JPH01139723A - Manufacture of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Manufacture of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH01139723A
JPH01139723A JP29784687A JP29784687A JPH01139723A JP H01139723 A JPH01139723 A JP H01139723A JP 29784687 A JP29784687 A JP 29784687A JP 29784687 A JP29784687 A JP 29784687A JP H01139723 A JPH01139723 A JP H01139723A
Authority
JP
Japan
Prior art keywords
annealing
temperature
cold rolling
final
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29784687A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Yasuyuki Hayakawa
康之 早川
Yoshiaki Iida
飯田 嘉明
Katsuo Iwamoto
岩本 勝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29784687A priority Critical patent/JPH01139723A/en
Publication of JPH01139723A publication Critical patent/JPH01139723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve magnetic flux density and to reduce iron loss by specifying the length of holding time in a high-temp. region in slab heating and annealing conditions just before the final cold rolling at the time of manufacturing a grain-oriented silicon steel sheet having a specific composition. CONSTITUTION:A slab having a composition consisting of, by weight, 0.05-0.085% C, 2.0-4.0% Si, 0.01-0.20% Mn, 0.008-0.100% S and/or Se, 0.010-0.065% solAl, 0.003-0.013% N, 0.001-0.30% Zn, and the balance essentially Fe and containing, if necessary, 0.003-0.030% Mo is heated up to >=1400 deg.C while regulating holding time in a temp. region as high as >=1200 deg.C to <=70min, which is hot-rolled and then subjected to a single cold rolling or to two-times or more cold rollings, while subjected to process annealing between the above cold rolling stages, so as to be formed into a sheet of the final thickness. At the time of annealing just before the final cold rolling, heating is carried out at 900-1200 deg.C for 10-300sec and cooling from 750 to 100 deg.C at the time of cooling is carried out within 175sec. After the final cold rolling, decarburizing annealing and final finish annealing are applied to the cold-rolled steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性の優れたすなわち磁束密度が高く
かつ鉄損も低い一方向性けい素鋼板の製造方法に関し、
とくにインヒビターの抑制力の強化と共に、1次再結晶
組織を効果的に制御することによって、磁気特性の有利
な向上を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet with excellent magnetic properties, that is, high magnetic flux density and low core loss.
In particular, it is intended to advantageously improve magnetic properties by strengthening the suppressing power of the inhibitor and effectively controlling the primary recrystallization structure.

(従来の技術) 一方向性けい素鋼板に要求される特性は、高い磁束密度
と低い鉄損である。従来、鉄損を低減させる方法として
は、Si含有量を高める、製品厚を薄くする、不純物を
少なくする、2次再結晶粒方位の(110) (001
)方位すなわちゴス方位への集積度を高める、2次再結
晶粒を小さくするなどの方法が知られている。ここに2
次再結晶粒のゴス方位集積度を高める方法としては、た
とえば、特公昭40−15644号公報に記載されてい
るようなAI含有素材に対する最終強冷延性や、特開昭
52− 12610号公報に記載されているようなB含
有素材から製造する方法などが知られている。
(Prior Art) Characteristics required of a grain-oriented silicon steel sheet are high magnetic flux density and low iron loss. Conventionally, methods for reducing iron loss include increasing the Si content, reducing the product thickness, reducing impurities, and changing the secondary recrystallized grain orientation from (110) to (001).
) orientation, that is, the Goss orientation, and reducing the size of secondary recrystallized grains are known. here 2
As a method for increasing the degree of Goss orientation accumulation of secondary recrystallized grains, for example, the final strong cold ductility of an AI-containing material as described in Japanese Patent Publication No. 15644/1980, and the method described in Japanese Patent Application Laid-Open No. 12610/1980 A method of manufacturing from a B-containing material as described above is known.

(発明が解決しようとする問題点) これらの方法によれば、2次再結晶粒のゴス方位集積度
は確実に高まるが、その反面、2次再結晶粒の粗大化が
避けられず、このため製品の鉄損はかえって劣化すると
ころに問題を残していた。
(Problems to be Solved by the Invention) According to these methods, the degree of Goss orientation accumulation of secondary recrystallized grains is certainly increased, but on the other hand, coarsening of the secondary recrystallized grains is unavoidable, and this Therefore, the problem remained that the iron loss of the product actually deteriorated.

この発明は、上記の問題を有利に解決するもので、2次
再結晶粒のゴス方位集積度を高め、しかも結晶粒を大き
くせずむしろ小さくして製品板の鉄損を低減し、併せて
磁束密度の改善も図った一方向性けい素鋼板の有利な製
造方法を提案することを目的とする。
This invention advantageously solves the above-mentioned problems by increasing the degree of Goss orientation integration of secondary recrystallized grains, and reducing the iron loss of the product sheet by reducing the grain size rather than increasing it. The purpose of this paper is to propose an advantageous manufacturing method for unidirectional silicon steel sheets that also improves magnetic flux density.

(問題点を解決するための手段) 発明者らは、上記の問題を解決すべく鋭意研究を重ねた
結果、 (a) MnSおよび/またはMnSeとAIN とを
インヒビターとする高磁束密度方向性けい素鋼板用素材
中にさらにZnを含有せしめることによって、磁束密度
を損なうことなく、2次再結晶粒を微細化して、鉄損を
改善し得ること、 (b)スラブの加熱を高温域で急速加熱し1400゜C
以上の高温で行なうことにより、磁束密度が安定して向
上すること、 (c)最終の冷間圧延を施こす直前の焼鈍を900〜1
200゜Cで行ない、しかも750゜Cから100゜C
までのの冷却を175秒以内として、固溶Cを増加させ
ることにより、1次再結晶集合組織が改善されて磁束密
度が向上すること の新規知見を得た。
(Means for Solving the Problems) As a result of intensive research in order to solve the above problems, the inventors have found that (a) a high magnetic flux density directional structure using MnS and/or MnSe and AIN as inhibitors; By further incorporating Zn into the material for raw steel sheets, secondary recrystallized grains can be refined and iron loss can be improved without impairing magnetic flux density. (b) Rapid heating of slabs in high temperature range Heat to 1400°C
(c) Annealing immediately before final cold rolling to 900 to 1
Performed at 200°C, and from 750°C to 100°C
New findings were obtained that by increasing solid solution C by cooling within 175 seconds, the primary recrystallization texture was improved and the magnetic flux density was increased.

さらに、この時の冷間圧延中の鋼板に超音波振動を付与
することにより、一層一方向性けい素鋼板の磁気特性が
向上することも併せて突き止めた。
Furthermore, we have also found that by applying ultrasonic vibration to the steel sheet during cold rolling, the magnetic properties of the unidirectional silicon steel sheet can be further improved.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、 C  :  0.025〜0.085 wt%(以下単
に%で示す)Si:2.O  〜4.0  % Mn :  0.01〜0.20  %S およびSe
のうち少なくとも一種:0、008〜o.ioo% sol Al : 0.010 〜0.065%および
N : 0.003〜0.013% を含み、かつ Zn : 0.001 〜0.30  %を含有し、残
部は実質的にFeの組成になる鋼スラブを、加熱後、熱
間圧延し、ついで1回または中間焼鈍を挾む2回の冷間
圧延を施して最終板厚としたのち、脱炭焼鈍ついで最終
仕上げ焼鈍を施す一連の工程よりなる一方向性けい素鋼
板の製造方法において、 i)スラブ加熱に際し、1200℃以上の高温域におけ
る滞留時間を70分以内として1400℃以上の温度ま
で加熱する、 ii)最終の冷間圧延の直前における焼鈍を、900〜
1200℃の温度で10〜300秒間とすると共に、冷
却時における750℃から工00℃までの冷却を175
秒以内とする ことからなる磁気特性の優れた一方向性けい素鋼板の製
造方法(第1発明)である。
That is, this invention has the following properties: C: 0.025 to 0.085 wt% (hereinafter simply expressed as %) Si: 2. O ~ 4.0% Mn: 0.01 ~ 0.20% S and Se
At least one of: 0, 008 to o. ioo% sol Contains Al: 0.010 to 0.065% and N: 0.003 to 0.013%, and Zn: 0.001 to 0.30%, and the remainder is substantially composed of Fe. A series of steps in which a steel slab is heated, hot rolled, then cold rolled once or twice with an intermediate annealing to achieve the final thickness, decarburized and then final annealed. A method for producing grain-oriented silicon steel sheets comprising the steps of: i) heating the slab to a temperature of 1400°C or higher with a residence time in a high temperature range of 1200°C or higher within 70 minutes; ii) final cold rolling. Annealing immediately before 900~
The temperature is 1200℃ for 10 to 300 seconds, and the cooling from 750℃ to 00℃ is 175℃.
This is a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties (first invention), which comprises manufacturing the unidirectional silicon steel sheet with excellent magnetic properties.

またこの発明は、上記の素材中にMoを0.003〜0
.030%の範囲において含有させてなる製造方法(第
2発明)である。
In addition, this invention contains Mo in the above material from 0.003 to 0.
.. This is a manufacturing method (second invention) in which the content is in the range of 0.030%.

以下この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明を由来するに至った実験結果について述べ
る。
First, the experimental results that led to this invention will be described.

実験T  Zn添加の効果 C: 0.065%、Si : 3.20%、Mn :
 0.075%、S: 0.025%、sol Al 
: 0.025%およびN : 0.008%を含有し
、残部は実質的にFeの組成になるけい素鋼溶鋼に、Z
nを無添加および0.0001〜1%の範囲で種々の量
添加し、計12本の鋼塊を鋳造した。
Experiment T Effect of Zn addition C: 0.065%, Si: 3.20%, Mn:
0.075%, S: 0.025%, sol Al
Z: 0.025% and N: 0.008%, and the remainder is substantially Fe.
A total of 12 steel ingots were cast with no addition of n and with various amounts of n added in the range of 0.0001 to 1%.

これらの鋼塊を1200℃に加熱したのち分塊圧延し、
次いで1350″Cに加熱してから熱間圧延を施して2
.0m厚の熱延板とした。次いでN2中で1100℃、
3分間の熱延板焼鈍を施した後、900″Cまで徐冷し
てから400℃までをミスト急冷し、その後放冷した。
After heating these steel ingots to 1200°C, they are bloomed and rolled.
Next, it was heated to 1350″C and then hot rolled to form 2
.. It was made into a hot rolled sheet with a thickness of 0 m. Then at 1100°C in N2,
After hot-rolled sheet annealing for 3 minutes, the sheet was slowly cooled to 900''C, rapidly cooled to 400C with mist, and then allowed to cool.

次いで1回の冷延で0.20ma+厚に仕上げたのち、
’lX Hz中で850℃15分間の脱炭焼鈍を施し、
その後MgOを主体とする分離剤塗布してから、II□
中で1200℃510hの仕上げ焼鈍を施した。
Next, after finishing it to 0.20ma+ thickness by one cold rolling,
Decarburization annealing at 850°C for 15 minutes at 1X Hz,
After that, after applying a separating agent mainly composed of MgO, II□
Finish annealing was carried out at 1200° C. for 510 hours.

かくして得られた製品板の磁気特性、2次粒径および表
面疵発生率について調べた結果を第1図に示す。
FIG. 1 shows the results of examining the magnetic properties, secondary particle size, and surface flaw occurrence rate of the product sheet thus obtained.

同図より明らかなように、一方向性けい素鋼素材中にZ
nを0.001〜0.30%の範囲にわたって含有させ
たものは、製品板において、2次粒径が小さくなり、著
しい鉄損の低減がもたらされている。
As is clear from the figure, Z
When n is contained in a range of 0.001 to 0.30%, the secondary particle size becomes smaller in the product sheet, resulting in a significant reduction in iron loss.

実験■ スラブ高温2.熱の効果 CF 0.060%、Si : 3.20%、Mn :
 0.078%、Se: 0.023%、sol Al
 : 0.020%、N : 0.009%、Zn :
 0.05%およびMo :  0.010%を含有し
、残部は実質的にPeの組成になる鋼を鋳造し、これを
1200℃に加熱した後分塊圧延し、さらに28分割し
た。
Experiment ■ Slab high temperature 2. Effect of heat CF 0.060%, Si: 3.20%, Mn:
0.078%, Se: 0.023%, sol Al
: 0.020%, N: 0.009%, Zn:
A steel containing 0.05% and Mo: 0.010%, with the remainder essentially having a composition of Pe, was cast, heated to 1200°C, then bloomed and further divided into 28 pieces.

次いで、1200℃に加熱した後、誘導加熱炉を用いて
到達温度を1350℃から1450’Cまでにわたって
変化させ、かつ、到達温度に至るまでの時間を種々に変
化させた後、到達温度で15分間保持してから、熱間圧
延を施して2.Oma+厚の熱延板とした。次いでN2
中で1100’C13分間の熱延板焼鈍を施した後、9
00’Cまで徐冷してから100℃までをミスト急冷し
、その後放冷した0次いで1回の冷延で0.20aII
厚に仕上げたのち、湿H2中で850℃15分間の脱炭
焼鈍を施し、その後MgOを主体とする分離剤を塗布し
てから、Nm;25%−11□ニア5%の雰囲気中にお
いて7℃/hの昇温速度で1200℃まで昇温し、引続
き1200℃において+1.中でtohの純化焼鈍を施
した。
Next, after heating to 1,200°C, the final temperature was varied from 1,350°C to 1,450'C using an induction heating furnace, and the time required to reach the final temperature was varied. After holding for a minute, hot rolling is performed.2. A hot-rolled sheet with a thickness of Oma+ was obtained. Then N2
After hot-rolled plate annealing at 1100'C for 13 minutes in
Slowly cooled to 00'C, then quenched to 100°C with mist, then left to cool to 0.20aII with one cold rolling.
After finishing thickly, decarburization annealing was performed at 850°C for 15 minutes in wet H2, after which a separating agent mainly composed of MgO was applied, and then annealing was performed in an atmosphere of 25%-11□Nm of 5% Nm; The temperature was raised to 1200°C at a heating rate of 1200°C/h, and then +1. Inside, TOH purification annealing was performed.

た。Ta.

かくして得られた製品板の81゜値を第2図に示す。The 81° value of the product board thus obtained is shown in FIG.

同図より明らかなように、スラブ加熱を、急、熱でかつ
1400℃以上の高温で行なった場合に、製品の磁束密
度の向上がもたらされている。
As is clear from the figure, when the slab is heated rapidly and at a high temperature of 1400° C. or higher, the magnetic flux density of the product is improved.

実験■ 最終の冷間圧延直前の焼鈍および冷却条件 溶鋼のリムド処理時間を変更し、C含有量のみが主とし
て異なる鋼塊A (C:  0.064%)、鋼塊B 
(C:  0.055%)および鋼塊(C:  0.0
33%)を溶製した。他の成分は、Si : 3.06
〜3.18%、Mn  :  0.065 〜0.07
2 %、 S  二 〇、021 〜0.023  %
、sol Al : 0.025〜0.023%、N 
:  0.007〜0.023%、Zn : 0.08
%の範囲であった。
Experiment■ Annealing and cooling conditions immediately before final cold rolling The rimmed treatment time of molten steel was changed, and steel ingot A (C: 0.064%) and steel ingot B were mainly differed only in C content.
(C: 0.055%) and steel ingot (C: 0.0
33%) was dissolved. Other components are Si: 3.06
~3.18%, Mn: 0.065 ~0.07
2%, S20,021~0.023%
, sol Al: 0.025-0.023%, N
: 0.007-0.023%, Zn: 0.08
% range.

これらの鋼塊を1200℃に加熱した後、誘導加熱炉を
用いて1420℃まで30分で昇温し、直ちに熱間圧延
により、2.3 mm厚の熱延板とした。
After heating these steel ingots to 1200°C, the temperature was raised to 1420°C in 30 minutes using an induction heating furnace, and immediately hot rolled into a hot rolled plate having a thickness of 2.3 mm.

次いで5分割してから、N2中にて1150’C13分
間の熱延板焼鈍を施した後、冷却用N2ガス量を変更し
たり、ミストで急冷したり、水中、湯中に投大して、第
3図の冷却曲線で示される冷却処理を施した。
Next, after dividing into 5 parts, hot-rolled sheets were annealed at 1150'C for 13 minutes in N2, after which the amount of N2 gas for cooling was changed, the sheets were rapidly cooled with mist, and the sheets were immersed in water or hot water. The cooling treatment shown by the cooling curve in Figure 3 was performed.

その後、鋼中の固溶C量を分析した後、鋼板をさらに分
割し50゛Cから300℃の温度範囲で圧延した。圧延
時の温度は、圧延油で冷却したり、加熱した圧延油を用
いたり、鋼板を加熱して調整した。
Thereafter, after analyzing the amount of solid solute C in the steel, the steel plate was further divided and rolled at a temperature ranging from 50°C to 300°C. The temperature during rolling was adjusted by cooling with rolling oil, using heated rolling oil, or heating the steel plate.

また、一部については、圧延のパス間においてのみ鋼板
を220℃に2分間加熱する時効処理を行い、さらに他
の一部については、150℃の温度で圧延中の鋼板に、
サイリスク方式の発振機を用いて、30kHzで1kH
の超音波振動を付与した。なお銅板の仕上げ板厚はすべ
て0.20mmとした。
In addition, for some parts, aging treatment is performed by heating the steel plate to 220°C for 2 minutes only between rolling passes, and for other parts, the steel plate is heated at a temperature of 150°C for 2 minutes.
1kHz at 30kHz using a Cyrisk type oscillator
Ultrasonic vibration was applied. The finished thickness of all copper plates was 0.20 mm.

次いで、湿H2中で850℃13分間の脱炭焼鈍を施し
、その後MgOを主体とする分離剤を塗布したから、N
、 ; 25%−Hz : 75%の雰囲気中において
10’C/hの昇温速度で1200℃まで昇温し、引続
き1200゛Cにおいて11□中で10hの純化焼鈍を
施した。
Next, decarburization annealing was performed at 850°C for 13 minutes in wet H2, and then a separation agent mainly composed of MgO was applied, so N
The temperature was raised to 1200°C at a rate of 10'C/h in an atmosphere of 25%-Hz:75%, and then purification annealing was performed at 1200°C in an 11□ chamber for 10 hours.

冷間圧延前の固溶C量と焼鈍冷却速度ならびに素材中の
C量との関係を第4図に示し、あわせて冷間圧延を15
0〜250℃の温度範囲で行ったものの製品板のBIG
の値を示す。
Figure 4 shows the relationship between the amount of solid solute C before cold rolling, the annealing cooling rate, and the amount of C in the material.
BIG of the product board of products tested in the temperature range of 0 to 250℃
indicates the value of

同図より明らかなように、焼鈍冷却時における750℃
〜100℃までの冷却時間を175秒以内に規制したも
のについては、冷却後の鋼板の固溶C量が0.02%以
上であり、BIGの値も高くなることがわかる。
As is clear from the figure, 750°C during annealing and cooling.
It can be seen that when the cooling time from ~100°C is regulated within 175 seconds, the amount of solid solute C in the steel plate after cooling is 0.02% or more, and the BIG value is also high.

さらに、冷却条件(d)の試料は、第3図において、7
50’Cから350℃までの冷却速度は、条件(C)と
ほぼ同一であるが、350℃以下の冷却速度が遅く、し
たがって、炭素がカーバイドとして析出してしまい、固
溶Cが減少する結果、所望の磁気特性が得られなかった
ものと思われる。このように、固溶Cを確保するために
は 350 ’C以下、100℃までの冷却も制限する
ことが重要である。
Furthermore, the sample under cooling condition (d) is 7.
The cooling rate from 50'C to 350°C is almost the same as condition (C), but the cooling rate below 350°C is slow, so carbon precipitates as carbide, resulting in a decrease in solid solution C. , it seems that the desired magnetic properties could not be obtained. Thus, in order to ensure solid solution C, it is important to limit cooling to below 350'C and even to 100°C.

第5図は、C含有量0.055%の鋼について、第3図
中(b)の冷却条件で冷却処理を行った製品板のBIO
を、各種、冷間圧延条件を変えて示したものである。こ
の図より、150〜250℃の温度での圧延によって、
BIGの値の高いものが得られることがわかる。さらに
超音波振動を付与した試料のB1゜は極めて高い。
Figure 5 shows the BIO of a product plate that has been cooled under the cooling conditions shown in Figure 3 (b) for steel with a C content of 0.055%.
are shown under various cold rolling conditions. From this figure, by rolling at a temperature of 150 to 250°C,
It can be seen that a product with a high BIG value can be obtained. Furthermore, B1° of the sample subjected to ultrasonic vibration is extremely high.

また、BIGの向上効果は、圧延パス間での時効処理で
は小さく、圧延時の温度が重要な要因になっていること
がわかる。この現象はコットレル効果によるものと解釈
できる。即ち、圧延加工によって導入された転位に、固
溶Cが拡散して転位に固着する。この固着したCの雰囲
気によって、転位の運動が妨げられ、組織の改善がもた
らされたものである。鋼板の温度を上げることにより固
溶Cの拡散を容易にするが、コットレル雰囲気によって
転位の運動を妨げるという目的のためには、転位の導入
と同時に、固溶Cを拡散させることが必要である。
Furthermore, it can be seen that the BIG improvement effect is small in the aging treatment between rolling passes, and the temperature during rolling is an important factor. This phenomenon can be interpreted as being due to the Cottrell effect. That is, solid solution C diffuses into the dislocations introduced by rolling and becomes fixed to the dislocations. This fixed C atmosphere prevented the movement of dislocations, resulting in an improvement in the structure. Increasing the temperature of the steel sheet facilitates the diffusion of solute C, but in order to prevent the movement of dislocations by creating a Cottrell atmosphere, it is necessary to diffuse solute C at the same time as introducing dislocations. .

したがって、パス間時効よりも、圧延時の鋼板温度を高
めることが効果が大きい。また鋼板の温度が高過ぎると
過時効となり、転位に固着するC量が減少しくで好まし
くない。圧延時に鋼板に振動を付与することにより特性
が向上することも、Cの拡散を促進し、転位に固着させ
る効果によるものと考えられる。
Therefore, increasing the steel sheet temperature during rolling is more effective than interpass aging. Moreover, if the temperature of the steel plate is too high, overaging will occur, and the amount of C fixed to dislocations will decrease, which is not preferable. The improvement in properties by applying vibration to the steel sheet during rolling is also considered to be due to the effect of promoting the diffusion of C and fixing it to dislocations.

第6図に、脱炭焼鈍後の1次再結晶板の集合組織を(1
10)極点図で示す。
Figure 6 shows the texture of the primary recrystallized plate after decarburization annealing (1
10) Show as a pole figure.

第6図(イ)は実験■において、MBを用いて、第3図
(e)の冷却条件で焼鈍後冷却した後、冷間圧延を25
0℃の温度で行い、ついで脱炭焼鈍を施したもの、一方
策6図の(ロ)は第3図(b)の冷却条件で焼鈍し、他
は(イ)と同一としたものである。
Figure 6 (a) shows that in experiment (2), MB was used, and after annealing and cooling under the cooling conditions of Figure 3 (e), cold rolling was performed for 25 minutes.
One was annealed at a temperature of 0°C and then subjected to decarburization annealing. On the other hand, (b) in Fig. 6 was annealed under the cooling conditions shown in Fig. 3 (b), and the other conditions were the same as (a). .

第6図より明らかなように、750℃から100 ’C
まで象、冷されたもの〔同図(ロ)〕は、(1111<
110>組織が低減し、(1111<112>組織が増
加していることがわかる。B、。を高める2次再結晶粒
の方位は(110) C00L)であり、(1111<
112>や(554) <225>は、この粒によって
喰われ易いことが知られており、この結果、(110)
(001)の方位の2次再結晶粒が成長し、製品の81
゜を高める結果となるが、+111) <110>組織
が強く残存している場合(110) ((101)から
方位のずれた2次再結晶粒(例えば(110) (11
0)粒)が成長するため、製品のBIGは劣る結果にな
ったものと考えられる。
As is clear from Figure 6, from 750°C to 100'C
The elephant, the cooled thing [same figure (b)] is (1111<
It can be seen that the 110> structure is reduced and the (1111<112> structure is increased. The orientation of the secondary recrystallized grains that increases B is (110) C00L), and the (1111<112> structure is increased.
112> and (554) <225> are known to be easily eaten by this grain, and as a result, (110)
Secondary recrystallized grains with (001) orientation grow, and the 81
(+111) If the <110> structure strongly remains (110) (Secondary recrystallized grains with orientation shifted from (101)
It is thought that the BIG of the product was inferior due to the growth of grains).

(作 用) この発明において成分組成を上記の範囲に限定したのは
次の理由による。
(Function) The reason why the component composition in this invention is limited to the above range is as follows.

C: 0.025〜0.085% Cは、熱間圧延後の結晶粒の微細化に有効に寄与するが
、含有量が0.025%に満たないと上記微細化効果に
乏しいだけでなく、この発明の特徴のひとつである冷間
圧延における固溶Cによる組織改善効果が不十分となり
、一方0.085%を超えると連続焼鈍による脱炭が困
難となり、やはり最終製品の磁気特性を劣化させるので
、C含有量は0.025〜0.085%の範囲に限定し
た。
C: 0.025-0.085% C effectively contributes to the refinement of grains after hot rolling, but if the content is less than 0.025%, not only is the above-mentioned refinement effect poor. , the microstructural improvement effect of solid solute C in cold rolling, which is one of the features of this invention, becomes insufficient, and on the other hand, if it exceeds 0.085%, decarburization by continuous annealing becomes difficult, which also deteriorates the magnetic properties of the final product. Therefore, the C content was limited to a range of 0.025 to 0.085%.

Si : 2.0〜4.0% Siが、2.0%に満たないとこの発明で所期したほど
の低い鉄損値を得ることが難しく、一方4.0%を超え
ると脆くなって冷間加工性が著しく劣化するので、Si
含有量は2.0〜4.0%の範囲に限定した。
Si: 2.0-4.0% If Si is less than 2.0%, it is difficult to obtain the low iron loss value desired by this invention, while if it exceeds 4.0%, it becomes brittle. Since cold workability deteriorates significantly, Si
The content was limited to a range of 2.0 to 4.0%.

Mn : 0.01〜0.20% Mnは、後述のSおよびSeと結合してMnS、 Mn
Seを形成し、インヒビターとして最終焼鈍において1
次再結晶粒の正常粒成長を抑制して(110) (00
1)方位の2次再結晶粒を優先的に発達させるのに有用
な元素であるが、0.01%に満たないとその添加効果
に乏しく、一方0.20%を超えると2次再結晶が生じ
なくなるので、含有量は0.01〜0.20%の範囲に
限定した。
Mn: 0.01-0.20% Mn combines with S and Se described below to form MnS, Mn
1 in the final annealing to form Se and as an inhibitor.
(110) (00
1) It is a useful element for preferentially developing oriented secondary recrystallized grains, but if it is less than 0.01%, its effect is poor, while if it exceeds 0.20%, secondary recrystallization occurs. Since this does not occur, the content was limited to a range of 0.01 to 0.20%.

Sおよび/またはSe : 0.008〜0.100%
SおよびSeは、上述した如(Mnと結合してインヒビ
ターMnS、 MnSeを形成する有用元素であり、少
なくともo、oos%を必要とする。しかしながらあま
りに多量に添加されるとSの場合は熱間割れを生じ、ま
たSeの場合は高価な元素であることからコストの上昇
を招く不利があるので、それぞれ単独添加または複合添
加いずれの場合においても0.100%を上限とした。
S and/or Se: 0.008-0.100%
As mentioned above, S and Se are useful elements that combine with Mn to form the inhibitors MnS and MnSe, and require at least o, oos%. However, if too large a quantity is added, in the case of S, hot Since Se has the disadvantage of causing cracks and increasing costs since it is an expensive element, the upper limit was set at 0.100% whether added alone or in combination.

sol Al :  0.010〜0.065%、  
N :0.003〜0.013% AtとNも、結合して微細析出物を形成し、インヒビタ
ーへINとして機能するが、含有量が上記の範囲をはず
れると析出物の分散状態が粒成長を効果的に抑制するに
は不適当な状態となり、その結果2次再結晶組織の発達
が不安定になるので、5olAlおよびNの含有量はそ
れぞれ 0.010〜0.065%および0.003〜
0.013%の範囲に限定した。
sol Al: 0.010-0.065%,
N: 0.003 to 0.013% At and N also combine to form fine precipitates and function as IN to the inhibitor, but if the content is out of the above range, the dispersion state of the precipitates becomes grain growth. The content of 5olAl and N is 0.010 to 0.065% and 0.003%, respectively, because the state is inappropriate for effectively suppressing the ~
It was limited to a range of 0.013%.

Zn : 0.001〜0.30% Znは、この発明においてとくに重要な元素であり、2
次再結晶粒の微細化、ひいては鉄損値の低減に極めて有
効に寄与する。しかしながら含有量が0.001%に満
たないとその添加効果に乏しく、一方0.30%を超え
るとヘゲ等の表面疵の発生が著しくなるので、Zn含有
量は0.001〜0.30%の範囲に限定した。
Zn: 0.001-0.30% Zn is a particularly important element in this invention, and 2
This extremely effectively contributes to the refinement of secondary recrystallized grains and, in turn, to the reduction of iron loss values. However, if the Zn content is less than 0.001%, the addition effect will be poor, while if it exceeds 0.30%, the occurrence of surface defects such as bald spots will become significant, so the Zn content should be 0.001 to 0.30 % range.

Mo : 0.003〜0.030% Moは、熱間脆性の改善のみならず、インヒビターの抑
制力の強化元素としてを用であり、とくにSおよび/ま
たはSeの含ifが高い場合や、スラブ加熱温度が高い
場合には、添加することが好ましい。しかしながらMo
が0.003より少ないとその添加効果に乏しく、一方
0.030%を超えると磁気特性の劣化を招くので、添
加量は0.003〜0.030%の範囲とする必要があ
る。
Mo: 0.003 to 0.030% Mo is used not only to improve hot brittleness but also as an element to strengthen the suppressing power of the inhibitor, especially when the content of S and/or Se is high, It is preferable to add it when the heating temperature is high. However, Mo
If it is less than 0.003, the effect of the addition will be poor, while if it exceeds 0.030%, the magnetic properties will deteriorate, so the amount added should be in the range of 0.003 to 0.030%.

次にこの発明に従う一方向性けい素鋼板の製造方法を、
工程順に説明する。
Next, a method for manufacturing a unidirectional silicon steel sheet according to the present invention,
The steps will be explained in order.

製鋼および熱延工程はスラブ加熱処理を除き一般に公知
の方法で良いが、スラブの加熱に際しては、誘導加熱方
式などを用いて1200℃以上を急速加熱し、1400
℃以上の温度まで昇温することが肝要である。ここにス
ラブ加熱到達温度が1400’Cより低い場合には、こ
の発明の成分組成になるけい素鋼スラブにおいては、M
nSまたは/およびMnSeの固溶が十分でなく高い磁
束密度の製品が得られない。またスラブ加熱において、
1200℃以上の温度域における滞留時間が70分を超
えた場合には、スラブの結晶粒の粗大化によって、磁気
特性の安定化が妨げられる。
Generally known methods may be used for the steel making and hot rolling processes, except for slab heat treatment, but when heating the slab, use an induction heating method or the like to rapidly heat the slab to 1200°C or higher.
It is important to raise the temperature to a temperature above ℃. When the slab heating temperature reached is lower than 1400'C, the silicon steel slab having the composition of this invention has M
The solid solution of nS and/or MnSe is insufficient and a product with high magnetic flux density cannot be obtained. In addition, in slab heating,
If the residence time in the temperature range of 1200° C. or higher exceeds 70 minutes, the stabilization of magnetic properties is hindered due to coarsening of the crystal grains of the slab.

ついで1回の冷間圧延もしくは中間焼鈍挾む2回の冷間
圧延によって所望の板厚とするが、最終の冷間圧延の直
前の焼鈍を900〜1200℃の温度で10〜300秒
間の条件下に施こすことが必要である。
Then, the desired thickness is achieved by one cold rolling or two cold rollings with intermediate annealing, but the annealing immediately before the final cold rolling is performed at a temperature of 900 to 1200°C for 10 to 300 seconds. It is necessary to apply it at the bottom.

ここで1回の冷間圧延の場合、直前の焼鈍とは、熱延板
の焼鈍に対応し、したがって1回の冷間圧延で所望の板
厚にする場合には熱延板焼鈍が必須となる。これに対し
2回の冷間圧延で所望の板厚とする場合には、中間焼鈍
が該焼鈍となるので、熱延板焼鈍は必ずしも必要ではな
い。
In the case of one cold rolling, the immediately preceding annealing corresponds to the annealing of the hot-rolled sheet, and therefore, hot-rolled sheet annealing is essential in order to achieve the desired thickness with one cold rolling. Become. On the other hand, when the desired plate thickness is obtained by cold rolling twice, hot-rolled plate annealing is not necessarily necessary because intermediate annealing is the annealing.

この最終の冷間圧延の直前の焼鈍において、処理温度が
900℃より低い場合、また時間が10秒より短い場合
には、鋼中Cの固溶が十分でなく、逆に温度が1200
℃を超える場合や時間が300秒を超える場合にはMn
Sおよび/またはMnSeの粗大化が生じ、いずれも磁
気特性が劣化する。
In the annealing immediately before the final cold rolling, if the treatment temperature is lower than 900°C or the time is shorter than 10 seconds, solid solution of C in the steel is insufficient, and conversely, if the temperature is lower than 900°C or the time is shorter than 10 seconds,
If the temperature exceeds ℃ or the time exceeds 300 seconds, Mn
Coarsening of S and/or MnSe occurs, and the magnetic properties of both deteriorate.

さらにこの焼鈍時における冷却を急冷とし、750゛C
から100 ℃までの冷却時間を175秒以内として、
次工程の冷間圧延前における固溶Cの量を0.020%
以上に調整する。急冷後の固溶C量は鋼中の全C量に依
存するから、全C1の少ない場合は、冷却速度をさらに
速めて、固溶Citを0.020%以上に調整すること
が好ましい。
Furthermore, the cooling during this annealing was rapid cooling to 750°C.
The cooling time from to 100 °C is within 175 seconds,
The amount of solid solution C before cold rolling in the next process is 0.020%
Adjust as above. Since the amount of solid solute C after quenching depends on the total amount of C in the steel, if the total C1 is low, it is preferable to further increase the cooling rate and adjust the solid solute Cit to 0.020% or more.

固溶C量が0.020%よりも少ない場合は、1次再結
晶集合組織の改善効果が小さく、満足いくほどの磁束密
度の向上は望み難い。
When the amount of solid solution C is less than 0.020%, the effect of improving the primary recrystallization texture is small, and it is difficult to expect a satisfactory increase in magnetic flux density.

最終の冷間圧延は、81〜95%程度の圧下率で行うこ
とが望ましく、またこの時の圧延は150〜250℃の
温間圧延で行なうことが望ましい。
The final cold rolling is preferably performed at a rolling reduction ratio of about 81 to 95%, and the rolling at this time is preferably performed at a warm rolling temperature of 150 to 250°C.

一方向性けい素鋼板の冷間圧延温度に関しては、N、P
、Gossによると(1953年The Iron A
ge February P147 You、11 B
e Getting Better Electric
alSheet and 5trip)、推奨される多
くの圧延温度は840°F (44B、9℃)から始め
て、下限200°F(93,3℃)から400@F (
204,4℃)であるとされている。この温度域では、
高温による圧延すべり系の変化、圧延バス間の時効など
様々の冶金学的現象が生じるが、発明者らは、この発明
のように固溶clを増加させた素材の冷間圧延に関して
は圧延時における時効、すなわち加工による転位の導入
とCの転位への移動が同時になされることが好ましいこ
とを究明した。即ち、適正な圧延時の鋼板の温度は15
0〜250℃と低いことが特徴であり、転位の導入と、
Cの移動が同時になされるという意味から、バス間にお
ける時効は避けることが望ましい。即ち、これによりC
が鋼中の転位に広範囲にかつ、高密度に固定され、1次
再結晶集合組織の著しい改善効果が得られるものと考え
られる。
Regarding the cold rolling temperature of unidirectional silicon steel sheet, N, P
, according to Goss (1953 The Iron A
ge February P147 You, 11 B
e Getting Better Electric
(alSheet and 5trips), many recommended rolling temperatures start at 840°F (44B, 9°C) and range from 200°F (93,3°C) to 400°F (
204.4°C). In this temperature range,
Various metallurgical phenomena occur, such as changes in the rolling slip system due to high temperatures and aging between rolling baths. It has been found that it is preferable to simultaneously introduce dislocations during aging, that is, to introduce dislocations through processing, and to move C to the dislocations. That is, the temperature of the steel plate during proper rolling is 15
It is characterized by a low temperature of 0 to 250℃, and it is characterized by the introduction of dislocations,
It is desirable to avoid aging between buses in the sense that C is moved at the same time. That is, this results in C
It is thought that the dislocations in the steel are fixed in a wide range and at a high density, resulting in a significant improvement effect on the primary recrystallization texture.

れる。It will be done.

なお実際の圧延においては、加工エネルギーの一部が熱
に変換されることにより、鋼板の温度は100〜150
℃程度には上昇しており、従って150〜250℃の温
度にするためには、鋼板やロールの温度低下の原因とな
っている圧延油の塗油の減量や停止、また鋼板の加熱に
よって、たやすく実現される。
In actual rolling, part of the processing energy is converted into heat, so the temperature of the steel plate is between 100 and 150°C.
Therefore, in order to bring the temperature to 150 to 250°C, reduce or stop the application of rolling oil, which causes the temperature of the steel plate and rolls to drop, and heat the steel plate. easily achieved.

さらにこの時、鋼板に2 kHz以上で1kW以上の振
動を付与することにより、製品の磁気特性が、さらに向
上する。これは、圧延時におけるCの移動を促進するた
めと考えられる。この点2 kHz未満、lk−未満の
振動ではCの移動促進効果が小さい。
Further, at this time, by applying vibrations of 1 kW or more at 2 kHz or more to the steel plate, the magnetic properties of the product are further improved. This is thought to be due to promoting the movement of C during rolling. In this point, vibrations of less than 2 kHz and less than lk- have a small C migration promoting effect.

ついで脱炭焼鈍を施すが、この脱炭焼鈍は700〜90
0℃の湿水素雰囲気中で鋼中C量が0.003%以下程
度になるまで行う。
Next, decarburization annealing is performed, but this decarburization annealing is performed at a temperature of 700 to 90
This is carried out in a wet hydrogen atmosphere at 0° C. until the amount of C in the steel is approximately 0.003% or less.

その後鋼板表面にMgOを主成分とする焼鈍分離剤を塗
布してから、窒素、水素、またはこれらの混合ガス雰囲
気中において、1100℃〜1250″Cの温度まで昇
温し、さらにこの温度において、水素雰囲気中に保持す
る仕上げ焼鈍を施して製品板とする。
After that, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then the temperature is raised to a temperature of 1100°C to 1250″C in a nitrogen, hydrogen, or mixed gas atmosphere, and further at this temperature, Finish annealing is performed in a hydrogen atmosphere to produce a product sheet.

なおかかる仕上げ焼鈍時に、インヒビター形成元素であ
るS、 Se、 AlおよびNはその大部分が除去され
、それぞれS : 0.003%以下、Se : 0.
003%以下、Al:  o、oot%以下、N : 
 0.002%以下程度まで低減される。
During the final annealing, most of the inhibitor-forming elements S, Se, Al and N are removed, with S: 0.003% or less and Se: 0.003% or less, respectively.
003% or less, Al: o, oot% or less, N:
It is reduced to about 0.002% or less.

また上記の仕上げ焼鈍板に、張力コーティングを施し、
700〜900℃の温度範囲で平坦化焼鈍を施して製品
板としてもよいのはいうまでもない。
In addition, a tension coating is applied to the above-mentioned finish annealed plate,
It goes without saying that a product plate may be produced by flattening annealing in a temperature range of 700 to 900°C.

(実施例) 失血A上 C: 0.058%、St : 3.21%、Mn :
 0.068%、S: 0.022%、sol Al 
:’0.024%、N : 0.008%およびZn 
:  0.054%を含み、残余は実質的にFeの組成
になるスラブを、1200℃以上の高温域での滞留時間
が第1表に示す種々の時間となるように調節して加熱し
、同じく第工表に示した温度に到達させたのち熱間圧延
により2.3鴫厚の熱延板とした。
(Example) Blood loss A and C: 0.058%, St: 3.21%, Mn:
0.068%, S: 0.022%, sol Al
: '0.024%, N: 0.008% and Zn
: Heating a slab containing 0.054% Fe with the remainder essentially having a composition such that the residence time in a high temperature range of 1200°C or higher is adjusted to the various times shown in Table 1, After reaching the temperature shown in the same process table, hot rolling was performed to obtain a hot rolled sheet with a thickness of 2.3 mm.

ついでこれらの熱延板を、N2中で1150℃12分間
加熱後、ミストを用いて750℃から100℃までを約
30秒で冷却し、酸洗後、200℃の温度で冷間圧延を
施して、いずれも0.28mmの板厚とした。次いで、
湿lh中で850℃13分間の脱炭焼鈍を施し、MgO
を主体とする分離剤を塗布してから、Nz : 50%
−11z : 50%の雰囲気中において7℃/hの昇
温速度で700″Cから1150℃までを昇温し、つい
でN2に切替え、1150℃から1200″Cまでを3
0℃/hで昇温後、1200℃で8時間保持し、400
℃まで冷却後、N2に切替えて冷却した。その後、未反
応の分離剤を除去後、張力コーティングを焼付けて、製
品とした。
These hot rolled sheets were then heated in N2 for 12 minutes at 1150°C, cooled from 750°C to 100°C in about 30 seconds using a mist, pickled, and then cold rolled at 200°C. In both cases, the plate thickness was 0.28 mm. Then,
Decarburization annealing was performed at 850°C for 13 minutes in a wet lh
After applying a separating agent mainly composed of Nz: 50%
-11z: Raise the temperature from 700"C to 1150"C at a heating rate of 7 °C/h in a 50% atmosphere, then switch to N2, and increase the temperature from 1150°C to 1200"C for 3
After heating at 0°C/h, hold at 1200°C for 8 hours,
After cooling to ℃, the atmosphere was switched to N2 for cooling. Thereafter, after removing the unreacted separating agent, the tension coating was baked to produce a product.

かくして得られた製品板の磁気特性について調べた結果
を第1表に示す。
Table 1 shows the results of an investigation of the magnetic properties of the product board thus obtained.

同表より明らかなように、スラブ加熱温度が1400℃
以上でかつ、1200℃以上の滞留時間が70分以内の
場合に、とりわけ良好な磁束密度および鉄損特性が得ら
れている。
As is clear from the table, the slab heating temperature is 1400℃
Above, when the residence time at 1200° C. or higher is 70 minutes or less, particularly good magnetic flux density and iron loss characteristics are obtained.

実施例2 C: 0.045%、Si : 3.29%、Mn :
 0.072%、S:0.008  %、Se : 0
.019  %、sol  Ai!、: 0.019 
 %、N : 0.0076%、Zn : 0.078
%およびMo : 0.012%を含み、残余は実質的
にFeの組成になるスラブを、1200℃以上の高温域
での昇温時間を35分間として1420’Cまで昇温し
、引続き工420℃に5分間保持した後、熱間圧延によ
り、2.7m+n厚の熱延板とした。
Example 2 C: 0.045%, Si: 3.29%, Mn:
0.072%, S: 0.008%, Se: 0
.. 019%, sol Ai! ,: 0.019
%, N: 0.0076%, Zn: 0.078
% and Mo: 0.012%, with the remainder being substantially Fe. The slab was heated to 1420'C in a high temperature range of 1200°C or higher for 35 minutes, and then processed to 420°C. After being held at ℃ for 5 minutes, hot rolling was performed to obtain a hot rolled plate having a thickness of 2.7 m+n.

この熱延板を一部950℃で2分間焼鈍し、他はそのま
まで酸洗後、第1回目の冷間圧延を施して1.80mm
の中間板厚とした。この鋼板を、1050℃で3分間焼
鈍後、ミストを用いて750℃から100℃までの間を
第2表に示した種々の時間で冷却した。
This hot-rolled plate was partially annealed at 950°C for 2 minutes, the rest was pickled, and then cold-rolled for the first time to a thickness of 1.80 mm.
The intermediate plate thickness was set as . This steel plate was annealed at 1050°C for 3 minutes and then cooled using mist from 750°C to 100°C for various times shown in Table 2.

ついでこれらの鋼板を50℃〜250 ’Cの温度範囲
において冷間圧延し、0.20mmの最終板厚とした。
These steel plates were then cold rolled in a temperature range of 50°C to 250'C to a final thickness of 0.20mm.

次いで、湿H2中で840℃15分間の脱炭焼鈍を施し
たのち、MgOを主体とする分離剤を塗布してから、N
z : 25%−〇、ニア5%の雰囲気中において8.
5’C/hの昇温速度で1200℃まで昇温した後、H
2雰囲気に切替え、1200℃で12時間保持してから
、600′Cまで冷却した後、Ntに切替えて冷却した
。その後、未反応の分離剤を除去したのち、張力コーテ
ィングを焼付けて製品とした。
Next, after decarburizing annealing at 840°C for 15 minutes in wet H2, a separation agent mainly composed of MgO was applied, and then N
z: 25%-〇, in an atmosphere of near 5% 8.
After heating up to 1200°C at a heating rate of 5'C/h, H
2 atmosphere was maintained at 1200°C for 12 hours, and then cooled to 600'C, and then switched to Nt and cooled. Then, after removing the unreacted separating agent, the tension coating was baked to produce a product.

かくして得られた製品板の磁気特性について調べた結果
を第2表に示す。
Table 2 shows the results of investigating the magnetic properties of the product plates thus obtained.

同表より明らかなように、最終冷延直前の焼鈍の冷却時
750℃から100℃までの間の冷却時間が175秒以
内の場合に良好な磁気特性が得られた。
As is clear from the same table, good magnetic properties were obtained when the cooling time from 750°C to 100°C during cooling during annealing immediately before final cold rolling was 175 seconds or less.

実施例3 C: 0.065%、St : 3.34%、Mn :
 0.073%、S:0.002%、Se : 0.0
23%、sol Aj! : 0.027%、N : 
0.0065%およびZn : 0.034%を含み、
残余は実質的にFeの組成になるスラブ、ならびにC:
0.046%、St : 3.34%、Mn : 0.
073%、S : 0.002%、Se : 0.02
2%、sol Al : 0.026%およびN:0.
0068を含有し、かつZnをそれぞれ0.0003%
と0.0005%含み、残余は実質的にFeの組成にな
るスラブを、1200℃以上の高温域での昇温時間を2
5分間として1435’Cまで昇温し、引続き15分間
保持したのち、熱間圧延により、3.0mm厚の熱延板
とした。
Example 3 C: 0.065%, St: 3.34%, Mn:
0.073%, S: 0.002%, Se: 0.0
23%, sol Aj! : 0.027%, N:
Contains 0.0065% and Zn: 0.034%,
The remainder is a slab of substantially Fe composition, as well as C:
0.046%, St: 3.34%, Mn: 0.
073%, S: 0.002%, Se: 0.02
2%, sol Al: 0.026% and N: 0.
0068 and 0.0003% Zn, respectively.
A slab containing 0.0005% of iron and 0.0005% of iron with the remainder being essentially Fe was heated for 2 hours in a high temperature range of 1200°C or higher.
The temperature was raised to 1435'C for 5 minutes, held for 15 minutes, and then hot rolled into a hot rolled sheet with a thickness of 3.0 mm.

ついでこれらの熱延板を、酸洗後、第1回目の冷間圧延
で1.70mmの中間板厚とし、次いで1100℃で2
分間の焼鈍後、ミストを用いて、750℃から100“
Cまでの間を75秒の時間で冷却した。次に75℃と1
50″Cの温度で冷間圧延を施して0.18mmの最終
板厚としたが、Znを含む鋼については、一部10kH
zで2kHの超音波振動を圧延時に付与した。次いで湿
11□中で860℃23分間の脱炭焼鈍を施し、MgO
を主体とする分離剤を塗布してから、800℃までN2
雰囲気中で昇温し、800℃から5℃/hの昇温速度で
1100℃までNt : 20%−Nz:80%の雰囲
気中で昇温し、ついで1100℃で雰囲気をtriに切
替えた後、25℃/hの昇温速度で1200℃まで昇温
し、引続き1200℃で5時間保持した後、600℃ま
で冷却し、N2ガスに切替えた後、常温まで冷却した。
These hot-rolled sheets were then pickled, cold-rolled for the first time to an intermediate thickness of 1.70 mm, and then rolled at 1100°C for 2
After annealing for 1 minute, annealing from 750℃ to 10” using a mist
It took 75 seconds to cool down to C. Next, 75℃ and 1
Cold rolling was carried out at a temperature of 50"C to give a final thickness of 0.18mm, but some steels containing Zn were rolled at 10kHz.
Ultrasonic vibration of 2 kHz was applied at Z during rolling. Next, decarburization annealing was performed at 860°C for 23 minutes in a humid 11□, and the MgO
After applying a separating agent mainly composed of
The temperature was raised in an atmosphere from 800°C to 1100°C at a heating rate of 5°C/h in an atmosphere of Nt: 20%-Nz: 80%, and then the atmosphere was switched to tri at 1100°C. The temperature was raised to 1200°C at a temperature increase rate of 25°C/h, and then held at 1200°C for 5 hours, cooled to 600°C, switched to N2 gas, and then cooled to room temperature.

その後、未反応の分離剤を除去後、張力コーティングを
焼付けて製品とした。
Thereafter, after removing the unreacted separating agent, the tension coating was baked to produce a product.

かくして得られた製品板の磁気特性について調べた結果
を第3表に示す。
Table 3 shows the results of investigating the magnetic properties of the product plates thus obtained.

同表より明らかなように、この発明に従う適量のZnを
含有している場合にのみ、良好な磁気特性が得られてい
る。
As is clear from the table, good magnetic properties are obtained only when an appropriate amount of Zn according to the present invention is contained.

(発明の効果) か(してこの発明によれば、磁気特性とくに磁束密度お
よび鉄損特性にすぐれた一方向性けい素鋼板を安定して
得ることができ、有利である。
(Effects of the Invention) According to the present invention, it is possible to stably obtain a grain-oriented silicon steel sheet having excellent magnetic properties, particularly magnetic flux density and iron loss properties, which is advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Zn含ThiとBlot W+7/SO+ 
2次粒径および表面疵発生率との関係を示したグラフ、
第2図は、スラブ加熱時における1200℃以上での滞
留時間と加熱到達温度とが磁束密度に及ぼす影響を示し
た図、 第3図は、最終の冷間圧延直前の焼鈍冷却時における冷
却温度曲線を示したグラフ、 第4図は、焼鈍後750°〜100℃間の冷却時におけ
る時間と固?g CffiおよびB1゜との関係を示し
たグラフ、 第5図は、冷間圧延時の温度とBIGとの関係を示した
グラフ、 第6図(イ)、(ロ)は、焼鈍後750°〜100℃間
の冷却速度が遅い場合(イ)と速い場合(ロ)との脱炭
焼鈍板の1次再結晶集合組織を比較して示した極点図で
ある。 特許出願人  川崎製鉄株式会社 第1図 Zn4廟量(%) ◎I、94丁≦Bv 01.93TiBto < f、Q4TΔ1.’/2 
T 5 Bto < 1.Q3 Tズ′フフ′力0實方
を弓工tヲ暴贋 (002第3図 万o’c耘lI!汐印井手過時間(S)第4図 oMA’%A  om4s   Δ4fAt%c妃 750’〜too°謬/lオ舵哨吟間(S)  府第5
図 圧透時温屓(℃) *1マスr81で22ぴC/l温屓で2扮閉め一■カ想
理l圧延中4′g1オfに5fヲ庚rtoKHrノ4辰
!方H1手第6図 (イ) D (f)) RI’)
Figure 1 shows Zn-containing Thi and Blot W+7/SO+
A graph showing the relationship between secondary particle size and surface flaw occurrence rate,
Figure 2 shows the influence of the residence time at 1200°C or higher and the heating temperature reached on the magnetic flux density during slab heating. Figure 3 shows the cooling temperature during annealing cooling immediately before the final cold rolling. The graph shown in Figure 4 shows the hardness versus time during cooling from 750°C to 100°C after annealing. g Graph showing the relationship between Cffi and B1°. Figure 5 is a graph showing the relationship between temperature during cold rolling and BIG. Figure 6 (a) and (b) are 750° after annealing. FIG. 3 is a pole figure showing a comparison of the primary recrystallization textures of decarburized annealed plates when the cooling rate between 100° C. is slow (a) and fast (b). Patent applicant Kawasaki Steel Corporation Figure 1 Zn4 amount (%) ◎I, 94 tons ≦Bv 01.93TiBto < f, Q4TΔ1. '/2
T 5 Bto < 1. Q3 T's 'fufu' power 0 actually the archer t is a fraud (002 Fig. 3, 100,000 o'c 耘lI!Shioin Ide elapsed time (S) Fig. 4 oMA'%A om4s Δ4fAt%c 750 '〜too°謬/lO Rudder Guard Room (S) Fu No. 5
Temperature during drawing (°C) * 1 mass R81, 22 pi C/l temperature, 2 rounds closed, 1 ■ Kaori l rolling, 4' g 1 off, 5 f to KH r no 4! Way H1 Figure 6 (a) D (f)) RI')

Claims (1)

【特許請求の範囲】 1、C:0.025〜0.085wt% Si:2.0〜4.0wt% Mn:0.01〜0.20wt% SおよびSeのうち少なくとも一種: 0.008〜0.100wt% solAl:0.010〜0.065wt%およびN:
0.003〜0.013wt% を含み、かつ Zn:0.001〜0.30wt% を含有し、残部は実質的にFeの組成になる鋼スラブを
、加熱後、熱間圧延し、ついで1回または中間焼鈍を挟
む2回の冷間圧延を施して最終板厚としたのち、脱炭焼
鈍ついで最終仕上げ焼鈍を施す一連の工程よりなる一方
向性けい素鋼板の製造方法において、 i)スラブ加熱に際し、1200℃以上の高温域におけ
る滞留時間を70分以内として1400℃以上の温度ま
で加熱する、 ii)最終の冷間圧延の直前における焼鈍を、900〜
1200℃の温度で10〜300秒間とすると共に、冷
却時における750℃から100℃までの冷却を175
秒以内とする ことを特徴とする磁気特性の優れた一方向性けい素鋼板
の製造方法。 2、C:0.025〜0.085wt% Si:2.0〜4.0wt% Mn:0.01〜0.20wt% SおよびSeのうち少なくとも一種: 0.008〜0.100wt% solAl:0.010〜0.065wt%N:0.0
03〜0.013wt%および Mo:0.003〜0.030wt% を含み、かつ Zn:0.001〜0.30wt% を含有し、残部は実質的にFeの組成になる鋼スラブを
、加熱後、熱間圧延し、ついで1回または中間焼鈍を挟
む2回の冷間圧延を施して最終板厚としたのち、脱炭焼
鈍ついで最終仕上げ焼鈍を施す一連の工程よりなる一方
向性けい素鋼板の製造方法において、 i)スラブ加熱に際し、1200℃以上の高温域におけ
る滞留時間を70分以内として1400℃以上の温度ま
で加熱する、 ii)最終の冷間圧延の直前における焼鈍を、900〜
1200℃の温度で10〜300秒間とすると共に、冷
却時における75℃から100℃までの冷却を175秒
以内とする ことを特徴とする磁気特性の優れた一方向性けい素鋼板
の製造方法。
[Claims] 1. C: 0.025 to 0.085 wt% Si: 2.0 to 4.0 wt% Mn: 0.01 to 0.20 wt% At least one of S and Se: 0.008 to 0.100wt% solAl: 0.010-0.065wt% and N:
A steel slab containing Zn: 0.003 to 0.013 wt%, Zn: 0.001 to 0.30 wt%, and the remainder having a composition of substantially Fe is heated, hot rolled, and then In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of cold rolling two times or intermediate annealing to achieve the final thickness, decarburizing annealing, and final finish annealing, i) a slab; When heating, the residence time in the high temperature range of 1200°C or higher is within 70 minutes, and the heating is performed to a temperature of 1400°C or higher. ii) The annealing immediately before the final cold rolling is carried out at 900°C or higher.
At a temperature of 1200°C for 10 to 300 seconds, and at the same time as cooling from 750°C to 100°C at 175°C.
A method for producing a unidirectional silicon steel sheet with excellent magnetic properties characterized by a manufacturing time of within seconds. 2. C: 0.025-0.085 wt% Si: 2.0-4.0 wt% Mn: 0.01-0.20 wt% At least one of S and Se: 0.008-0.100 wt% solAl: 0.010-0.065wt%N: 0.0
A steel slab containing Zn: 0.03 to 0.013 wt% and Mo: 0.003 to 0.030 wt%, and Zn: 0.001 to 0.30 wt%, with the remainder being substantially Fe, is heated. A unidirectional silicone material consisting of a series of steps of hot rolling, then cold rolling once or twice with intermediate annealing to give the final thickness, followed by decarburization annealing and final finish annealing. In the method for manufacturing a steel plate, i) heating the slab to a temperature of 1400°C or higher with a residence time in a high temperature range of 1200°C or higher within 70 minutes; ii) annealing immediately before the final cold rolling to a temperature of 900°C or higher;
A method for manufacturing a grain-oriented silicon steel sheet with excellent magnetic properties, characterized by cooling at a temperature of 1200°C for 10 to 300 seconds and cooling from 75°C to 100°C within 175 seconds.
JP29784687A 1987-11-27 1987-11-27 Manufacture of grain-oriented silicon steel sheet excellent in magnetic property Pending JPH01139723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29784687A JPH01139723A (en) 1987-11-27 1987-11-27 Manufacture of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29784687A JPH01139723A (en) 1987-11-27 1987-11-27 Manufacture of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH01139723A true JPH01139723A (en) 1989-06-01

Family

ID=17851908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29784687A Pending JPH01139723A (en) 1987-11-27 1987-11-27 Manufacture of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH01139723A (en)

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPH04120216A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2002060843A (en) Method for producing mirror finished grain oriented silicon steel sheet having high magnetic flux density
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH04301035A (en) Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction
JPH01139723A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2003201518A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH02159319A (en) Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property
JPH0678573B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties