JPH01154552A - Semiconductor storage integrated circuit device and manufacture thereof - Google Patents
Semiconductor storage integrated circuit device and manufacture thereofInfo
- Publication number
- JPH01154552A JPH01154552A JP62312015A JP31201587A JPH01154552A JP H01154552 A JPH01154552 A JP H01154552A JP 62312015 A JP62312015 A JP 62312015A JP 31201587 A JP31201587 A JP 31201587A JP H01154552 A JPH01154552 A JP H01154552A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- dielectric film
- storage electrode
- diffusion layer
- plate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 claims description 45
- 239000012535 impurity Substances 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 238000002955 isolation Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 150000004767 nitrides Chemical class 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 37
- 230000002093 peripheral effect Effects 0.000 description 13
- 239000002184 metal Substances 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 101150033698 cnp-2 gene Proteins 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
- H10B12/318—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、スタックドキャパシタセルを用いたMO3型
半導体グイナミノクランダムアクセスメモリの製造方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an MO3 type semiconductor Guinami-no-Crunchy random access memory using stacked capacitor cells.
(従来の技術)
従来、このような分野の技術としては、例えば、別冊
N011 日経マイクロデバイス「実用化に向けて始
動する4 MDRAMの全貌J P、117〜130
、P、165〜174 (1987年5月)に示すもの
があった。(Prior art) Conventionally, technologies in this field include, for example, separate volumes.
N011 Nikkei Microdevice “4 Starting towards practical application 4 The complete picture of MDRAM JP, 117-130
, P, 165-174 (May 1987).
第3図はかかる従来のスタック]・キャパシタセルを用
いたダイナミックランダムアクセスメモリ(半導体メモ
リ集積回路装置)の製造方法の一例である。ここでは、
セル部と周辺部を分けて示している。以下、セル部を中
心に説明する。FIG. 3 shows an example of a method of manufacturing a dynamic random access memory (semiconductor memory integrated circuit device) using such a conventional stack/capacitor cell. here,
The cell part and the peripheral part are shown separately. The cell portion will be mainly described below.
公知の酸化、拡散工程を経て、基板1上に分離用選択酸
化膜2とゲート絶縁膜3とゲート電極4とサイドウオー
ル絶縁膜5と基板と反対導電型の比較的低濃度(10′
7〜1019/cI+りの不純物拡散層6及び該不純物
拡散156と同導電型の比較的高ン;度の不純物拡散層
7 (以下、高濃度拡散層と称する)から成るトランジ
スタと、全面に被着した絶縁膜8が形成される〔第3図
(a)参照〕、ここでゲート電8i4はワードラインの
役割も果たし、高濃度拡散Ji17は蓄積キャパシタの
一部の役割も果たす。Through a known oxidation and diffusion process, a selective oxide film 2 for isolation, a gate insulating film 3, a gate electrode 4, a sidewall insulating film 5, and a relatively low concentration (10'
A transistor consisting of an impurity diffusion layer 6 of 7 to 1019/cI+ and a relatively high concentration impurity diffusion layer 7 of the same conductivity type as the impurity diffusion 156 (hereinafter referred to as a high concentration diffusion layer), A deposited insulating film 8 is formed (see FIG. 3(a)), where the gate electrode 8i4 also serves as a word line and the heavily doped diffusion Ji17 also serves as a part of a storage capacitor.
次に、スタックドキャパシタの下部電極と高濃度拡散層
7との接続孔9を公知のホトリソグラフィ法(露光/現
像/エツチングを含む)で開孔する〔第3図(b)参照
〕。Next, a connection hole 9 between the lower electrode of the stacked capacitor and the high concentration diffusion layer 7 is opened by a known photolithography method (including exposure/development/etching) [see FIG. 3(b)].
続いて、スタックドキャパシタの電荷蓄積部となる下部
電極10を通常のホトリソグラフィ法で形成する〔第3
図(c)参照〕、ここで下部電極10は通常高濃度拡散
N7と同一導電型の多結晶シリコンが使われる。Subsequently, the lower electrode 10, which will become the charge storage part of the stacked capacitor, is formed by a normal photolithography method [Third
(See Figure (c)) Here, the lower electrode 10 is usually made of polycrystalline silicon of the same conductivity type as the highly doped diffusion N7.
次に、全面に誘電体膜11を被着し、更に、その全面に
スタックドキャパシタの上部電極12を通常のホトリソ
グラフィ法で所定のパターンに形成する〔第3図(d)
参照〕、ここで上部電極12は通常下部電極10と同種
の多結晶シリコンが使われる。Next, a dielectric film 11 is deposited on the entire surface, and the upper electrode 12 of the stacked capacitor is further formed in a predetermined pattern on the entire surface by a normal photolithography method [FIG. 3(d)]
], here, the upper electrode 12 is usually made of the same type of polycrystalline silicon as the lower electrode 10.
また、誘電体膜11は、ここでは全面に残存しているが
、上部電i12の下部以外が除去されていてもかまわな
い。Further, although the dielectric film 11 remains on the entire surface here, it does not matter if it is removed except for the lower part of the upper electrode i12.
次に、眉間絶縁膜13、メタル配線14、パンシヘーシ
ョン絶縁膜15を形成して最終構造が得られる〔第3図
(e)参照〕。Next, a glabellar insulating film 13, a metal wiring 14, and a panshythmation insulating film 15 are formed to obtain the final structure [see FIG. 3(e)].
また、周辺部においては、第3図(a′)は第3図(a
)に、第3図(d′)は第3図(d)における周辺部の
構造を示し、更に、キャパシタ上部’l極12に所定の
電圧を提供するメタル配線14’との接触孔16を、全
面的にメタル配線と所定の位置で接触する接触孔を形成
するホトリソグラフィ工程と同時に形成した状態での最
終構造が第3図(e′)である。In addition, in the peripheral area, Fig. 3(a') is
), FIG. 3(d') shows the structure of the peripheral part in FIG. 3(d), and furthermore, a contact hole 16 with a metal wiring 14' which provides a predetermined voltage to the capacitor upper 'l pole 12' is shown. FIG. 3(e') shows the final structure formed at the same time as the photolithography process for forming contact holes that contact metal wiring at predetermined positions on the entire surface.
(発明が解決しようとする問題点)
しかし、以上述べた従来の方法によれば、スタックドキ
ャパシタ部は下部電極10と下部電極12の対向する表
面積部に形成されるのみであり、例えば、下部電極10
と上部電極12が対向しない!!縁膜8と接する面は殆
どキャパシタに寄与しない。(Problems to be Solved by the Invention) However, according to the conventional method described above, the stacked capacitor portion is only formed on the opposing surface areas of the lower electrode 10 and the lower electrode 12. Electrode 10
The upper electrode 12 does not face each other! ! The surface in contact with the edge film 8 hardly contributes to the capacitor.
このために、本構造のスタックトキャパシタセルを高密
度化、即ち、下部電極10のサイズを縮小する際、回路
性能から要求されるキャパシタ容量を満足しようとする
とキャパシタ誘電体P1illを一定膜厚とするとサイ
ズの小型化に限界がきてしまう。即ち、本構造の半導体
メモリ集積回路装置の高密度化の大きな制限要因となる
問題点があった。For this reason, when increasing the density of the stacked capacitor cell of this structure, that is, reducing the size of the lower electrode 10, it is necessary to keep the capacitor dielectric P1ill at a constant thickness in order to satisfy the capacitance required for circuit performance. This puts a limit on size reduction. That is, there is a problem that is a major limiting factor in increasing the density of the semiconductor memory integrated circuit device of this structure.
本発明は、上記問題点を除去し、より小型化が可能な半
導体メモリ集積回路装置及びその製造方法を提供するこ
とを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory integrated circuit device that eliminates the above-mentioned problems and can be further miniaturized, and a method for manufacturing the same.
(問題点を解決するための手段)
本発明は、上記問題点を解決するために、スタックドキ
ャパシタ型セルを有する半導体メモリ集積回路装置にお
いて、不純物拡散層に接続されるスタックドキャパシタ
の第1の蓄積電極と、該第1の蓄積電極上に形成される
第1の誘電体膜と、該第1の誘電体膜上に形成される第
1のプレート電極と、該第1のプレート電極上に形成さ
れる第2の誘電体膜と、前記不純物拡散層に接続される
スタックドキャパシタの第2の蓄積電極と、該第2の蓄
積電極上に形成される第3の誘電体膜と、該第3の誘電
体股上に形成される第2のプレート電梅を具備するよう
にしたものである。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a semiconductor memory integrated circuit device having a stacked capacitor type cell. a storage electrode, a first dielectric film formed on the first storage electrode, a first plate electrode formed on the first dielectric film, and a first plate electrode formed on the first plate electrode. a second dielectric film formed on the impurity diffusion layer, a second storage electrode of the stacked capacitor connected to the impurity diffusion layer, and a third dielectric film formed on the second storage electrode; A second plate electric plumage is formed on the third dielectric crotch.
また、そのスタックドキャパシタ型セルを有する半導体
メモリ集積回路装置は以下のようにして製造される。Further, a semiconductor memory integrated circuit device having the stacked capacitor type cell is manufactured as follows.
基板上に分離領域、ゲート電極の直上と側壁が絶縁膜で
囲まれたトランジスタ及び少なくとも蓄積電極が接続さ
れる拡散層を形成し、該拡散層の表面を露出せしめる工
程と、前記拡散層と少な(とも一部で接続される第1の
蓄積電極を所定の形状で形成する工程と、全面に第1の
誘電体膜、導電性多結晶シリコン膜からなる第1のプレ
ート電極及び耐酸化性を有する第2の誘電体膜を連続的
に被着する工程と、前記拡散層と第2の蓄積電極の接続
部となる接続孔を拡iS!層上又は前記第1の蓄積電極
上の所定の位置に前記第1のプレート電極、第2の誘電
体膜、第1の誘電体膜を通して開孔し、拡散層又は第1
の蓄積電極の開孔部表面を露出せしめる工程と、酸化性
雲囲気において前記第1のプレート電極の開孔側面露出
部及び前記拡散層又は第1の蓄積電極の開孔露出部を所
定の厚さ酸化せしめる工程と、前記酸化膜のみを選択的
にエツチングする所定の条件で全面異方性エツチングす
ることにより、前記拡散層又は第1の蓄積電極の表面露
出部上に形成された酸化膜のみを選択的に除去する工程
と、前記拡散層と少なくとも一部で接続される第2の蓄
積電極となる導体を全面に被着し、所定の形状に形成す
る工程と、全面に第3の誘電体膜を形成する工程と、該
第3の誘電体膜の被着後、セル周辺部において第1及び
第3の誘電体膜の開孔を所定の位置に形成し、前記第1
のプレート電極表面を露出せしめる工程と、第2のプレ
ート電極となる導体を全面に被着し、少なくとも前記蓄
積電極を覆う所定の形状に形成する工程とを施すように
したものである。A step of forming an isolation region on a substrate, a transistor whose sidewalls directly above the gate electrode are surrounded by an insulating film, and a diffusion layer to which at least the storage electrode is connected, and exposing the surface of the diffusion layer; (A step of forming a first storage electrode in a predetermined shape, which is partially connected to the first storage electrode, and a step of forming a first plate electrode made of a first dielectric film, a conductive polycrystalline silicon film, and an oxidation-resistant film on the entire surface. a step of continuously depositing a second dielectric film on the iS! layer or the first storage electrode; A hole is formed through the first plate electrode, the second dielectric film, and the first dielectric film at the position, and the diffusion layer or the first dielectric film is opened.
exposing the surface of the aperture of the storage electrode; and exposing the exposed aperture side surface of the first plate electrode and the exposed aperture of the diffusion layer or the first storage electrode to a predetermined thickness in an oxidizing cloud atmosphere. By performing anisotropic etching on the entire surface under predetermined conditions for selectively etching only the oxide film, only the oxide film formed on the exposed surface portion of the diffusion layer or the first storage electrode is removed. a step of selectively removing a conductor, a step of depositing a conductor that will become a second storage electrode connected at least in part to the diffusion layer over the entire surface and forming it into a predetermined shape; After forming the body film and depositing the third dielectric film, holes are formed in the first and third dielectric films at predetermined positions in the cell periphery, and
A step of exposing the surface of the second plate electrode, and a step of depositing a conductor to become the second plate electrode over the entire surface and forming it into a predetermined shape to cover at least the storage electrode.
(作用)
本発明によれば、上記のように構成したので、従来のス
タックドキャパシタの同一サイズで約3倍の容量を得る
ことができる。これにより、同じキャパシタ誘電体で従
来に比べ約1/3までキャパシタサイズの小型化を図る
ことができる。(Function) According to the present invention, with the above configuration, it is possible to obtain approximately three times the capacity of a conventional stacked capacitor with the same size. As a result, the size of the capacitor can be reduced to about ⅓ compared to the conventional capacitor with the same capacitor dielectric material.
(実施例)
第1図は本発明の実施例を示す半導体メモリ集積回路装
置の断面図であり、第1図(a)はセル部の断面図、第
1図(b)は周辺部の断面図である。(Embodiment) FIG. 1 is a sectional view of a semiconductor memory integrated circuit device showing an embodiment of the present invention, FIG. 1(a) is a sectional view of a cell portion, and FIG. 1(b) is a sectional view of a peripheral portion. It is a diagram.
この図において、21は基板であり、例えば、p型シリ
コン基板、22は素子分離用選択酸化膜、23はゲート
絶縁膜、24はゲート電極、25は絶縁膜、26はサイ
ドウオール絶縁膜、27は基板21と反対導電型、例え
ば、n型の比較的低濃度の不純物拡散層、28は該不純
物拡散層27と同導電型の比較的高濃度の不純物拡散層
(以下、高濃度拡散層と称する)、29は該不純物拡散
層28と接続される第1の蓄積電極、30は第1のキャ
パシタ誘電体膜、31は導体からなる第1のプレート電
極、32は窒化膜等の耐酸化性を有する第2のキャパシ
タ誘電体膜、34、35は第1の蓄積電極29及び第1
のプレート電極31の側面に形成される部分酸化層、3
7は第2の蓄積電極、38は第3のキャパシタ誘電体膜
、39は接続孔、40は第2のプレート電極、41は第
2のプレート電極40のバターニング時に第3のキャパ
シタ誘電体膜38.第2のキャパシタ誘電体膜32、第
1のプレート電極31を自己整合的にエツチング除去し
て形成される端部であり、更に、42は眉間絶縁膜、4
3はメタル配線、44はパソシヘーション絶縁膜である
。又、周辺部においては、第1図(b)に示すように、
第1のプレート電極31及び第2プレート電極40にプ
レート電圧を印加するために、第1のプレート電極31
及び第2プレート電極40はメタル配線43′と接続す
る。In this figure, 21 is a substrate, for example, a p-type silicon substrate, 22 is a selective oxide film for element isolation, 23 is a gate insulating film, 24 is a gate electrode, 25 is an insulating film, 26 is a sidewall insulating film, 27 28 is a relatively low concentration impurity diffusion layer of the opposite conductivity type as the substrate 21, for example, n-type, and 28 is a relatively high concentration impurity diffusion layer of the same conductivity type as the impurity diffusion layer 27 (hereinafter referred to as a high concentration diffusion layer). 29 is a first storage electrode connected to the impurity diffusion layer 28, 30 is a first capacitor dielectric film, 31 is a first plate electrode made of a conductor, and 32 is an oxidation-resistant film such as a nitride film. The second capacitor dielectric film 34, 35 having the first storage electrode 29 and the first
A partial oxidation layer formed on the side surface of the plate electrode 31, 3
7 is the second storage electrode, 38 is the third capacitor dielectric film, 39 is the contact hole, 40 is the second plate electrode, and 41 is the third capacitor dielectric film when the second plate electrode 40 is patterned. 38. This is an end portion formed by etching and removing the second capacitor dielectric film 32 and the first plate electrode 31 in a self-aligned manner.
3 is a metal wiring, and 44 is a passivation insulating film. In addition, in the peripheral area, as shown in FIG. 1(b),
In order to apply a plate voltage to the first plate electrode 31 and the second plate electrode 40, the first plate electrode 31
And the second plate electrode 40 is connected to a metal wiring 43'.
第2図は本発明の実施例を示す半導体メモリ集積回路装
置の製造工程図である。FIG. 2 is a manufacturing process diagram of a semiconductor memory integrated circuit device showing an embodiment of the present invention.
その半導体メモリ集積回路装置は以下のようにして製造
される。The semiconductor memory integrated circuit device is manufactured as follows.
以下、セル部を中心に説明する。同一番号は第3図に示
されるものと同じものを示している。The cell portion will be mainly described below. Identical numbers refer to the same elements as shown in FIG.
まず、第3図と同様に、公知の酸化、拡散工程を経て、
基板21、例えば、p型シリコン基板上に素子分離用選
択酸化膜22とゲート絶縁膜23とゲート電極24を形
成する。その後、第3図のものとは異なり、ゲート電極
24上に絶縁膜25を残す形でホトリソグラフィー法で
ゲート電極パターニングを行い、更に、サイドウオール
絶縁膜2Gを形成する。First, as shown in Figure 3, through the known oxidation and diffusion steps,
A selective oxide film 22 for element isolation, a gate insulating film 23, and a gate electrode 24 are formed on a substrate 21, for example, a p-type silicon substrate. Thereafter, unlike in the case shown in FIG. 3, gate electrode patterning is performed using a photolithography method to leave an insulating film 25 on the gate electrode 24, and a sidewall insulating film 2G is further formed.
そして、基板と反対導電型、例えば、n型の比較的低濃
度(10”〜10”/J)の不純物拡散層27及び該不
純物拡散層27と同導電型の比較的高濃度の不純物拡散
層(以下、高濃度拡散層と称する)28を形成し、該高
濃度拡散層28の表面部を自己整合的に露出せしめ、第
1の蓄積電極29を形成する〔第2図(a)参照〕。こ
の第1の蓄積電極29は、例えば、高濃度拡散層28と
同一導電型の多結晶シリコンを用いる。一方、この工程
の周辺部の構造は第2図(a′)に示されている。Then, there is an impurity diffusion layer 27 of a relatively low concentration (10" to 10"/J) of the conductivity type opposite to that of the substrate, for example, n-type, and a relatively high concentration impurity diffusion layer of the same conductivity type as the impurity diffusion layer 27. (hereinafter referred to as a high concentration diffusion layer) 28 is formed, and the surface portion of the high concentration diffusion layer 28 is exposed in a self-aligned manner to form a first storage electrode 29 [see FIG. 2(a)]. . This first storage electrode 29 is made of, for example, polycrystalline silicon having the same conductivity type as that of the heavily doped diffusion layer 28 . On the other hand, the structure of the peripheral part of this process is shown in FIG. 2(a').
次に、第1のキャパシタ誘電体膜30、導体からなる第
1のプレート電極31、窒化膜等の耐酸化性を有する第
2のキャパシタ誘電体v32を連続的に被着する〔第2
図(b)参照〕。ここで、第1のプレート電極31は第
1の蓄積電極29と、第2のキャパシタ誘電体膜32は
第1のキャパシタ誘電体膜30と同じ材料でも良い。一
方、この工程の周辺部の構造は第2図(b′)に示され
ている。Next, a first capacitor dielectric film 30, a first plate electrode 31 made of a conductor, and a second capacitor dielectric film v32 having oxidation resistance such as a nitride film are successively deposited [second
See figure (b)]. Here, the first plate electrode 31 may be made of the same material as the first storage electrode 29, and the second capacitor dielectric film 32 may be made of the same material as the first capacitor dielectric film 30. On the other hand, the structure of the peripheral part of this process is shown in FIG. 2(b').
次に、第1のプレート電極31を接続する開孔33を通
常のホトリソグラフィー法で形成し、第1のプレート電
極31の側面、第1の蓄積電極29の側面及び高濃度拡
散層28の一部を露出せしめる〔第2図(c)参照〕。Next, an opening 33 connecting the first plate electrode 31 is formed by a normal photolithography method, and a hole 33 is formed on the side surface of the first plate electrode 31, on the side surface of the first storage electrode 29, and on one side of the high concentration diffusion layer 28. [See Figure 2(c)].
ここで、第1の蓄積電極29と高濃度拡散jiJ28は
既に接続されているため、開孔33は第1の蓄積電極2
9の表面が露出するところで止めておいてもかわまない
。即ち、高濃度拡散層28が露出するまで開孔33を開
けなくとも良い。一方、この工程の周辺部の構造は第2
図(b′)と同様である。Here, since the first storage electrode 29 and the high concentration diffusion jiJ28 are already connected, the opening 33 is connected to the first storage electrode 2.
You can stop it where the surface of 9 is exposed. That is, it is not necessary to open the opening 33 until the high concentration diffusion layer 28 is exposed. On the other hand, the structure of the peripheral part of this process is
This is the same as in Figure (b').
次に、所定の条件で全面酸化を加えると開孔33で露出
する第1のプレート電極31、第1の蓄積電極29、高
濃度拡散層28の部分が局部的に酸化された部分酸化層
34.35及び36に変換される〔第2図(d>参照)
。例えば、800〜950℃で酸化を行えば第2のキャ
パシタ誘電体膜32が100人程変波も殆ど酸化されず
に多結晶シリコン部分の一部及びシングルシリコンの一
部が局部的に部分酸化層34゜35、36として100
人〜1000人程変波成することが可能である。一方、
この工程の周辺部の構造は第2図(b′)と同様である
。Next, when the entire surface is oxidized under predetermined conditions, the parts of the first plate electrode 31, first storage electrode 29, and high concentration diffusion layer 28 exposed through the opening 33 are partially oxidized, resulting in a partially oxidized layer 34. .35 and 36 [see Figure 2 (d>)]
. For example, if oxidation is performed at 800 to 950°C, the second capacitor dielectric film 32 will hardly be oxidized even after 100-degree wave changes, and part of the polycrystalline silicon portion and part of the single silicon will be partially oxidized. 100 as layers 34° 35, 36
It is possible to create waves of up to 1,000 people. on the other hand,
The structure of the peripheral part in this step is the same as that shown in FIG. 2(b').
この後に、異方性エツチング(RIE)により高濃度拡
散層28上の部分酸化1!36のみを選択的にエツチン
グする。例えば、エツチングガスとしては、CnP2+
++! /CIIH2g系(n、 mは整数)を用いる
とSin、とStNのエツチング速度比を十分に大きく
とり得る。−例としてCZF&/ C2+14を使うと
SiNは殆どエツチングせず、5t(hのみ〜800人
/min と高いエツチング速度を得ることができた。Thereafter, only the partially oxidized portions 1 to 36 on the heavily doped diffusion layer 28 are selectively etched by anisotropic etching (RIE). For example, as an etching gas, CnP2+
++! /CIIH2g system (n, m are integers) allows the etching rate ratio of Sin and StN to be sufficiently large. - For example, when CZF&/C2+14 was used, SiN was hardly etched and a high etching rate of 5t (h only ~ 800 people/min) could be obtained.
このようにして、多結晶シリコンが酸化した部分酸化層
34.35は残し、高濃度拡散層28上の酸化層36の
みを除去する〔第2図(e)参照〕。一方、この工程の
周辺部の構造は第2図(b′)と同様である。In this way, only the oxide layer 36 on the heavily doped diffusion layer 28 is removed, leaving the partially oxidized layers 34 and 35 where polycrystalline silicon is oxidized [see FIG. 2(e)]. On the other hand, the structure of the peripheral part in this step is the same as that shown in FIG. 2(b').
続いて、第3図(c)と第3図(d)と同様の工程を経
て、第2の蓄積電極37、第3のキャパシタ誘電体膜3
8を形成する〔第2図(f)参照〕。一方、この工程の
周辺部においては、第2図(f′)に示すように、第2
のキャパシタ誘電体膜32及び第3のキャパシタ誘電体
膜38に通常のホトリソグラフィー法で接続孔39を開
孔する。Subsequently, the second storage electrode 37 and the third capacitor dielectric film 3 are formed through the same steps as in FIGS. 3(c) and 3(d).
8 [see FIG. 2(f)]. On the other hand, in the peripheral area of this process, as shown in FIG.
A connection hole 39 is formed in the capacitor dielectric film 32 and the third capacitor dielectric film 38 by a normal photolithography method.
次に、第2のプレート電極40を形成する〔第2図(g
)参照〕。一方、この工程の周辺部においては、第2図
(g′)に示すように、前記接続孔39を含む全面に第
2のプレート電極40を形成し、第1のプレート電極3
1と第2のプレート電極40を接続する。Next, a second plate electrode 40 is formed [Fig.
)reference〕. On the other hand, in the peripheral area of this step, as shown in FIG. 2(g'), a second plate electrode 40 is formed on the entire surface including the connection hole 39, and a second plate electrode
1 and the second plate electrode 40 are connected.
次に、第2のプレート電極40のパターニング時に第3
のキャパシタ誘電体膜38.第2のキャパシタ誘電体膜
32、第1のプレート電極31を自己整合的にエツチン
グ除去し、端部41を形成する。〔第2図(h)参照〕
。ここで、第2の蓄積電極37、第2のプレート電極4
0及び第1のプレート電極31は第1の蓄積電極29と
同じ材料でも良いし、違っていても良い。但し、第2の
キャパシタ誘電体膜32は耐酸化性を有することが必要
である。一方、この工程の周辺部の構造は第2図(h′
)に示されている。Next, when patterning the second plate electrode 40, the third plate electrode 40 is patterned.
capacitor dielectric film 38. The second capacitor dielectric film 32 and the first plate electrode 31 are removed by etching in a self-aligned manner to form an end portion 41. [See Figure 2 (h)]
. Here, the second storage electrode 37, the second plate electrode 4
0 and the first plate electrode 31 may be made of the same material as the first storage electrode 29, or may be made of a different material. However, the second capacitor dielectric film 32 needs to have oxidation resistance. On the other hand, the structure of the peripheral part of this process is shown in Figure 2 (h'
) is shown.
次に、第3図の工程と同様に、層間絶縁膜42、メタル
配線43、パッシベーション絶縁膜44を形成して最終
構造が得られる〔第1図参照〕。Next, similar to the process shown in FIG. 3, an interlayer insulating film 42, metal wiring 43, and passivation insulating film 44 are formed to obtain the final structure (see FIG. 1).
なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
(発明の効果)
以上、詳細に説明したように、本発明によれば、スタッ
クドキャパシタの蓄積電極を第1、第2と2個形成し、
第1の電荷蓄積電極の上面、第2の電荷蓄積電極の下面
及び上面をキャパシタとして構成することができるため
、従来のキャパシタの構成に比して約3倍の容量を同一
サイズで得ろことができる。(Effects of the Invention) As described above in detail, according to the present invention, two storage electrodes, a first and a second storage electrode, of a stacked capacitor are formed,
Since the upper surface of the first charge storage electrode and the lower and upper surfaces of the second charge storage electrode can be configured as a capacitor, it is possible to obtain approximately three times the capacity with the same size compared to a conventional capacitor configuration. can.
従って、回路性能を満足する所定の容量に対して従来の
スタックドキャパシタに比べ約1/3のキャパシタサイ
ズまで縮小可能となり、それにより、スタックドキャパ
シタセルサイズ及びそれを使用したダイナミックメモリ
集積回路’ATLの高密度化を大幅に促進することがで
きる。Therefore, for a given capacity that satisfies circuit performance, it is possible to reduce the capacitor size to about 1/3 compared to conventional stacked capacitors, thereby increasing the stacked capacitor cell size and the dynamic memory integrated circuit using it. The densification of ATL can be greatly promoted.
第1図は本発明の実施例を示す半導体メモリ集積回路装
置の断面図、第2図は本発明の実施例を示す半導体メモ
リ集積回路装置の製造工程図、第3図は従来の半導体メ
モリ集積回路装置の製造工程図である。
21・・・基板、22・・・素子分離用選択酸化膜、2
3・・・ゲート絶縁膜、24・・・ゲート電極、25・
・・絶縁膜、26・・・サイドウオール絶縁膜、27・
・・不純物拡散層、28・・・高濃度拡散層、29・・
・第1の蓄積電極、30・・・第1のキャパシタ誘電体
膜、31・・・第1のプレート電極、32・・・第2の
キャパシタ誘電体膜、33・・・開孔、34゜35、3
6・・・部分酸化層、37・・・第2の蓄積電極、38
・・・第3のキャパシタ誘電体膜、39・・・接続孔、
40.・・第2のプレート電極、41・・・端部、42
・・・層間絶縁膜、43・・・メタル配線、44・・・
パッシベーション絶縁膜。
特許出願人 沖電−二工業株式会社FIG. 1 is a sectional view of a semiconductor memory integrated circuit device showing an embodiment of the present invention, FIG. 2 is a manufacturing process diagram of a semiconductor memory integrated circuit device showing an embodiment of the present invention, and FIG. 3 is a conventional semiconductor memory integrated circuit device. It is a manufacturing process diagram of a circuit device. 21...Substrate, 22...Selective oxide film for element isolation, 2
3... Gate insulating film, 24... Gate electrode, 25...
... Insulating film, 26... Sidewall insulating film, 27.
... Impurity diffusion layer, 28... High concentration diffusion layer, 29...
・First storage electrode, 30... First capacitor dielectric film, 31... First plate electrode, 32... Second capacitor dielectric film, 33... Opening, 34° 35, 3
6...Partial oxidation layer, 37...Second storage electrode, 38
...Third capacitor dielectric film, 39... Connection hole,
40. ...Second plate electrode, 41...End portion, 42
...Interlayer insulating film, 43...Metal wiring, 44...
Passivation insulation film. Patent applicant Okiden-Ni Kogyo Co., Ltd.
Claims (2)
リ集積回路装置において、 (a)不純物拡散層に接続されるスタックトキャパシタ
の第1の蓄積電極と、 (b)該第1の蓄積電極上に形成される第1の誘電体膜
と、 (c)該第1の誘電体膜上に形成される第1のプレート
電極と、 (d)該第1のプレート電極上に形成される第2の誘電
体膜と、 (e)前記不純物拡散層に接続されるスタックトキャパ
シタの第2の蓄積電極と、 (f)該第2の蓄積電極上に形成される第3の誘電体膜
と、 (g)該第3の誘電体膜上に形成される第2のプレート
電極を具備するようにしたことを特徴とする半導体メモ
リ集積回路装置。(1) In a semiconductor memory integrated circuit device having a stacked capacitor type cell, (a) a first storage electrode of a stacked capacitor connected to an impurity diffusion layer; (b) formed on the first storage electrode. (c) a first plate electrode formed on the first dielectric film; (d) a second dielectric film formed on the first plate electrode; (e) a second storage electrode of the stacked capacitor connected to the impurity diffusion layer; (f) a third dielectric film formed on the second storage electrode; ) A semiconductor memory integrated circuit device comprising a second plate electrode formed on the third dielectric film.
リ集積回路装置の製造方法において、(a)基板上に分
離領域、ゲート電極の直上と側壁が絶縁膜で囲まれたト
ランジスタ及び少なくとも蓄積電極が接続される拡散層
を形成し、該拡散層の表面を露出せしめる工程と、 (b)前記拡散層と少なくとも一部で接続される第1の
蓄積電極を所定の形状で形成する工程と、(c)全面に
第1の誘電体膜、導電性多結晶シリコン膜からなる第1
のプレート電極及び耐酸化性を有する第2の誘電体膜を
連続的に被着する工程と、(d)前記拡散層と第2の蓄
積電極の接続部となる接続孔を拡散層上又は前記第1の
蓄積電極上の所定の位置に前記第1のプレート電極、第
2の誘電体膜、第1の誘電体膜を通して開孔し、拡散層
又は第1の蓄積電極の開孔部表面を露出せしめる工程と
、 (e)酸化性雰囲気において前記第1のプレート電極の
開孔側面露出部及び前記拡散層又は第1の蓄積電極の開
孔露出部を所定の厚さ酸化せしめる工程と、 (f)前記酸化膜のみを選択的にエッチングする所定の
条件で全面異方性エッチングすることにより、前記拡散
層又は第1の蓄積電極の表面露出部上に形成された酸化
膜のみを選択的に除去する工程と、(g)前記拡散層と
少なくとも一部で接続される第2の蓄積電極となる導体
を全面に被着し、所定の形状に形成する工程と、 (h)全面に第3の誘電体膜を形成する工程と、(i)
該第3の誘電体膜の被着後、セル周辺部において第1及
び第3の誘電体膜の開孔を所定の位置に形成し、前記第
1のプレート電極表面を露出せしめる工程と、 (j)第2のプレート電極となる導体を全面に被着し、
少なくとも前記蓄積電極を覆う所定の形状に形成する工
程とを施すことを特徴とする半導体メモリ集積回路装置
の製造方法。(2) In a method for manufacturing a semiconductor memory integrated circuit device having a stacked capacitor type cell, (a) an isolation region on a substrate, a transistor whose sidewalls and directly above a gate electrode are surrounded by an insulating film, and at least a storage electrode are connected; (b) forming a first storage electrode in a predetermined shape that is at least partially connected to the diffusion layer; (c) A first dielectric film on the entire surface and a first film made of a conductive polycrystalline silicon film.
(d) forming a connection hole to serve as a connection between the diffusion layer and the second storage electrode on the diffusion layer or the second storage electrode; A hole is formed at a predetermined position on the first storage electrode through the first plate electrode, the second dielectric film, and the first dielectric film, and the surface of the hole of the diffusion layer or the first storage electrode is (e) oxidizing the exposed side portion of the opening of the first plate electrode and the exposed portion of the opening of the diffusion layer or the first storage electrode to a predetermined thickness in an oxidizing atmosphere; f) Selectively etching only the oxide film formed on the exposed surface of the diffusion layer or the first storage electrode by performing anisotropic etching on the entire surface under predetermined conditions that selectively etch only the oxide film. (g) depositing a conductor on the entire surface to form a second storage electrode connected at least in part to the diffusion layer and forming it into a predetermined shape; and (h) depositing a third conductor on the entire surface. (i) forming a dielectric film;
After depositing the third dielectric film, forming openings in the first and third dielectric films at predetermined positions in the cell periphery to expose the first plate electrode surface; j) Covering the entire surface with a conductor that will become the second plate electrode,
A method of manufacturing a semiconductor memory integrated circuit device, comprising the step of forming a predetermined shape to cover at least the storage electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62312015A JPH01154552A (en) | 1987-12-11 | 1987-12-11 | Semiconductor storage integrated circuit device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62312015A JPH01154552A (en) | 1987-12-11 | 1987-12-11 | Semiconductor storage integrated circuit device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01154552A true JPH01154552A (en) | 1989-06-16 |
Family
ID=18024186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62312015A Pending JPH01154552A (en) | 1987-12-11 | 1987-12-11 | Semiconductor storage integrated circuit device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01154552A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442963A (en) * | 1990-06-09 | 1992-02-13 | Samsung Electron Co Ltd | Method of manufacturing multilayer stack capacitor and multilayer stack capacitor manufactured by said method |
US5177574A (en) * | 1988-12-08 | 1993-01-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device having a stacked type capacitor and manufacturing method therefor |
US5502332A (en) * | 1991-09-19 | 1996-03-26 | Fujitsu Limited | Semiconductor device having a belt cover film |
US5696395A (en) * | 1991-12-20 | 1997-12-09 | Industrial Technology Research Institute | Dynamic random access memory with fin-type stacked capacitor |
-
1987
- 1987-12-11 JP JP62312015A patent/JPH01154552A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5177574A (en) * | 1988-12-08 | 1993-01-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device having a stacked type capacitor and manufacturing method therefor |
US5285092A (en) * | 1988-12-08 | 1994-02-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device having a stacked type capacitor and manufacturing method therefor |
JPH0442963A (en) * | 1990-06-09 | 1992-02-13 | Samsung Electron Co Ltd | Method of manufacturing multilayer stack capacitor and multilayer stack capacitor manufactured by said method |
US5502332A (en) * | 1991-09-19 | 1996-03-26 | Fujitsu Limited | Semiconductor device having a belt cover film |
US5580812A (en) * | 1991-09-19 | 1996-12-03 | Fujitsu Limited | Semiconductor device have a belt cover film |
US5696395A (en) * | 1991-12-20 | 1997-12-09 | Industrial Technology Research Institute | Dynamic random access memory with fin-type stacked capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01154551A (en) | Semiconductor storage integrated circuit device and manufacture thereof | |
JP2568316B2 (en) | Method for manufacturing semiconductor memory | |
JPS63120462A (en) | Dynamic random access memory cell | |
JP3229665B2 (en) | Method of manufacturing MOSFET | |
GB2244861A (en) | Integrated circuit capacitor | |
KR940006681B1 (en) | Stacked trench cell and fabricating method thereof | |
JPH08306879A (en) | Method of fabricating semiconductor device | |
JPH01154552A (en) | Semiconductor storage integrated circuit device and manufacture thereof | |
JPS5856267B2 (en) | Manufacturing method of semiconductor integrated circuit | |
JP2772375B2 (en) | Semiconductor storage device | |
JP3241789B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP2689682B2 (en) | Method for manufacturing semiconductor memory cell | |
JPS63260166A (en) | Semiconductor memory device and manufacture thereof | |
JPS63226955A (en) | Manufacture of capacitive element | |
JPS61225851A (en) | Semiconductor device and manufacture thereof | |
JPS6240765A (en) | Read-only semiconductor memory and manufacture thereof | |
JPH01257364A (en) | Manufacture of semiconductor device | |
JPH0266967A (en) | Cell structure of dynamic random-access memory | |
KR100236189B1 (en) | Manufacturing method of capacitor | |
JPH08186237A (en) | Manufacture of semiconductor device | |
JPH04208564A (en) | Manufacture of semiconductor device | |
JPH0745704A (en) | Contact forming method | |
JPH0793367B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH04360571A (en) | Semiconductor storage device and its manufacture | |
JPH06151709A (en) | Capacitor |