It was showing Ov, but after 96 minutes it dropped to 2.4V, and then it dropped rapidly to 1V after 118 minutes. Discharge was stopped when OV was reached.

この様に放風時間の80%は高い取位の平坦部分である
ことがこの電池の特徴である。
This battery is characterized by the fact that 80% of the time the air is discharged is in the flat part with a high elevation.

実施例3 実施例2において15回の充放電サイクルを繰り返すか
わりに、2回の充放電サイクルを繰り返した後に3回目
の充電を行ない24時間そのまへ放置し3回目の放電を
行なった。
Example 3 Instead of repeating the charge/discharge cycle 15 times in Example 2, the battery was charged a third time after repeating the charge/discharge cycle two times, left as it was for 24 hours, and then discharged for a third time.

実施例4 実施例Iにおいてフェノキサジン50dの代りにフェノ
チアジン80 trdi fzt:使用しまた、0.5
1rLAの定電流の代りVCo、 1 mAの定電流で
放置した以外は実施例1と同様の電池を組立てて充放電
サイクル3回の試験を行ない次の結果を得た。
Example 4 Phenothiazine 80 trdi fzt: 0.5 was used instead of phenoxazine 50d in Example I.
A battery similar to that of Example 1 was assembled except that a constant current of 1 mA was used instead of a constant current of 1 rLA, and a VCo was used, and a test was performed for three charge/discharge cycles, and the following results were obtained.

実施例5 実施例3においてフェノキサジン50 mJi’の代り
にフェノチアジン80 mlを使用した以外は実施例3
と同様の電池を組立て、充放電サイクル3回の試験を行
ない次の結果を得た。
Example 5 Example 3 except that 80 ml of phenothiazine was used instead of 50 mJi' of phenoxazine in Example 3.
A battery similar to the above was assembled and tested for three charge/discharge cycles, and the following results were obtained.

*33回目充電終了後から放電開始迄の時間は24時間
実施例6 実施例1において使用したフェノキサジン50 mJお
よび過塩素酸リチウムのプロピレンカーボネート溶液(
1モル/l)3mlの代りに、夫々フェノチアジン80
 mlおよびLiBF4のプロピレンカーボネート溶液
(1モル/l)3mlを使用した以外は実施例1と同様
の電池を組立て、7回の充放電サイクル試験を行ない次
の結果を得た。
*The time from the end of the 33rd charge until the start of discharging is 24 hours Example 6 A propylene carbonate solution of 50 mJ of phenoxazine and lithium perchlorate used in Example 1 (
1 mol/l) instead of 3 ml, each phenothiazine 80
A battery was assembled in the same manner as in Example 1, except that 3 ml of a propylene carbonate solution (1 mol/l) of LiBF4 and LiBF4 was used, and a charge/discharge cycle test was conducted seven times to obtain the following results.

実施例7 実施例1においてフェノキサジン50 mlの代りに7
エナジン50 ml ’を使用した以外は実施例1と同
様の電池を組立て〜充放電サイクル3回の試験を行ない
次の結果を得た。
Example 7 In place of 50 ml of phenoxazine in Example 1,
A battery similar to that of Example 1 was assembled except that 50 ml' of Energin was used, and a test was performed through three charge/discharge cycles, and the following results were obtained.

実施例8 実施例1においてフェノキサジン50 mlの代りにチ
アントレ750 m11を使用した以外は冥施例1と同
様の電池を組立て〜充放電サイクル2回の試験7行ない
次の結果を得た。
Example 8 A battery was assembled in the same manner as in Example 1 except that Tiantre 750 ml was used instead of 50 ml of phenoxazine in Example 1, and 7 tests consisting of two charge/discharge cycles were performed to obtain the following results.

(発明の効果) 本発明によれば、重合などの特別な操作を用いることな
く、通常の低分子量有機化合物をそのまま電極として用
いることができ、軽量で単位重量当たりの荷電密度が高
く腐食性を有さす、取り扱いの容易な電池か与えられ、
これは充放電効率も良く、放電時の底圧の平坦性にも優
れている。
(Effects of the Invention) According to the present invention, ordinary low molecular weight organic compounds can be used as electrodes without special operations such as polymerization, are lightweight, have high charge density per unit weight, and are not corrosive. Provided with easy-to-handle batteries and
This has good charge/discharge efficiency and excellent flatness of bottom pressure during discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例で用いた電池の構成を示した概略説明
図であり、第2図はその展開図である。 1.9・・・集成端子、  2,8・・・集電体、3.
6・・・ガラスwL維P紙、 4,7・・・電極材料、
5−・・ガラス繊維戸紙隔膜、10・・・テフロン板、
11・・・容器。 肴許出願人 丸善石油化学株式会社 。
FIG. 1 is a schematic explanatory diagram showing the configuration of the battery used in this example, and FIG. 2 is a developed diagram thereof. 1.9... Terminal assembly, 2,8... Current collector, 3.
6... Glass wL fiber P paper, 4,7... Electrode material,
5-...Glass fiber door paper diaphragm, 10...Teflon board,
11... Container. Applicant for license: Maruzen Petrochemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)中央6員環が2個のヘテロ原子をパラ位に含有し
、該ヘテロ原子がO、S、Nおよび置換N原子からなる
群から選ばれている縮合6、6、6員不飽和複素環化合
物を少なくとも1つの電極に用いることを特徴とする電
気化学的二次電池。
(1) A fused 6-, 6-, 6-membered unsaturated ring in which the central 6-membered ring contains two heteroatoms in the para position, and the heteroatoms are selected from the group consisting of O, S, N, and substituted N atoms. An electrochemical secondary battery characterized in that a heterocyclic compound is used for at least one electrode.
(2)正極が、該複素環化合物である特許請求の範囲第
1項に記載の二次電池。
(2) The secondary battery according to claim 1, wherein the positive electrode is the heterocyclic compound.
(3)中央6員環が2個のヘテロ原子をパラ位に含有し
、該ヘテロ原子がO、S、Nおよび置換N原子からなる
群から選ばれている縮合6、6、6員不飽和複素環化合
物を電極構成材料としてなる電気化学的二次電池用電極
(3) A fused 6-, 6-, 6-membered unsaturated ring in which the central 6-membered ring contains two heteroatoms in the para position, and the heteroatoms are selected from the group consisting of O, S, N, and substituted N atoms. An electrode for electrochemical secondary batteries that uses a heterocyclic compound as an electrode constituent material.
JP60044295A 1985-03-06 1985-03-06 Secondary battery and its electrode Pending JPS61203565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044295A JPS61203565A (en) 1985-03-06 1985-03-06 Secondary battery and its electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044295A JPS61203565A (en) 1985-03-06 1985-03-06 Secondary battery and its electrode

Publications (1)

Publication Number Publication Date
JPS61203565A true JPS61203565A (en) 1986-09-09

Family

ID=12687516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044295A Pending JPS61203565A (en) 1985-03-06 1985-03-06 Secondary battery and its electrode

Country Status (1)

Country Link
JP (1) JPS61203565A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307738A (en) * 2000-04-26 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2011113839A (en) * 2009-11-27 2011-06-09 Murata Mfg Co Ltd Electrode active material and secondary battery
JP2012084344A (en) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd Power supply device
JP2019003933A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Flow battery
KR20190036509A (en) * 2016-08-05 2019-04-04 에보니크 데구사 게엠베하 Use of a chitrene-containing polymer as charge storage material
WO2022191295A1 (en) * 2021-03-12 2022-09-15 ソフトバンク株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery and flight vehicle
EP4333124A1 (en) * 2022-09-01 2024-03-06 Electricité de France Novel organic electrodes and their use in electrochemical systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307738A (en) * 2000-04-26 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4590682B2 (en) * 2000-04-26 2010-12-01 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2011113839A (en) * 2009-11-27 2011-06-09 Murata Mfg Co Ltd Electrode active material and secondary battery
JP2012084344A (en) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd Power supply device
KR20190036509A (en) * 2016-08-05 2019-04-04 에보니크 데구사 게엠베하 Use of a chitrene-containing polymer as charge storage material
JP2019003933A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Flow battery
WO2022191295A1 (en) * 2021-03-12 2022-09-15 ソフトバンク株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery and flight vehicle
EP4333124A1 (en) * 2022-09-01 2024-03-06 Electricité de France Novel organic electrodes and their use in electrochemical systems
FR3139416A1 (en) * 2022-09-01 2024-03-08 Electricite De France New organic electrodes and their use in electrochemical systems

Similar Documents

Publication Publication Date Title
US5176969A (en) Electrode for secondary battery
KR100413595B1 (en) secondary battery
US5571292A (en) Method of producing a composite electrode
US4889659A (en) Nitrogenized electronic conductive polymers, their preparation processes, electrochromic display cell and electrochemical generator using these polymers
Naegele et al. Electrically conductive polymers as rechargeable battery electrodes
US4609600A (en) Electrochemical cell containing electrode made of polymeric compound and electrolyte containing organic complex ligand
JPH0454350B2 (en)
JP2007281107A (en) Electricity storage device
Novák et al. Composite polymer positive electrodes in solid‐state lithium secondary batteries
US5037713A (en) Secondary battery
JPS61203565A (en) Secondary battery and its electrode
JP3136610B2 (en) Battery and manufacturing method thereof
JPS61206170A (en) Secondary battery and its electrode
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JP3235157B2 (en) Ion conductive polymer electrolyte
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPS6345769A (en) Battery
JPS61133562A (en) Secondary battery and its electrode
JP2644765B2 (en) Positive electrode for storage battery
JPS63213267A (en) Nonaqueous electrolyte secondary cell
JPH0329129B2 (en)
JPH0349151A (en) Secondary battery
JPH0578590A (en) Ionically conductive polymer compound
JPH1021918A (en) Negative electrode for non-aqueous electrolyte secondary battery and manufacture thereof