JPH01257364A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01257364A
JPH01257364A JP63083977A JP8397788A JPH01257364A JP H01257364 A JPH01257364 A JP H01257364A JP 63083977 A JP63083977 A JP 63083977A JP 8397788 A JP8397788 A JP 8397788A JP H01257364 A JPH01257364 A JP H01257364A
Authority
JP
Japan
Prior art keywords
storage capacitor
plate electrode
capacitor
storage
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63083977A
Other languages
Japanese (ja)
Inventor
Shinichiro Kimura
紳一郎 木村
Yoshifumi Kawamoto
川本 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63083977A priority Critical patent/JPH01257364A/en
Publication of JPH01257364A publication Critical patent/JPH01257364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To facilitate maximization of the area of a storage capacitor by forming the storage capacitor pattern when a plate electrode is processed. CONSTITUTION:A conventional manufacturing method is adapted until an interlayer insulating film 5 is formed. Then a single storage capacitor 7 for a pair of memory cells having one bit line in common is formed. A capacitor insulating film 8 and a plate electrode 9 are formed on the storage capacitor 7. When an aperture for providing the contact of the bit line is formed, the plate electrode 9 and the storage capacitor 7 are processed simultaneously to divide the storage capacitor 7 into the respective storage capacitors for a pair of the memory cells. Thus, by forming the aperture, the plate electrode and a pattern at one end of the plate electrode are formed. With this constitution, the storage capacitors can extend to the aperture so that the larger storage capacitance can be realized with the same cell area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に係り、特に容量の大
きなりRAM用半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device for RAM with a large capacity.

〔従来の技術〕[Conventional technology]

DRAMは、3年間で集積度が4倍に向上するという実
情であり、この高集積化は素子寸法の微細化によって達
成されてきた。しかし微細化に伴う蓄積容量の減少のた
めに、信号/雑音(S N)比の低下やα線照射による
信号反転等の弊害が顕在化し、信頼性の維持が課題とな
っている。
The reality is that the degree of integration of DRAMs increases fourfold every three years, and this high degree of integration has been achieved through miniaturization of element dimensions. However, due to the decrease in storage capacity associated with miniaturization, adverse effects such as a decrease in the signal/noise (S/N) ratio and signal inversion due to alpha ray irradiation have become apparent, and maintaining reliability has become an issue.

このため、蓄積容量を増加させることができるメモリセ
ルとして、特公昭61−55258号に記載のように、
蓄積容量の一部をスイッチ用トランジスタや素子間分離
用酸化膜上に積み上げた、積層容量型セル(S T C
: S tacked Capacitor)が、従来
の平面型キャパシタに代わるものとして期待されるよう
になってきた。
Therefore, as a memory cell that can increase storage capacity, as described in Japanese Patent Publication No. 61-55258,
A stacked capacitor cell (STC
Stacked capacitors have come to be expected to replace conventional planar capacitors.

従来のSTCセルの断面図を第2図に示す、まず始めに
、その製造方法と特徴を簡単に説明する。
A cross-sectional view of a conventional STC cell is shown in FIG. 2. First, its manufacturing method and characteristics will be briefly explained.

単結晶基板1上に、各々の素子を電気的に分離するため
の素子間分離酸化膜2を成長させる。次に、スイッチト
ランジスタのゲート酸化膜3を熱酸化法を用いて成長さ
せる。ゲート電極として不純物を含む多結晶シリコン4
を堆積させ、それを、公知のホトリソグラフ法やドライ
エツチング法を用いて加工した後に、イオン打ち込み法
等を用いて、半4体基板とは導電型の異なる不純物拡散
層6を形成する。なお、5はゲート電極を被う層間絶縁
膜である。次に、蓄積容量7として、不純物拡散層6に
接触するように同じ導′a型の多結晶シリコンを公知の
CV D (Chemical Vapor Depo
si−tion)法を用いて堆積する。この蓄積容量7
はゲート電極4や素子間分離酸化膜2の上にも形成され
るため、基板平面だけを利用する従来の平面型キャパシ
タ構造に比べて、容量値を増加させることができる。次
に、この蓄積容量7上にキャパシタ絶縁膜8を形成し、
さらに、プレート電極9となる導体層を堆積してMM容
量7を完成させる。
An interelement isolation oxide film 2 for electrically isolating each element is grown on a single crystal substrate 1. Next, the gate oxide film 3 of the switch transistor is grown using a thermal oxidation method. Polycrystalline silicon 4 containing impurities as a gate electrode
After depositing and processing it using a known photolithography method or dry etching method, an impurity diffusion layer 6 having a conductivity type different from that of the half-substrate is formed using an ion implantation method or the like. Note that 5 is an interlayer insulating film covering the gate electrode. Next, as the storage capacitor 7, the same conductive type a polycrystalline silicon is deposited in a well-known CVD (Chemical Vapor Depot) so as to be in contact with the impurity diffusion layer 6.
si-tion) method. This storage capacity 7
Since it is also formed on the gate electrode 4 and the element isolation oxide film 2, the capacitance value can be increased compared to a conventional planar capacitor structure that uses only the substrate plane. Next, a capacitor insulating film 8 is formed on this storage capacitor 7,
Furthermore, a conductor layer that will become the plate electrode 9 is deposited to complete the MM capacitor 7.

次に、層間絶縁1漠10を堆積させて、基板の拡散層に
コンタクトホールを開口した後に、ビット線11を形成
する。
Next, after depositing interlayer insulation 10 and opening contact holes in the diffusion layer of the substrate, bit lines 11 are formed.

以上のように、基板平面上にのみキャパシタを形成する
平面型のメモリセルに比べて、STCは蓄積容量を大き
くできるという利点がある。
As described above, the STC has the advantage that the storage capacity can be increased compared to a planar memory cell in which a capacitor is formed only on the plane of the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は、メモリセル面積の縮少に伴っ
て蓄積容量も減少するため、メモリセル面積をあまり小
さくすることはできないという問題があった。これは、
ビット線11のコンタクトホールとプレート電極9との
間には、電気的ショートを防ぐために十分な余裕が必要
であるとか、プレート電極9が完全に蓄積容量7を被う
ための余裕が必要であるとかの、いわゆる、各層間のマ
スク合わせ余裕を必要とする点に由来している。これら
の余裕によって、蓄積容量7の面積が制限され、メモリ
セル面積の減少に伴い、蓄積容量も小さくなってしまう
However, the conventional technology described above has a problem in that the memory cell area cannot be made much smaller because the storage capacity also decreases as the memory cell area decreases. this is,
A sufficient margin is required between the contact hole of the bit line 11 and the plate electrode 9 in order to prevent an electrical short circuit, and a margin is required for the plate electrode 9 to completely cover the storage capacitor 7. This is due to the fact that a so-called mask alignment margin is required between each layer. These margins limit the area of the storage capacitor 7, and as the memory cell area decreases, the storage capacity also becomes smaller.

本発明の目的は、同じセル面積のSTCにおいて、蓄積
容量部の面積を大きくするための蓄積容量の製造方法を
提供することにある。
An object of the present invention is to provide a storage capacitor manufacturing method for increasing the area of a storage capacitor section in an STC having the same cell area.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、少なくとも一つのスイッチ用トランジスタ
と、一つの電荷蓄積容量とを有する半導体記憶装置の一
対が、ビット線を共有して配置されている半導体装置の
製造方法において、上記電荷蓄積容量は、その上部に絶
縁膜を介して形成されるプレート電極と共に、上記ビッ
ト線のコンタクトを取るために形成される開口部の位置
の上部まで形成し、ついで上記開口部を形成する際に、
開口部の上部にある上記電荷蓄積容量及び上記プレート
電極の部分を同時に除去することを特徴とする半導体装
置の製造方法によって達成される。
The above object provides a method for manufacturing a semiconductor device in which a pair of semiconductor memory devices each having at least one switching transistor and one charge storage capacitor are arranged to share a bit line, wherein the charge storage capacitor is arranged to share a bit line. Together with the plate electrode formed on the upper part through an insulating film, the plate electrode is formed up to the upper part of the opening formed to make contact with the bit line, and then when forming the opening,
This is achieved by a method for manufacturing a semiconductor device, characterized in that the portions of the charge storage capacitor and the plate electrode above the opening are removed at the same time.

第1図は1本発明によって形成した半導体装置の一例の
断面図、第3図はその製造工程の一工程における平面図
である。層間絶縁膜5形成までは、従来の方法と同じ方
法で製造する。すなわち、単結晶基鈑1の表面に素子間
分離用酸化膜2を成長させ1次にゲート酸化膜3を成長
させる。このゲート酸化膜3の上に多結晶シリコン等か
らなるゲート電極4を形成する。これらの膜の膜厚も従
来と同じく、例えば、素子間分離酸化膜2は200〜1
000n m程度、ゲート酸化膜3は1(1−15nm
程度が好ましい。ゲート電極4をマスクとして不純物拡
散層6を形成し、次に層間絶縁膜5を形成する。
FIG. 1 is a sectional view of an example of a semiconductor device formed according to the present invention, and FIG. 3 is a plan view of one step of the manufacturing process. The manufacturing process up to the formation of the interlayer insulating film 5 is the same as the conventional method. That is, an oxide film 2 for isolation between elements is grown on the surface of a single crystal substrate 1, and then a gate oxide film 3 is grown. A gate electrode 4 made of polycrystalline silicon or the like is formed on this gate oxide film 3. The film thickness of these films is also the same as in the past, for example, the element isolation oxide film 2 has a thickness of 200 to 1
000nm, and the gate oxide film 3 has a thickness of 1 (1-15nm).
degree is preferred. An impurity diffusion layer 6 is formed using the gate electrode 4 as a mask, and then an interlayer insulating film 5 is formed.

次に蓄積容量7を形成するが、この際第3図に示すよう
に、ビット線を共有する一対のメモリセルの蓄積容量は
一体として形成する。そしてこの上にキャパシタ絶縁膜
8、プレート電極9を形成する。次にビット線のコンタ
クトをとるための開口部(開口部となる位置は第3図に
14として示す)を形成する際、プレート電極9と蓄積
容量7を同時に加工し、2つのメモリセルのそれぞれの
蓄積容量に分離する。蓄積容量の厚みは100〜500
n mが好ましい。
Next, a storage capacitor 7 is formed. At this time, as shown in FIG. 3, the storage capacitors of a pair of memory cells sharing a bit line are formed integrally. Then, a capacitor insulating film 8 and a plate electrode 9 are formed on this. Next, when forming an opening for making a bit line contact (the position of the opening is shown as 14 in FIG. 3), the plate electrode 9 and the storage capacitor 7 are processed simultaneously, and each of the two memory cells is storage capacity. The thickness of storage capacity is 100 to 500
nm is preferred.

なお、必ずしも蓄積容量7は上記一対のメモリセルの蓄
積容量を一体として形成しなくともよい。
Note that the storage capacitor 7 does not necessarily have to be formed by integrating the storage capacitors of the pair of memory cells.

蓄積容量の一端が、上記開口部の位置まで延びて形成さ
れていて、上記開口部の形成によってプレ−上電極と共
にその一端のパターンが形成されればよい。
One end of the storage capacitor may be formed to extend to the position of the opening, and by forming the opening, a pattern of the one end may be formed together with the upper electrode.

従来のSTCでは、第4図に示すように、各々の蓄積容
量は予めそのパターンを形成してからプレート電極で被
うため、6M容量が小さい構造となっていた。これに比
べて本発明においては上記開口部まで蓄積容量を延長さ
せることができるので、同じセル面積でも本発明の方が
大きな蓄積容量を実現できる。
In the conventional STC, as shown in FIG. 4, each storage capacitor is patterned in advance and then covered with a plate electrode, resulting in a structure with a small 6M capacitance. In contrast, in the present invention, the storage capacity can be extended to the opening, so even with the same cell area, the present invention can achieve a larger storage capacity.

なお、蓄積容量7を加工する時に、同時にその表面に形
成したキャパシタ絶縁膜8をも加工してしまう。このよ
うな形状になるのは絶縁膜の特性上必ずしも好ましいこ
とではなく、実際、低電圧で破壊する頻度は高くなる場
合もある。しかし、蓄積容量の加工後に露出したプレー
ト電極9と蓄積容量7の側壁に1例えば熱酸化法で酸化
膜を成長させればキャパシタ絶縁膜の特性を回復させる
ことができる。
Note that when processing the storage capacitor 7, the capacitor insulating film 8 formed on the surface thereof is also processed at the same time. Such a shape is not necessarily desirable in terms of the characteristics of the insulating film, and in fact, the frequency of breakdown at low voltages may increase. However, the characteristics of the capacitor insulating film can be restored by growing an oxide film, for example, by thermal oxidation, on the exposed plate electrode 9 and side walls of the storage capacitor 7 after processing the storage capacitor.

(作用〕 上記のように、蓄積容量パターンをプレート電極の加工
時に形成する方式にすると、プレート電極が蓄積容量を
完全に被うための余裕が不必要となる。この結果、蓄積
容量の面積を最大限大きくすることが可能となる。実験
の結果、従来の方式に比べて20〜30%の容量の増加
が実現されている。
(Function) As described above, if the storage capacitor pattern is formed during processing of the plate electrode, there is no need for a margin for the plate electrode to completely cover the storage capacitor.As a result, the area of the storage capacitor can be reduced. As a result of experiments, an increase in capacity of 20 to 30% compared to the conventional system has been achieved.

このように比較的大きい容量増加が実現できたのは表面
積の増加と共に、次のことも一因となる。
The reason why such a relatively large increase in capacity could be achieved is due to the increase in surface area as well as the following factors.

それは、第4図に示すように、従来の矩形の・パターン
の蓄積容量7を光りソグラフィ法で形成すると、光の回
折効果により四隅が丸くなり、実質的に面積が減少する
0本発明においてはこのような角は2個しかなく、その
分だけ面積が増加する。
As shown in FIG. 4, when a conventional rectangular patterned storage capacitor 7 is formed by photolithography, the four corners become rounded due to the light diffraction effect, and the area is substantially reduced. There are only two such corners, and the area increases accordingly.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 まず、第5図(a)に示したように、第1導電型の単結
晶基板1上に、各々の素子を電気的分離する素子間分離
酸化膜2とゲート酸化膜3を公知の熱酸化法で成長させ
る。素子間分離酸化PIA2は550n m、ゲート酸
化膜は15nmとした。この表面に、ゲート電極4を形
成し、このゲート電極4をマスクにして、基板内に第2
導電型の不純物拡散層6を形成する。なお、本実施例で
は、従来のシングルドレイン構造になっているが、公知
の電界緩和型ドレイン構造(L D D : Ligh
tly DopedDrain)を用いても良い。ここ
で、5はゲート電極を被う層間絶縁膜である。この時、
次の工程で形成する蓄積容量7が基板の不純物拡散層6
と接触する部分だけは絶縁膜を除去しておく(第5図(
b))。
Example 1 First, as shown in FIG. 5(a), on a single crystal substrate 1 of a first conductivity type, an inter-element isolation oxide film 2 and a gate oxide film 3 for electrically isolating each element are formed. It is grown using the thermal oxidation method. The element isolation oxide PIA2 was 550 nm thick, and the gate oxide film was 15 nm thick. A gate electrode 4 is formed on this surface, and a second electrode is formed in the substrate using this gate electrode 4 as a mask.
A conductive type impurity diffusion layer 6 is formed. In this example, the conventional single drain structure is used, but a well-known electric field relaxation type drain structure (LDD: Light
tly DopedDrain) may also be used. Here, 5 is an interlayer insulating film covering the gate electrode. At this time,
The storage capacitor 7 formed in the next step is the impurity diffusion layer 6 of the substrate.
The insulating film is removed only from the part that comes into contact with the (Figure 5).
b)).

次に、蓄積容量7を形成する。これは第3図に示したよ
うに、ビット線を共有する一対のメモリセルの各々の蓄
積容量は分離されていない。本実施例では、この蓄積容
量7に多結晶シリコンを用いた。膜厚は200n mで
ある。そして、この多結晶シリコンの導電型を、基板に
形成した不純物拡散層6と等しくするために、イオン打
ち込み法を用いてリンイオンを導入した。しかし、リン
イオンの打ち込みに限らず、不純物拡散層6の不純物濃
度分布を変化させない方法であれば、公知のリン拡散な
どを用いても良い、この蓄積容量7の表面に10nmの
厚さのキャパシタ絶縁膜8を成長させる(第5図(C)
)、キャパシタ絶縁膜8としては、多結晶シリコン表面
を熱酸化してSin、膜としたが、他に堆積した513
N4膜とSin、膜の多層膜、Ta、O,等の高誘量率
絶縁膜が使用できる。
Next, the storage capacitor 7 is formed. This is because, as shown in FIG. 3, the storage capacitances of each of a pair of memory cells sharing a bit line are not separated. In this embodiment, polycrystalline silicon is used for the storage capacitor 7. The film thickness is 200 nm. Then, in order to make the conductivity type of this polycrystalline silicon the same as that of the impurity diffusion layer 6 formed on the substrate, phosphorus ions were introduced using an ion implantation method. However, in addition to implanting phosphorus ions, known phosphorus diffusion may be used as long as the method does not change the impurity concentration distribution of the impurity diffusion layer 6. Grow the film 8 (Fig. 5(C)
), as the capacitor insulating film 8, the polycrystalline silicon surface was thermally oxidized to form a Sin film, but the 513 deposited
A multilayer film of an N4 film and a Sin film, a high dielectric constant insulating film such as Ta, O, etc. can be used.

この上に、プレート電極9となる導電層を堆積させ、第
5図(d)に示したように、ビット線のコンタクトを取
るための部分を露出させるが、この時に下層の蓄積容量
7を同時にドライエツチング法により開口する。このた
め、開口部の大きさは。
A conductive layer that will become the plate electrode 9 is deposited on top of this, and the part for making contact with the bit line is exposed as shown in FIG. Open by dry etching method. Therefore, the size of the opening.

たとえマスク合わせずれが発生しても十分蓄積容量をそ
れぞれに分離できる程度のものでなければならない、こ
の時の加工で、キャパシタ絶縁膜8の終端が露出する。
Even if a mask misalignment occurs, the storage capacitance must be sufficiently separated from each other.During this processing, the terminal end of the capacitor insulating film 8 is exposed.

このままでは、低電圧で絶縁破壊する頻度が高まる恐れ
がある。これを修復する意味で、加工後に熱酸化を行い
、露出した蓄積容量7の側面と、プレート電極9の全面
に酸化膜を成長させる。この酸化処理によって、キャパ
シタ絶縁膜は本来の特性に回復する。このような酸化処
理が容易に行えるという点で、プレート電極9の材料と
しては、多結晶シリコンが望ましい。
If this continues, there is a risk that dielectric breakdown will occur more frequently at low voltages. In order to repair this, thermal oxidation is performed after processing to grow an oxide film on the exposed side surfaces of the storage capacitor 7 and the entire surface of the plate electrode 9. This oxidation treatment restores the capacitor insulating film to its original characteristics. Polycrystalline silicon is preferable as the material for the plate electrode 9 because such oxidation treatment can be easily performed.

次に、第5図(d)に示したように、全体に層間絶縁膜
10を形成し、ビット線コンタクトホールを開口した後
に、ビット線11を形成する。
Next, as shown in FIG. 5(d), an interlayer insulating film 10 is formed over the entire structure, a bit line contact hole is opened, and then a bit line 11 is formed.

実施例2 第1の実施例では、分離された蓄積容量7のプレート電
極9で被われていない側壁部分は、キャパシタにはなら
ない。しかし、下記のような製造方法により、その部分
をもキャパシタとして使用することができるようになり
、容量の増加はさらに顕著になる。この場合、プレート
電極として、タングステンに代表される高融点金属を用
いる。
Embodiment 2 In the first embodiment, the side wall portion of the separated storage capacitor 7 that is not covered by the plate electrode 9 does not become a capacitor. However, by using the manufacturing method described below, it becomes possible to use that portion as a capacitor, and the increase in capacitance becomes even more remarkable. In this case, a high melting point metal such as tungsten is used as the plate electrode.

そこでまず、第5図(d)に示したような構造を、プレ
ート電極9をタングステンにして形成する。
First, a structure as shown in FIG. 5(d) is formed using tungsten as the plate electrode 9.

次に、この基板を、水を数%程度含む水素雰囲気中で1
000℃程度に加熱すると、第6図(a)に示すように
多結晶シリコンの蓄積容量7の側壁にのみ薄い酸化膜1
6が成長し、タングステン表面は酸化されない、この表
面全体に、再びタングステン17を堆積させ(第6図(
b))、これを公知のドライエツチング法で異方性エツ
チングを行うと、プレート電極9と蓄積容量7の側壁に
のみタングステンが側壁プレート電極として残り、露出
した側壁部もキャパシタとして使用できるようになる。
Next, this substrate was placed in a hydrogen atmosphere containing about a few percent of water.
When heated to about 000°C, a thin oxide film 1 is formed only on the side walls of the polycrystalline silicon storage capacitor 7, as shown in FIG. 6(a).
6 has grown, and the tungsten surface is not oxidized. Tungsten 17 is deposited again on this entire surface (see Fig. 6).
b)) When this is anisotropically etched using a known dry etching method, tungsten remains only on the sidewalls of the plate electrode 9 and the storage capacitor 7 as sidewall plate electrodes, so that the exposed sidewalls can also be used as capacitors. Become.

この後は、第5図(e)に示したように、ビット線を形
成する。
After this, bit lines are formed as shown in FIG. 5(e).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同じメモリセル面積で比較した場合、
従来の製造方法によって製造した半導体装置と比較して
、蓄積容量が20〜30%増加し、そのため、メモリセ
ルの面積が縮少した。そのため高集積DRAMの製造が
実現できた。
According to the present invention, when compared with the same memory cell area,
Compared to a semiconductor device manufactured by a conventional manufacturing method, the storage capacity is increased by 20 to 30%, and the area of the memory cell is therefore reduced. This made it possible to manufacture highly integrated DRAM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した一実施例のメモリセルの断面
図、第2図は従来法を適用したメモリセルの断面図、第
3図は本発明を適用した一実施例のメモリセルの平面図
、第4図は従来法を適用したメモリセルの平面図、第5
図及び第6図は本発明を適用した一実施例のメモリセル
の製造工程図である。 1・・・単結晶基板   2・・・素子間分離酸化膜3
・・・ゲート酸化膜  4・・・ゲート電極5・・・層
間絶縁膜   6・・・不純物拡散層7・・・蓄積容量
    8・・・キャパシタ絶縁膜9・・・プレート電
極  10・・・層間絶縁膜11・・・ビット線   
 14・・・開口部パターン15・・・ビット線コンタ
クトパターン16・・・薄い酸化ill    17・
・・タングステン18・・・側壁プレート電極 代理人弁理士  中 村 純之助 第2図 4−−−デーとt≠を 7−蓄nI忘1 14−−・開oJ7=バター〉 15−m−と”r h膿コシタフμハブ−>第3図 4−7身を掻 15−m−ご:1.ハ線コニ7りLバクーシ第4図 (b) (C) 第5図 (d) 9−m−フルー)fネ分 10−一一層間記(1県 11−m−と−)、線 第5図 (a) (b) 7−−一番檜溶量 8−−−キャノルタ(2障用〔 9−−−ブL−ト/17:劣シ 16−−−タj1い酸イと膜 17−−−タ2グ°ステシ 第6図 +8−fitす・イシ声ブムーF電4可酬(C) 第6図
FIG. 1 is a cross-sectional view of a memory cell according to an embodiment to which the present invention is applied, FIG. 2 is a cross-sectional view of a memory cell to which a conventional method is applied, and FIG. 3 is a cross-sectional view of a memory cell according to an embodiment to which the present invention is applied. 4 is a plan view of a memory cell to which the conventional method is applied; FIG.
6 and 6 are process diagrams for manufacturing a memory cell according to an embodiment of the present invention. 1... Single crystal substrate 2... Inter-element isolation oxide film 3
...Gate oxide film 4...Gate electrode 5...Interlayer insulating film 6...Impurity diffusion layer 7...Storage capacitance 8...Capacitor insulating film 9...Plate electrode 10...Interlayer Insulating film 11...bit line
14... Opening pattern 15... Bit line contact pattern 16... Thin oxidized ill 17.
... Tungsten 18 ... Sidewall plate electrode attorney Junnosuke Nakamura 2nd figure 4--day and t≠ 7-storage nI 1 14--open oJ7=butter>15-m-and" r h Pussy tough μ hub -> Fig. 3 4-7 Scratch 15-m - Go: 1. Har line Koni 7 Rip L Bakushi Fig. 4 (b) (C) Fig. 5 (d) 9-m - Furu) f Ne minute 10-11 layer interval (1 prefecture 11-m- and -), line Figure 5 (a) (b) 7--Ichiban cypress melt amount 8--Canolta (2 faults) For [ 9----button / 17: Inferior 16----ta j1 acid and membrane 17----ta 2g degree 6+8-fit S・Ishi voice bumu F electric 4 possible Compensation (C) Figure 6

Claims (1)

【特許請求の範囲】 1、少なくとも一つのスイッチ用トランジスタと、一つ
の電荷蓄積容量とを有する半導体記憶装置の一対が、ビ
ット線を共有して配置されている半導体装置の製造方法
において、上記電荷蓄積容量は、その上部に絶縁膜を介
して形成されるプレート電極と共に、上記ビット線のコ
ンタクトを取るために形成される開口部の位置の上部ま
で形成し、ついで上記開口部を形成する際に、開口部の
上部にある上記電荷蓄積容量及び上記プレート電極の部
分を同時に除去することを特徴とする半導体装置の製造
方法。 2、上記一対の半導体記憶装置の電荷蓄積容量は、上記
開口部の位置の上部で連続して一体として同時に形成し
、上記開口部の形成により各々に分離する請求項1記載
の半導体装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a semiconductor device, in which a pair of semiconductor memory devices each having at least one switching transistor and one charge storage capacitor are arranged to share a bit line. The storage capacitor is formed up to the top of the opening formed to make contact with the bit line, together with a plate electrode formed on the top of the storage capacitor through an insulating film, and then when forming the opening, . A method of manufacturing a semiconductor device, characterized in that a portion of the charge storage capacitor and the plate electrode above the opening are removed at the same time. 2. Manufacturing the semiconductor device according to claim 1, wherein the charge storage capacitors of the pair of semiconductor memory devices are formed continuously and integrally at the same time above the position of the opening, and are separated from each other by forming the opening. Method.
JP63083977A 1988-04-07 1988-04-07 Manufacture of semiconductor device Pending JPH01257364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63083977A JPH01257364A (en) 1988-04-07 1988-04-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083977A JPH01257364A (en) 1988-04-07 1988-04-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01257364A true JPH01257364A (en) 1989-10-13

Family

ID=13817598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083977A Pending JPH01257364A (en) 1988-04-07 1988-04-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01257364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246966A (en) * 1990-02-26 1991-11-05 Toshiba Corp Semiconductor memory device and its manufacture
US5157469A (en) * 1990-05-01 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulators
US5229314A (en) * 1990-05-01 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulation
US5385858A (en) * 1992-07-23 1995-01-31 Nec Corporation Method for fabricating semiconductor device having memory cell of stacked capacitor type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246966A (en) * 1990-02-26 1991-11-05 Toshiba Corp Semiconductor memory device and its manufacture
US5157469A (en) * 1990-05-01 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulators
US5229314A (en) * 1990-05-01 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulation
US5385858A (en) * 1992-07-23 1995-01-31 Nec Corporation Method for fabricating semiconductor device having memory cell of stacked capacitor type

Similar Documents

Publication Publication Date Title
KR920001636B1 (en) Semiconductor memory device
JP2673615B2 (en) Integrated circuit manufacturing method and memory cell
US8421146B2 (en) Semiconductor device having vertical transistor, manufacturing method thereof, and data processing system
JPH01154551A (en) Semiconductor storage integrated circuit device and manufacture thereof
JPH0296362A (en) Semiconductor device and manufacture thereof
US4322881A (en) Method for manufacturing semiconductor memory devices
US4760034A (en) Method of forming edge-sealed multi-layer structure while protecting adjacent region by screen oxide layer
JPH03256358A (en) Semiconductor memory device and manufacturing method
KR0135067B1 (en) Device & cell manufacturing of semiconductor device
JP2001168285A (en) Semiconductor device and its manufacturing method
JPH01257364A (en) Manufacture of semiconductor device
US6413816B2 (en) Method for forming memory cell of semiconductor memory device
JPH06209085A (en) Stack-type dram capacitor structure and its manufacture
JPH02310959A (en) Semiconductor device and its manufacture
WO2001024236A1 (en) Semiconductor structures having a capacitor and manufacturing methods
JP2550590B2 (en) Method for manufacturing semiconductor device
JPH0575059A (en) Semiconductor storage device and its manufacture
JP2639363B2 (en) Method for manufacturing semiconductor memory device
JPH0319362A (en) Semiconductor memory and manufacture thereof
US5242852A (en) Method for manufacturing a semiconductor memory device
JPH04216666A (en) Semiconductor device and its manufacture
KR960011472B1 (en) Manufacturing method of semiconductor memroy device
US20050009269A1 (en) Semiconductor device and method of manufacturing semiconductor device
JPS6010662A (en) Semiconductor memory
JPH01155656A (en) Semiconductor memory device