JPH01140901A - Cutting tool made of ceramics - Google Patents

Cutting tool made of ceramics

Info

Publication number
JPH01140901A
JPH01140901A JP62300536A JP30053687A JPH01140901A JP H01140901 A JPH01140901 A JP H01140901A JP 62300536 A JP62300536 A JP 62300536A JP 30053687 A JP30053687 A JP 30053687A JP H01140901 A JPH01140901 A JP H01140901A
Authority
JP
Japan
Prior art keywords
silicon carbide
alumina
volume
cutting
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300536A
Other languages
Japanese (ja)
Inventor
Tetsuo Uchiyama
哲夫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP62300536A priority Critical patent/JPH01140901A/en
Publication of JPH01140901A publication Critical patent/JPH01140901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enable application of the cutting tool in the caption to low speed cutting and high speed cutting of materials ranging from casting and steel to sintered hard alloy by forming the cutting tool with an alumina-silicon carbide-zirconia compound sintered compact comprising a specified percent by volume of silicon carbide and partially stabilized zirconia, and the residual percent of alumina. CONSTITUTION:A cutting tool made of ceramics is formed with an alumina- silicon carbide-zirconia compound sintered compact which comprises 5-50% by volume of silicon carbide with less than 3mum of an average particle size, 2-30% by volume of partially stabilized zirconia with 0.1-1.0mum of the average particle size (wherein the total of the zirconia and the abovementioned silicon carbide is less than 55% by volume), and a residual amount of alumina, substantially. The cutting tool made of ceramics has excellent tenacity, high hardness and abrasion resistance, and as well it exhibits excellent heat resistance and corrosion resistance, thereby enabling broad application to low speed cutting and high speed cutting of materials ranging form casting and steel to sintered hard alloy to be cut.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は切削工具に係り、更に詳しくはセラミックス製
の衝撃に強い高靭性、高強度、高硬度を具備したスロー
アウェイチップに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cutting tool, and more particularly to a throw-away tip made of ceramic that is resistant to impact and has high toughness, high strength, and high hardness.

(従来技術と問題点) 従来、鋼や鋳鉄の高速切削工具用材料としては高速切削
時における優れた耐摩耗性を示すこと、且つ鉄との摩擦
係数が小さい等の理由で現在アルミナ(Aboz)−炭
化チタン(Tie)のセラミックス製切削工具が実用化
され主流となついる。しかしながら、アルミナ−炭化チ
タンは靭性に難があり耐衝撃性が不十分であるため欠損
を起こしやすい欠点があり安定して使用することができ
ないのが現状である。
(Prior art and problems) Conventionally, alumina (Aboz) has been used as a material for high-speed cutting tools for steel and cast iron because of its excellent wear resistance during high-speed cutting and its low coefficient of friction with iron. -Titanium carbide (Tie) ceramic cutting tools have been put into practical use and become mainstream. However, alumina-titanium carbide has poor toughness and insufficient impact resistance, so it is prone to breakage and cannot be used stably at present.

そこで、近年切削工具として機械的強度、硬度、衝撃性
に優れた窒化珪素csxzNJやアルミナ−炭化珪素(
SiC)ウィスカー−ジルコニア(ZrO,)が注目さ
れているが、窒化珪素は鉄との反応による摩耗が激しく
汎用性が低いこと、又、本出願人が先に特開昭61−2
70266号にて開示した高強度、高靭性、高硬度を具
備したアルミナ−炭化珪素ウィスカー−ジルコニア複合
セラミックスを超硬合金等の難切削材の切削に利用する
ことが検討されており、超硬工具に比べ5〜10倍の切
削速度が可能になる等の効果も確認されている。
Therefore, in recent years, silicon nitride csxzNJ and alumina-silicon carbide (silicon carbide), which have excellent mechanical strength, hardness, and impact resistance, have been used as cutting tools.
SiC) whisker-zirconia (ZrO,) is attracting attention, but silicon nitride suffers from severe wear due to reaction with iron and has low versatility.
The use of the alumina-silicon carbide whisker-zirconia composite ceramics disclosed in No. 70266, which has high strength, high toughness, and high hardness, for cutting difficult-to-cut materials such as cemented carbide is being considered, and cemented carbide tools. It has also been confirmed that the cutting speed is 5 to 10 times faster than that of the conventional method.

しかし、アルミナ−炭化珪素ウィスカー−ジルコニア複
合セラミックスは炭化珪素ウィスカーを15容積%以上
含む場合、炭化珪素ウィスカーの存在が成形密度をあげ
ることを阻害し、ホットプレス以外の方法では容易に理
論密度比99%以上の高密度まで焼結できない等の問題
点を有している。
However, when alumina-silicon carbide whisker-zirconia composite ceramics contain 15% by volume or more of silicon carbide whiskers, the presence of silicon carbide whiskers inhibits increasing the molding density, and methods other than hot pressing can easily reach a theoretical density ratio of 99. It has problems such as not being able to sinter to a high density of % or more.

ここで、ホットプレスとはセラミックスの焼結等比較的
高温を要するものでは、通常黒鉛型に粉末を入れ高温で
加圧しながら焼結させる方法で一種の加速焼結法である
が、この場合加圧方向が一軸であるため比較的単純な形
状の製品に限られること、又、切削工具では常圧焼結/
HIP(熱間等方プレスでアルゴンなどのガスを圧力媒
体として高温で等方的にプレスする)法に比べても切断
加工という工程が加わるため生産性が低くなるという問
題点がある。
Here, hot pressing is a type of accelerated sintering method in which powder is usually placed in a graphite mold and sintered while pressurized at high temperature for things that require relatively high temperatures, such as sintering ceramics. Because the pressure direction is uniaxial, products with relatively simple shapes are limited, and cutting tools require pressureless sintering/pressure sintering.
Even compared to the HIP (hot isostatic pressing, in which argon or other gas is used as a pressure medium to press isotropically at high temperature), there is a problem in that productivity is lower due to the addition of a cutting process.

(問題点を解決するための手段) 本発明は、上述の切削工具の問題点に鑑みてなされたも
ので、高靭性、高硬度を有し特に鋼や鋳鉄等の切削工具
として適した材料、特に、高強度。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned problems of cutting tools. Especially high strength.

高靭性のアルミナ−炭化珪素ウィスカー−ジルコニア複
合焼結体の成形性及び焼結性を改良すべく、鋭意研究と
試験を重ねた結果、衝撃に強い高強度。
As a result of extensive research and testing to improve the formability and sinterability of a highly tough alumina-silicon carbide whisker-zirconia composite sintered body, we have developed a high strength, resistant to impact.

高靭性のアルミナ−粒状炭化珪素−ジルコニア複合焼結
体がこの目的に適うことを見出した。
It has been found that a highly tough alumina-granular silicon carbide-zirconia composite sintered body is suitable for this purpose.

本発明の衝撃に強い高強度、高靭性のアルミナ−粒状炭
化珪素−ジルコニア複合焼結体からなる切削工具は、平
均粒径3μm以下の粒状炭化珪素5〜50容積%;平均
粒径0.1〜1.0μmの部分安定化ジルコニア2〜3
o容積%(但し、このジルコニアと前記粒状炭化珪素の
合計は55容積%以下); 残部が実質的にアルミナか
らなることを特徴としている。
The cutting tool of the present invention made of a high-strength, high-toughness alumina-granular silicon carbide-zirconia composite sintered body that is resistant to impact contains 5 to 50% by volume of granular silicon carbide with an average grain size of 3 μm or less; an average grain size of 0.1 ~1.0 μm partially stabilized zirconia 2-3
o volume % (however, the total of this zirconia and the granular silicon carbide is 55 volume % or less); The remainder is characterized in that it consists essentially of alumina.

次に、衝撃に強い高強度、高靭性アルミナ−粒状炭化珪
素−ジルコニア複合焼結体の成分範囲の限定亀山につい
て述べる。
Next, Kameyama will discuss limiting the range of components of a high-strength, high-toughness alumina-granular silicon carbide-zirconia composite sintered body that is resistant to impact.

粒状炭化珪素は、その粒径が3μmを超えるとアルミナ
マトリックスとの熱膨張係数との違い(α5iC= 4
 、5 X 10−’/℃、αA1□0.=8X10−
’/’C)によって焼結後、室温に戻した時点でマイク
ロクラックを導入する場合が多く強度を低下させるので
3μm以下とした。その量は容積比で5%未満では硬度
及び特に熱伝導に関係する切削工具特性の効果が顕著で
なく、一方50%を超えるとマトリックスが炭化珪素と
なるため鉄系材料との反応による摩耗の増加と靭性の低
下を来すため5〜50%の範囲とする。
When the particle size of granular silicon carbide exceeds 3 μm, the difference in thermal expansion coefficient from that of the alumina matrix (α5iC = 4
, 5 x 10-'/°C, αA1□0. =8X10-
'/'C) After sintering, microcracks are often introduced when the temperature is returned to room temperature, reducing the strength, so the thickness was set to 3 μm or less. If the amount is less than 5% by volume, the effect on cutting tool properties related to hardness and especially heat conduction will not be significant, while if it exceeds 50%, the matrix will become silicon carbide, which will cause wear due to reaction with iron-based materials. It is set in the range of 5 to 50% because it causes an increase in toughness and a decrease in toughness.

部分安定化ジルコニアは粒径が0.1μm未満であると
安定し過ぎ、一方1.0μmを超えると不安定化になり
過ぎて、いずれも強度改善に寄与しなくなるため粒径の
範囲を0.1〜1.0μmとした。
Partially stabilized zirconia is too stable if the particle size is less than 0.1 μm, whereas if it exceeds 1.0 μm, it becomes too unstable and neither contributes to strength improvement, so the particle size range is set to 0. The thickness was 1 to 1.0 μm.

その量は容積比で2%未満では高靭化の効果が顕著でな
く、30%を超えると硬度の低下をきたすため2〜30
%の範囲とする。
If the amount is less than 2% by volume, the effect of increasing toughness will not be noticeable, and if it exceeds 30%, the hardness will decrease.
% range.

前記粒状炭化珪素とジルコニアとの合計量は容積比で5
5%を超えると炭化珪素又はジルコニアの添加過多とな
り、反応による摩耗或いは硬度不足によりいずれも摩耗
が増加するので、その合計は55%以下とした。
The total amount of the granular silicon carbide and zirconia is 5 by volume.
If it exceeds 5%, silicon carbide or zirconia will be added too much, and wear will increase due to reaction wear or insufficient hardness, so the total amount is set to 55% or less.

本発明品は、優れた靭性、高硬度および耐摩耗性を有し
且つ耐熱性、耐食性にも優れているので、これらの特性
が要求される鋳物や鋼から最難削材の超合金にいたるま
での、低速切削から高速切削までの幅広い範囲にわたっ
て、切削工具として広く適用することができ、更に、本
発明の特徴である粒状炭化珪素の使用により成形密度を
高めることができ、ホットプレスのかわりに常圧焼結/
HIP処理が可能となり、充分高い生産性で製造するこ
とができる。
The product of this invention has excellent toughness, high hardness, and wear resistance, as well as excellent heat resistance and corrosion resistance, so it can be used in everything from castings and steels that require these properties to superalloys, which are the most difficult-to-cut materials. It can be widely applied as a cutting tool in a wide range of applications from low-speed cutting to high-speed cutting.Furthermore, the use of granular silicon carbide, which is a feature of the present invention, can increase the molding density, making it possible to use it instead of hot pressing. pressureless sintering/
HIP processing becomes possible, and manufacturing can be performed with sufficiently high productivity.

(実施例) 以下本発明の実施例について具体的に説明する。(Example) Examples of the present invention will be specifically described below.

容積比でアルミナ粉末60%、粒状炭化珪素30%、部
分安定化ジルコニア10%を配合した。
A volume ratio of 60% alumina powder, 30% granular silicon carbide, and 10% partially stabilized zirconia was blended.

アルミナ粉末は純度99%以上、平均粒径0゜4μm、
α型結晶形のものである。粒状炭化珪素はα型結晶形の
もので平均粒径0.45μmである。ジルコニア粉末は
2モル%(3,5重量%)イツトリアで安定化した平均
粒径0.2μmの部分安定化ジルコニアである。
Alumina powder has a purity of 99% or more, an average particle size of 0°4 μm,
It is in α type crystal form. The granular silicon carbide is of α type crystal form and has an average particle size of 0.45 μm. The zirconia powder is partially stabilized zirconia with an average particle size of 0.2 μm stabilized with 2 mol % (3.5 wt %) ittria.

この原材料をアルミナ容器とアルミナボールを使用する
ボールミル中でエチルアルコールを混合液に使用して7
2時時間式混合し、次ぎにこれらの混合粉を乾燥した。
This raw material was mixed with ethyl alcohol in a ball mill using an alumina container and an alumina ball.
After 2 hours of mixing, these mixed powders were dried.

この混合粉から金型プレスによって直径65mm×厚さ
7m+++の円板を成形し、2t/cm”のラバープレ
スで高密度化したものを1720℃で3時間アルゴンガ
ス雰囲気中で焼結し、更に1600℃、1.9t/Cm
”のアルゴンガス圧中で1時間HIP処理した。
This mixed powder was molded into a disk with a diameter of 65 mm x thickness of 7 m+++ using a mold press, densified using a 2t/cm" rubber press, and then sintered at 1720°C for 3 hours in an argon gas atmosphere. 1600℃, 1.9t/Cm
HIP treatment was performed for 1 hour in an argon gas pressure of 1.

これらの焼結体から、ダイヤモンド砥石を用いて切断し
研削加工によって12.7mmX4゜76mmのJIS
 R41215NGN433型に則したスローアウェイ
チップを作成した。このチップにより旋盤を用いて次の
切削条件によって切削テストを行なった。
These sintered bodies were cut using a diamond grindstone and ground to JIS dimensions of 12.7 mm x 4° 76 mm.
A throw-away tip conforming to the R41215NGN433 type was created. A cutting test was conducted using this chip using a lathe under the following cutting conditions.

比較品として市販のアルミナ−炭化珪素セラミックス製
チップについて同一の条件で切削テストを行なった。
As a comparative product, a cutting test was conducted on a commercially available alumina-silicon carbide ceramic chip under the same conditions.

切削条件 被剛材  強靭鋳鉄(FC30材相当材)Hシリンダラ
イす 内径95+smX長さ150a+m 切削速度 142 +*/win 送り    0 、35 am/ r、p、a+切込み
  0.25mm 切削本数 250本 上記の切削条件でシリンダライナの内周面の仕上げ切削
加工を行い、チップの欠損の発生情況と仕上り寸法の変
化を測定してチップの摩耗程度を推定してチップの寿命
の良否を判定した。
Cutting conditions Rigid material Strong cast iron (equivalent to FC30 material) H cylinder Dry inner diameter 95 + sm x length 150a + m Cutting speed 142 + * / win Feed 0, 35 am / r, p, a + depth of cut 0.25 mm Number of cuts 250 above Finish cutting was performed on the inner circumferential surface of the cylinder liner under cutting conditions, and the occurrence of chipping and changes in finished dimensions were measured to estimate the degree of chip wear and determine whether the chip life was good or bad.

切削テストの結果を第1図に示す。The results of the cutting test are shown in Figure 1.

更に、これらの焼結体から厚さ2w++*X幅3mmX
長さ13mmの曲げ試験片を採取して引張り側の表面を
鏡面仕上げし、下記の試験を行なった(1)曲げ試験 (2)硬度試験 (3)破壊靭性試験 硬度試験及び破壊靭性試験は曲げ試験後の破断した材料
を用いて行なった。
Furthermore, from these sintered bodies, a thickness of 2w++* x width of 3mm x
A bending test piece with a length of 13 mm was taken, the tension side surface was mirror-finished, and the following tests were conducted: (1) Bending test (2) Hardness test (3) Fracture toughness test The hardness test and fracture toughness test were performed using bending The test was carried out using the fractured material after the test.

尚、比較品として、従来の切削用チップに用いられてい
る市販のアルミナ−炭化チタンセラミックスを用いて同
一の条件で試験を行なった。
As a comparative product, a test was conducted under the same conditions using a commercially available alumina-titanium carbide ceramic used in conventional cutting tips.

試験方法は下記によった。The test method was as follows.

(1)曲げ試験 JIS  R1601(ファインセラミックスの曲げ強
さ試験方法)に準拠した3点曲げ試験方法によって行な
った。試験片を10mmの距離に配置された2点点上に
おき、支点間の中央の1点にクロスヘツド速度Q、5H
/a+inの荷重を加え試験片が破壊するまでの最大荷
重を測定した。
(1) Bending test The test was conducted using a three-point bending test method based on JIS R1601 (bending strength test method for fine ceramics). Place the test piece on two points placed at a distance of 10 mm, and set the crosshead speed Q, 5H at one point in the center between the fulcrums.
A load of /a+in was applied and the maximum load until the test piece broke was measured.

(2)硬度試験 硬度測定は、ビッカース硬度計によって荷重20Kgで
行なった。
(2) Hardness Test The hardness was measured using a Vickers hardness meter at a load of 20 kg.

(3)破壊靭性試験 本試験はビッカース硬度計を用いたインデンテーション
法によって靭性の評価を行った。荷重は20Kgを用い
た。靭性の評価は破壊靭性Kcを求めてその大小によっ
て行った。破壊靭性Kcは新涼の式によって算出した。
(3) Fracture toughness test In this test, toughness was evaluated by the indentation method using a Vickers hardness meter. A load of 20 kg was used. The toughness was evaluated by determining the fracture toughness Kc. Fracture toughness Kc was calculated by Shinryo's formula.

試験結果を第1表に示す。The test results are shown in Table 1.

第1表 切削テストの結果、本発明のセラミックスチップは4本
共欠損等の異常の発生は認められず、寸法の変化は0 
、1 mm以内にあり問題なく、仕上り面も良好であっ
たのに対して、比較品のアルミナ−炭化チタンセラミッ
クスのチップは4本の内3本は加工本数138本、19
6本、248本目でチップの欠損が発生した。欠損の発
生しなかったのは1本だけであり、寸法変化は0.13
mmと本発明品より大きかったことから、本発明品のセ
ラミックス製チップは良好な耐衝撃性と耐摩耗性を示す
のに対して、比較品は相対的に靭性が低いために耐衝撃
性、耐摩耗性が劣っており、本発明のセラミックス製チ
ップの寿命が著しく改善されていることが認められる。
As a result of the cutting test in Table 1, the ceramic chips of the present invention showed no abnormality such as chipping of the four chips, and no change in dimensions.
, within 1 mm, with no problems and the finished surface was good, whereas the comparative alumina-titanium carbide ceramic chips had 3 out of 4 chips with 138 and 19 chips.
Chip defects occurred in the 6th and 248th chips. Only one piece had no damage, and the dimensional change was 0.13.
mm, which is larger than that of the inventive product, indicating that the inventive ceramic chip exhibits good impact resistance and abrasion resistance, whereas the comparative product has relatively low toughness, resulting in poor impact resistance and abrasion resistance. It is recognized that the wear resistance is poor, and the life of the ceramic chip of the present invention is significantly improved.

又試験片による試験結果は第1表から明らかなように1
曲げ強度は比較品のアルミナ−炭化チタンと略同程度で
あるが、特に破壊靭性は比較品のKcが4.2MPa西
に対して6.2MPa1と著しく改善されており靭性、
耐衝撃性に優れていることが認められる。硬度はHv2
030の高硬度を示し、耐摩耗性に優れているアルミナ
−炭化チタンセラミックスを230上回っており耐摩耗
性に優れていることが認められる。
In addition, the test results using the test pieces are 1, as is clear from Table 1.
The bending strength is approximately the same as that of the comparative alumina-titanium carbide product, but the fracture toughness in particular is significantly improved to 6.2 MPa1 compared to the comparative product's Kc of 4.2 MPa.
It is recognized that it has excellent impact resistance. Hardness is Hv2
It has a hardness of 0.030, which is 230 higher than alumina-titanium carbide ceramics, which have excellent wear resistance.

(効果) 本発明のセラミックス製の切削工具は衝撃に強く高靭性
、耐摩耗性に優れ、切削工具用チップ等に適用した場合
性能の著しい向上が図られた。
(Effects) The ceramic cutting tool of the present invention has excellent impact resistance, high toughness, and wear resistance, and when applied to a cutting tool tip, etc., the performance was significantly improved.

更に、粒状炭化珪素の使用によりホットプレスに代わり
、高生産性の期待できる常圧焼結/HIP処理が可能と
なった実用上の効果は顕著である。
Furthermore, the use of granular silicon carbide has a remarkable practical effect in that pressureless sintering/HIP processing, which can be expected to be highly productive, can be used in place of hot pressing.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 平均粒径3μm以下の炭化珪素5〜50容積%;平均粒
径0.1〜1.0μmの部分安定化ジルコニア2〜30
容積%(但し、このジルコニアと前記炭化珪素の合計は
55容積%以下);残部が実質的にアルミナからなるア
ルミナ−炭化珪素−ジルコニア複合焼結体で構成したこ
とを特徴とするセラミックス製切削工具。
5-50% by volume of silicon carbide with an average particle size of 3 μm or less; 2-30% of partially stabilized zirconia with an average particle size of 0.1-1.0 μm
Volume % (However, the total of this zirconia and the silicon carbide is 55 volume % or less); A ceramic cutting tool characterized by being constructed of an alumina-silicon carbide-zirconia composite sintered body, the remainder of which is substantially alumina. .
JP62300536A 1987-11-27 1987-11-27 Cutting tool made of ceramics Pending JPH01140901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300536A JPH01140901A (en) 1987-11-27 1987-11-27 Cutting tool made of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300536A JPH01140901A (en) 1987-11-27 1987-11-27 Cutting tool made of ceramics

Publications (1)

Publication Number Publication Date
JPH01140901A true JPH01140901A (en) 1989-06-02

Family

ID=17886005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300536A Pending JPH01140901A (en) 1987-11-27 1987-11-27 Cutting tool made of ceramics

Country Status (1)

Country Link
JP (1) JPH01140901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648303A (en) * 1994-02-25 1997-07-15 Kyocera Corporation Non-magnetic ceramics for recording/reproducing heads and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648303A (en) * 1994-02-25 1997-07-15 Kyocera Corporation Non-magnetic ceramics for recording/reproducing heads and method of producing the same

Similar Documents

Publication Publication Date Title
KR100227879B1 (en) Group ivb boride based cutting tools
EP0311264B1 (en) Ceramic cutting tool inserts and production thereof
KR20090116720A (en) cBN SINTERED BODY AND TOOL MADE OF CBN SINTERED BODY
JP2017165637A (en) Composite sintered body for cutting tool and cutting tool using the same
EP0262654B2 (en) Silicon nitride sintered material for cutting tools and process for making the same
KR20010086446A (en) Composite material
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2540662B2 (en) Whisker-reinforced ceramic cutting tool material
JPH1036174A (en) Sintered ceramic material and sintering of the same material and high-speed machining of the same material
JP2810922B2 (en) Alumina-zirconia composite sintered body and method for producing the same
JPH01140901A (en) Cutting tool made of ceramics
US6534428B2 (en) Titanium diboride sintered body with silicon nitride as a sintering aid
JPH02160674A (en) Inserted cutting blade made of oxide-based ceramic
JPS62187173A (en) Bite chip for machining iron material
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP2604155B2 (en) Ceramic tool with coating layer
JP2003136474A (en) Cutter using wc composite material
EP1116703B1 (en) Nanocomposite dense sintered alumina based ceramic cutting tool
JPH06107454A (en) Alumina sintered body and production thereof
JP2581936B2 (en) Alumina sintered body and method for producing the same
JPS6369767A (en) Cutting tip and machining tool
JPS6259568A (en) Ceramic material excellent in precise processability
JPH01145368A (en) Ceramic draw die
JP4636574B2 (en) Ceramic-based sintered material for tool and manufacturing method thereof
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools