JPH01134947A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01134947A
JPH01134947A JP29171787A JP29171787A JPH01134947A JP H01134947 A JPH01134947 A JP H01134947A JP 29171787 A JP29171787 A JP 29171787A JP 29171787 A JP29171787 A JP 29171787A JP H01134947 A JPH01134947 A JP H01134947A
Authority
JP
Japan
Prior art keywords
groove
heat treatment
substrate
manufacturing
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29171787A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
福田 匡志
Takao Setoyama
孝男 瀬戸山
Keita Tanukizuka
狸塚 慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29171787A priority Critical patent/JPH01134947A/en
Publication of JPH01134947A publication Critical patent/JPH01134947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To eliminate a failure due to the leak between element isolation regions by a method wherein an oxide film is formed on the side surfaces only of a groove to expose a substrate under the bottom surface of the groove, a diffused layer is grown in the groove and an impurity is diffused by heat treatment. CONSTITUTION:An Si oxide film 6 is formed on the side surfaces and the bottom surface of a groove 5a and the film 6 only on the bottom surface is removed to expose a substrate 1. A P-type impurity-containing spin-on-glass film 10 is grown in a groove 5. After that, a heat treatment is performed to form a P-type impurity diffused region 11 under the groove 5. A poly Si layer 12 is formed in the groove, the surface of the layer 12 is flattened by a polishing machine, an oxide film 2a is formed on the surface of the groove part and a nitride film 3 is removed.

Description

【発明の詳細な説明】 〔概要〕 素子分離に使用されている溝(トレンチ)をもつ半導体
装置を製造する方法に関し、 溝下のチャネルカット領域に拡散領域を形成するに際し
、溝に対する衝撃受なく、拡散領域のドーズ堡を十分に
とり得、又、ウェハそのものに対するm撃や汚染を少な
く製造し得ることを目的とし、 溝の側面のみに酸化膜を形成して溝の底面に基板を露出
させる工程と、溝に拡散源層を成長させる工程と、熱処
理によって該拡散源層の不純物を溝下の基板に拡散して
拡散領域を形成する工程とを含む。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a semiconductor device having a groove (trench) used for element isolation, when forming a diffusion region in a channel cut region under the groove, there is no impact to the groove. , a process in which an oxide film is formed only on the side surfaces of the trench and the substrate is exposed on the bottom surface of the trench, with the aim of obtaining a sufficient dose barrier in the diffusion region and manufacturing with less damage and contamination to the wafer itself. a step of growing a diffusion source layer in the groove; and a step of diffusing impurities in the diffusion source layer into the substrate under the groove by heat treatment to form a diffusion region.

〔産業上の利用分野〕[Industrial application field]

本発明は、素子分離に使用されている溝をもつ半導体装
置を製造する方法に関する。
The present invention relates to a method for manufacturing a semiconductor device having grooves used for element isolation.

素子分離のために溝を設けられたいわゆるドレンチアイ
ンレージョン構造の半導体装置では、溝下の基板に拡散
領域を形成してチャネルカット領域とし、一方、溝内に
は多結晶シリコン等を埋込んでその表面を平坦化する。
In semiconductor devices with a so-called trench inlay structure in which trenches are provided for element isolation, a diffusion region is formed in the substrate under the trench to serve as a channel cut region, while polycrystalline silicon, etc. is buried in the trench. flatten the surface.

そこで、上記拡散領域を形成する際、少ない工程で、し
かも、溝に対する衝撃受なく製造することが望ましい。
Therefore, when forming the above-mentioned diffusion region, it is desirable to manufacture it with fewer steps and without receiving any impact from the groove.

〔従来の技術〕[Conventional technology]

第3図は従来の製造方法を示す図である。同図(A>に
おいて、n型の基板1の上に例えば酸化シリコン(Sf
Oz>等の酸化膜2、窒化シリコン(SiN)等の窒化
g13、PSG等の遮蔽膜4をこの順で形成しく破線部
分も含む)、エツチングによって所定部分を除去する。
FIG. 3 is a diagram showing a conventional manufacturing method. In the same figure (A>), for example, silicon oxide (Sf) is placed on the n-type substrate 1.
An oxide film 2 such as oxide film 2, a nitride film 4 such as silicon nitride (SiN), and a shielding film 4 such as PSG are formed in this order (including the broken line portion), and predetermined portions are removed by etching.

次に、遮蔽膜4をマスクとしてエツチングして同図(B
)に示すように満5aを形成し、遮蔽膜4を除去する。
Next, etching is performed using the shielding film 4 as a mask.
), a layer 5a is formed and the shielding film 4 is removed.

次に、同図(C)に示す如く、満58の側面及び底面に
例えば500人の膜厚の酸化シリコン膜6aを形成し、
その後、ホウ素(B+)をイオン注入することにより、
溝58下の基板1にp型の拡rll領域7を形成する。
Next, as shown in FIG. 5C, a silicon oxide film 6a having a thickness of, for example, 500 mm is formed on the side and bottom surfaces of the 58 mm.
After that, by ion-implanting boron (B+),
A p-type expanded rll region 7 is formed in the substrate 1 below the groove 58.

次に、同図(D)に示す如く、膜厚が例えば2000八
程度になるように酸化シリコン膜6を形成し、その後、
同図(E)に示す如く、溝5の中に多結晶シリコン頑8
を形成する。
Next, as shown in FIG. 6(D), a silicon oxide film 6 is formed to a thickness of, for example, about 2,000 mm, and then,
As shown in FIG.
form.

次に、多結晶シリコン層8の表面を?iFf磨機を用い
て平坦化して同図(F)に示す如くとし、その後同図(
G)に示す如く、溝部分の表面に酸化膜2aを形成し、
窒化Pa3を除去する。
Next, what about the surface of polycrystalline silicon layer 8? It was flattened using an iFf polisher as shown in the same figure (F), and then the same figure (
As shown in G), an oxide film 2a is formed on the surface of the groove portion,
Nitride Pa3 is removed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来例は、第3図(C)に示す工程で拡散領域7を
形成するに際してイオン注入を行なっているので、溝5
aの周辺に衝撃が及び、その結果、欠陥を生じ、又、こ
の欠陥によってドーズ徂に限界があり、更に、イオン注
入装置という比較的高価な装置を用いるのでコスト高に
なる問題点があった。又、この従来例は、平坦化する際
に研磨機を用いているので、ウェハそのものに対して衝
撃が及び、しかも、研磨の際にエツチング液を用いるの
でウェハが汚染される問題点があった。
In the above conventional example, ion implantation is performed when forming the diffusion region 7 in the step shown in FIG.
The impact is applied to the periphery of a, resulting in defects, and this defect limits the dose range.Furthermore, the use of a relatively expensive ion implantation device increases costs. . In addition, this conventional example uses a polishing machine for planarization, which causes impact to the wafer itself, and also has the problem of contaminating the wafer because an etching solution is used during polishing. .

溝下のチャネルカット領域に拡散領域を形成するに際し
、溝に対する衝撃受なく、拡散領域のドーズ同を十分に
とり得、又、ウェハそのものに対する衝撃や汚染を少な
く製造できる半導体装置の製造方法を提供することを目
的とする。
To provide a method for manufacturing a semiconductor device, in which when forming a diffusion region in a channel cut region under a groove, the dose of the diffusion region can be maintained sufficiently without being affected by the groove, and the wafer itself can be manufactured with less impact and contamination. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、溝の側面のみに酸化膜を形成して溝の底
面に基板を露出させる工程と、溝に拡散源層を成長させ
る工程と、熱処理によって該拡散源層の不純物を溝下の
基板に拡散して拡散領域を形成する工程とを含むことを
特徴とする半導体装置の製造方法、及び拡散領域を形成
する工程は、熱処理によって拡散領域を形成すると同時
に熱処理によって拡散8I層の表面を平坦化する工程で
あることを特徴とする半導体装置の製造方法によって夫
々解決される。
The above problem is solved by the process of forming an oxide film only on the side surfaces of the trench to expose the substrate at the bottom of the trench, the step of growing a diffusion source layer in the trench, and the heat treatment to remove impurities from the diffusion source layer under the trench. A method for manufacturing a semiconductor device is characterized in that it includes a step of forming a diffusion region by diffusing into a substrate, and a step of forming a diffusion region includes forming a diffusion region by heat treatment and simultaneously treating the surface of the diffusion 8I layer by heat treatment. Each of these problems is solved by a method for manufacturing a semiconductor device characterized by a planarization step.

〔作用〕[Effect]

本発明では、満に拡散源層を形成し、熱処理によって拡
散源層の不純物を溝下の基板に拡散させ、拡散領域を形
成する。これにより、イオン注入で拡散領域を形成して
いた従来例に対して溝に衝撃を与えることがなく、欠陥
も生じないのでドーズ昂を十分にとり得、又、低コスト
に製造できる。
In the present invention, a diffusion source layer is completely formed, and impurities in the diffusion source layer are diffused into the substrate under the groove by heat treatment to form a diffusion region. As a result, unlike the conventional example in which the diffusion region is formed by ion implantation, no impact is applied to the groove, and no defects are generated, so that a sufficient dose increase can be obtained and manufacturing can be performed at low cost.

一方、熱処理によって拡散源層の表面を平坦化している
ので、エツチング液を使った研磨機を用いて平坦化して
いた従来例に対してウェハそのものに衝撃を与えること
はなく、又、ウェハを汚染することもない。
On the other hand, since the surface of the diffusion source layer is flattened by heat treatment, there is no impact on the wafer itself, and there is no contamination of the wafer, compared to the conventional method of flattening using a polishing machine using an etching solution. There's nothing to do.

〔実施例〕 第1図は本発明の製造方法の第1実施例を示す図である
。同図(A)、(B)に示す工程までは第3図(A)、
(B)に示す従来例の工程と同様であるので、その説明
を省略する。第1図(C)において、同図(B)に示す
溝5aの側面及び底面に膜厚が2000人稈度になるよ
うに酸化シリコン膜6を形成し、次に、同図(D)に示
す如く、底面の酸化シリコン股6のみを除去して基板1
を露出させる。
[Example] FIG. 1 is a diagram showing a first example of the manufacturing method of the present invention. Up to the steps shown in FIG. 3(A) and (B),
Since this process is similar to the process of the conventional example shown in (B), the explanation thereof will be omitted. In FIG. 1C, a silicon oxide film 6 is formed on the side and bottom surfaces of the groove 5a shown in FIG. As shown, only the silicon oxide crotch 6 on the bottom surface is removed and the substrate 1 is
expose.

次に、同図(E)に示す如く、溝5の中にp型不純物を
含んだSOG (スピン・オン・グラス)膜10(拡散
源膜)を成長させ、その後、熱処理を行なって溝5下の
p型不純物の拡散領域11を形成する。この場合、拡散
領域を形成するのに従来例のようにイオン注入を行なっ
ているのではないため、溝5の周辺に衝撃が及ぶことは
なく、欠陥を生じることはないので、ドーズ1を十分に
とることができ、高濃度のブヤネルカット領域を形成で
きる。
Next, as shown in FIG. 5E, an SOG (spin-on-glass) film 10 (diffusion source film) containing p-type impurities is grown in the groove 5, and then heat treatment is performed to form the groove 5. A lower p-type impurity diffusion region 11 is formed. In this case, since ion implantation is not performed to form the diffusion region as in the conventional example, no impact is applied to the periphery of the groove 5, and no defects are caused. It is possible to form a highly concentrated Boullanelle cut region.

次に、同図(F)に示す如く、満の中に多結晶シリコン
層12を形成し、次に、同図(G)に示す如く、従来例
と同様に、多結晶シリコン層12の表面を研磨機で平坦
化し、その後、同図(H)に示す如く、溝部分の表面に
酸化膜2aを形成し、窒化膜3を除去する。
Next, as shown in the figure (F), a polycrystalline silicon layer 12 is formed in the middle, and then, as shown in the figure (G), the surface of the polycrystalline silicon layer 12 is is planarized using a polisher, and then, as shown in FIG. 2H, an oxide film 2a is formed on the surface of the groove portion, and the nitride film 3 is removed.

上記第1実施例は、平坦化の際にウェハそのものに衝撃
が及び、ウェハが汚染されてしまう点は従来例と変りな
いが、拡散領域形成の際に熱処理によっているので溝に
衝撃を与えることなく形成でき、又、そのドーズ量を十
分にとり得、更に、熱処理装置はイオン注入装置等に比
して安価であるので、低コストである。
The first embodiment described above is the same as the conventional example in that the wafer itself is subjected to impact during planarization and the wafer is contaminated, but since heat treatment is used when forming the diffusion region, there is no impact on the grooves. Furthermore, since the heat treatment equipment is cheaper than the ion implantation equipment and the like, the cost is low.

第2図は本発明の製造方法の第2実施例を示す図である
。このものは、第1図(A)〜(D)に示す工程が終了
した後、第2図(A>に示す工程となる。第2図(A)
に示す如く、溝5の内部にp型不純物を含んだSOG層
20a(拡散源膜)を形成する。次に、熱処理を行なっ
て同図(B)に示すように満5下にp型不純物の拡散領
域21を形成する。これと同時に、熱処理によってSO
GG20aが溶融してその表面が略平坦化され、SOG
FI20が形成される。
FIG. 2 is a diagram showing a second embodiment of the manufacturing method of the present invention. After the steps shown in FIGS. 1(A) to (D) are completed, this product undergoes the steps shown in FIG. 2 (A>. FIG. 2(A)
As shown in FIG. 2, an SOG layer 20a (diffusion source film) containing p-type impurities is formed inside the groove 5. Next, a heat treatment is performed to form a p-type impurity diffusion region 21 approximately 50 m below, as shown in FIG. At the same time, through heat treatment, SO
GG20a is melted and its surface is almost flattened, and SOG
FI20 is formed.

次に、同図(C)に示す如く、例えば等方性のドライエ
ツチングにより、SOG膜20の表面を平坦化し、次に
、同図(D)に示す如く、溝部分の表面に酸化膜2aを
形成し、窒化膜3を除去する。
Next, as shown in FIG. 5C, the surface of the SOG film 20 is planarized by, for example, isotropic dry etching, and then, as shown in FIG. is formed, and the nitride film 3 is removed.

上記第2実施例は、第1実施例と同様に、熱処理によっ
ているので溝に衝撃を与えることはなく、そのドーズ量
を十分にとり得、更に低コストである他、熱処理工程の
段階でSOG層20の表面を略平坦化できるので、後は
ドライエツチング等の方法によって第2図(C)に示す
平坦状態にでき、従って、研@機を用いる方法に比して
ウェハそのものに衝撃が及ぶことはなく、しかも、ウェ
ハを汚染することもない。
In the second embodiment, as in the first embodiment, since the heat treatment is performed, there is no impact on the grooves, a sufficient dose can be obtained, and the cost is low. Since the surface of the wafer 20 can be approximately flattened, the wafer itself can be made flat by a method such as dry etching, as shown in FIG. Moreover, it does not contaminate the wafer.

〔発明の効果〕 以上説明した如く、本発明によれば、熱処理で拡散領域
を形成しているので、イオン注入による従来例に対して
溝に衝撃を与えることはなく、そのドーズ量を十分にと
り得、従って、耐圧を高くとり得るので素子弁111t
lT4域間のリークによる不良をなくし得、又、熱処理
装4はイオン注入装置に比して安価であるので、イオン
注入による従来例に比して低コストに1!!造でき、更
に、熱処理によって拡散m層の表面を平坦化できるので
、研磨機を用いる方法に比してウェハそのものに衝撃が
及ぶことはなく、しかも、エツチング液を用いないので
ウェハを汚染することもない。
[Effects of the Invention] As explained above, according to the present invention, since the diffusion region is formed by heat treatment, there is no impact on the groove compared to the conventional example using ion implantation, and the dose amount can be sufficiently controlled. Therefore, the element valve 111t can have a high withstand pressure.
It is possible to eliminate defects due to leakage between the lT4 regions, and since the heat treatment equipment 4 is cheaper than the ion implantation equipment, the cost is 1! lower than the conventional example using ion implantation. ! Furthermore, since the surface of the diffusion m-layer can be flattened by heat treatment, there is no impact on the wafer itself compared to the method using a polisher, and since no etching solution is used, there is no possibility of contaminating the wafer. Nor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明のliI造方決方法1及
び第2実施例を示す図、 第3図は従来の製造方法を示す図である。 図において、 1はn型の基板、 2.28.6は酸化膜、 3は窒化膜、 5.5aは溝、 10.20a、20はp型不純物を含むSOG膜(拡散
源WA)、800層(拡散源層)11.21は拡散領域
、 12は多結晶シリコン層 を示す。 (A)            (E)本発明の製造方
法の第2実施例を示す1第2図 ””=−−−”−7 従来の製造方法を示す図 第3図
1 and 2 are diagrams showing a first and second embodiment of the liI manufacturing method of the present invention, respectively, and FIG. 3 is a diagram showing a conventional manufacturing method. In the figure, 1 is an n-type substrate, 2.28.6 is an oxide film, 3 is a nitride film, 5.5a is a groove, 10.20a, 20 is an SOG film containing p-type impurities (diffusion source WA), 800 Layer (diffusion source layer) 11.21 is a diffusion region, and 12 is a polycrystalline silicon layer. (A) (E) Figure 1 2 showing the second embodiment of the manufacturing method of the present invention ""=----"-7 Figure 3 showing the conventional manufacturing method

Claims (3)

【特許請求の範囲】[Claims] (1)基板(1)に溝(5a)を形成してその下に拡散
領域(11)(21)を形成するトレンチアイソレーシ
ヨン構造の半導体装置を製造する方法において、 上記溝(5a)の側面のみに酸化膜(6)を形成して上
記溝(5a)の底面に上記基板(1)を露出させる工程
と、 溝(5)に拡散源層(10)(20)を成長させる工程
と、 熱処理によって該拡散源層(10)(20)の不純物を
該溝(5)下の基板(1)に拡散して拡散領域(11)
(21)を形成する工程とを含むことを特徴とする半導
体装置の製造方法。
(1) In a method for manufacturing a semiconductor device with a trench isolation structure, in which a groove (5a) is formed in a substrate (1) and diffusion regions (11) and (21) are formed therebelow, the groove (5a) is forming an oxide film (6) only on the side surfaces to expose the substrate (1) at the bottom of the groove (5a); and growing diffusion source layers (10) and (20) in the groove (5). , Diffuse the impurities in the diffusion source layers (10) and (20) into the substrate (1) under the groove (5) by heat treatment to form a diffusion region (11).
(21) A method for manufacturing a semiconductor device, comprising the step of forming (21).
(2)該拡散領域(21)を形成する工程は、該熱処理
によって該拡散領域(21)を形成すると同時に該熱処
理によつて該拡散源層(20)の表面を平坦化する工程
であることを特徴とする特許請求の範囲第1項に記載の
半導体装置の製造方法。
(2) The step of forming the diffusion region (21) is a step of forming the diffusion region (21) by the heat treatment and at the same time flattening the surface of the diffusion source layer (20) by the heat treatment. A method for manufacturing a semiconductor device according to claim 1, characterized in that:
(3)該基板(1)はn型であり、該拡散源層(10)
(20)はp型の不純物を含んだSOG(スピン・オン
・グラス)であることを特徴とする特許請求の範囲第1
項又は第2項に記載の半導体装置の製造方法。
(3) The substrate (1) is n-type, and the diffusion source layer (10)
Claim 1, characterized in that (20) is SOG (spin on glass) containing p-type impurities.
The method for manufacturing a semiconductor device according to item 1 or 2.
JP29171787A 1987-11-20 1987-11-20 Manufacture of semiconductor device Pending JPH01134947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29171787A JPH01134947A (en) 1987-11-20 1987-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29171787A JPH01134947A (en) 1987-11-20 1987-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01134947A true JPH01134947A (en) 1989-05-26

Family

ID=17772483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29171787A Pending JPH01134947A (en) 1987-11-20 1987-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01134947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257947A (en) * 1990-03-08 1991-11-18 Matsushita Electron Corp Formation and isolation method for element
KR20040050512A (en) * 2002-12-10 2004-06-16 주식회사 하이닉스반도체 Method for forming STI of semiconductor device
KR100518536B1 (en) * 2002-08-07 2005-10-04 삼성전자주식회사 Method of planarizing the surface of semiconductor device and semiconductor device manufactured by the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257947A (en) * 1990-03-08 1991-11-18 Matsushita Electron Corp Formation and isolation method for element
KR100518536B1 (en) * 2002-08-07 2005-10-04 삼성전자주식회사 Method of planarizing the surface of semiconductor device and semiconductor device manufactured by the same
KR20040050512A (en) * 2002-12-10 2004-06-16 주식회사 하이닉스반도체 Method for forming STI of semiconductor device

Similar Documents

Publication Publication Date Title
JP2806277B2 (en) Semiconductor device and manufacturing method thereof
JP2786081B2 (en) SOI substrate
JPH0344419B2 (en)
SE7606869L (en) WAY TO TREAT SEMICONDUCTOR DEVICES
JPH0680724B2 (en) Method of manufacturing isolated CMOS FET integrated device
US4968628A (en) Method of fabricating back diffused bonded oxide substrates
US5897362A (en) Bonding silicon wafers
JP2735407B2 (en) Semiconductor device and manufacturing method thereof
JPH01134947A (en) Manufacture of semiconductor device
JPS6118856B2 (en)
US6087244A (en) Methods of forming semiconductor-on-insulator devices including buried layers of opposite conductivity type
JPS6038831A (en) Semiconductor device and manufacture thereof
JPH0789562B2 (en) Element isolation method for integrated circuit
JPH0969609A (en) Buried element isolation substrate and its manufacturing method
KR960014447B1 (en) Method of isolation of a semiconductor device
JP2001144273A (en) Method for fabricating semiconductor device
JPS6018930A (en) Manufacture of semiconductor device
JPH05152306A (en) Semiconductor substrate and manufacture thereof
TWI725151B (en) Isolation structure and method of fabricating the same
KR100312981B1 (en) A method of fabricating bonding type SOI wafer
JPH11214503A (en) Manufacture of semiconductor device
KR20030088627A (en) Method for manufacturing shallow trench isolation free from bad effect of dent
JPH0287632A (en) Manufacture of semiconductor device
JPS6129537B2 (en)
JPH02126650A (en) Manufacture of dielectric isolation semiconductor device