JPH0789562B2 - Element isolation method for integrated circuit - Google Patents

Element isolation method for integrated circuit

Info

Publication number
JPH0789562B2
JPH0789562B2 JP60246662A JP24666285A JPH0789562B2 JP H0789562 B2 JPH0789562 B2 JP H0789562B2 JP 60246662 A JP60246662 A JP 60246662A JP 24666285 A JP24666285 A JP 24666285A JP H0789562 B2 JPH0789562 B2 JP H0789562B2
Authority
JP
Japan
Prior art keywords
groove
element isolation
forming
integrated circuit
channel cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60246662A
Other languages
Japanese (ja)
Other versions
JPS62106645A (en
Inventor
大▲さんずいに是▼ 申
政男 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60246662A priority Critical patent/JPH0789562B2/en
Publication of JPS62106645A publication Critical patent/JPS62106645A/en
Publication of JPH0789562B2 publication Critical patent/JPH0789562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 〔概要〕 集積回路の素子分離法として、素子分離溝埋込型が高集
積度ICに多く用いられている。この構造においても素子
分離溝を取り巻く基板内面に動作時に反転層を生じ素子
間リークを発生する問題があり、通常チャネルカットを
形成する。本発明は特性の良好なチャネルカットを簡単
に形成する方法を述べる。
DETAILED DESCRIPTION [Outline] As an element isolation method for an integrated circuit, an element isolation trench buried type is often used in a highly integrated IC. Also in this structure, there is a problem that an inversion layer is generated during operation on the inner surface of the substrate surrounding the element isolation groove to cause element leakage, and a channel cut is usually formed. The present invention describes a method for easily forming a well-characterized channel cut.

〔産業上の利用分野〕[Industrial application field]

本発明は、集積回路の素子分離溝の周囲に形成するチャ
ネルカットの形成方法にに関する。
The present invention relates to a method of forming a channel cut formed around an element isolation groove of an integrated circuit.

集積回路の各素子を分離する方法として、pn接合分離
法、酸化膜分離法、埋込型素子分離法等が用いられてい
るが、高集積度のICでは埋込型素子分離法が多く用いら
れつつある。
The pn junction isolation method, the oxide film isolation method, the buried element isolation method, etc. are used as the method for isolating each element of an integrated circuit, but the embedded element isolation method is often used for highly integrated ICs. It's being done.

埋込型素子分離法は、基板に断面V字型あるいは基板面
に垂直なU字型溝を形成した後、その内面に酸化膜を形
成してポリシリコンを埋込む構造である。
The buried element isolation method is a structure in which a V-shaped cross section or a U-shaped groove perpendicular to the substrate surface is formed in a substrate, and then an oxide film is formed on the inner surface to bury polysilicon.

然し、この構造のみでは動作時に分離溝の上面に形成さ
れる配線層の電位の影響を受けて、分離溝の周辺に接す
る基板面に反転層を生じ、同一素子の電極間あるいは隣
接素子との電極間にリーク電流を発生することがある。
However, with this structure alone, under the influence of the potential of the wiring layer formed on the upper surface of the separation groove during operation, an inversion layer is generated on the substrate surface in contact with the periphery of the separation groove, and the inversion layer between the electrodes of the same element or the adjacent element Leak current may occur between the electrodes.

これを防止するためのチャネルカットあるいはチャネル
ストップと呼ばれる溝に接する基板面に高濃度不純物層
を形成する。
To prevent this, a high-concentration impurity layer is formed on the surface of the substrate in contact with a groove called a channel cut or channel stop.

然し、この不純物領域の形成をイオン打込みによる場
合、チャネルカットを分離溝の周囲全面に一様に形成出
来ない問題があり改善が要望されている。
However, when this impurity region is formed by ion implantation, there is a problem that the channel cut cannot be formed uniformly over the entire circumference of the separation groove, and improvement is desired.

〔従来の技術〕[Conventional technology]

従来の技術によるU字型素子分離溝にチャネルカットを
形成する工程を第2図により詳細説明する。
A conventional process of forming a channel cut in the U-shaped element isolation groove will be described in detail with reference to FIG.

p型基板1を用いて、酸化膜2と窒化膜3を積層する。
分離溝形成領域4上の酸化膜と窒化膜をエッチング除去
して開口する。
The oxide film 2 and the nitride film 3 are laminated using the p-type substrate 1.
The oxide film and the nitride film on the isolation groove formation region 4 are removed by etching to form an opening.

異方性エッチング(RIE法)により上記分離溝形成領域
にU字型溝5を形成する。
A U-shaped groove 5 is formed in the isolation groove formation region by anisotropic etching (RIE method).

次いで、ボロンBのイオン打込みを行う。イオン打込み
で注入されるイオンには方向性があり、第2図に如き形
状のU字型溝5では溝の底面を囲む周辺領域6に大部分
が注入されアニール後p+チャネルカット7が形成され
る。
Then, boron B is ion-implanted. Ions implanted by ion implantation have a directional property, and in the U-shaped groove 5 having a shape as shown in FIG. 2, most of the ions are implanted in the peripheral region 6 surrounding the bottom surface of the groove, and p + channel cut 7 is formed after annealing. To be done.

その後、U字型溝の内面に酸化膜8を形成し、ポリシリ
コン9を埋込んで平坦化を行う工程については説明を省
略する。
After that, the description of the step of forming the oxide film 8 on the inner surface of the U-shaped groove and burying the polysilicon 9 for planarization is omitted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記に述べた、従来の技術によるチャネルカット形成方
法では、不純物拡散領域が溝の底面の周辺領域6に限定
されることである。
In the above-described conventional channel cut forming method, the impurity diffusion region is limited to the peripheral region 6 on the bottom surface of the groove.

そのため、基板上に配線部が形成され、この集積回路を
動作させた時、分離溝のp+チャネルカット7以外の周辺
領域でn型の反転層を生じ、素子電極間あるいは隣接素
子との間にリーク電流を発生するという問題を生じる。
Therefore, when a wiring portion is formed on the substrate and this integrated circuit is operated, an n-type inversion layer is generated in the peripheral region other than the p + channel cut 7 of the separation groove, and the n-type inversion layer is formed between the device electrodes or the adjacent device. This causes a problem of generating a leak current.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、集積回路の素子分離溝形成工程におい
て、分離溝を形成した後、該溝の内面に第1の酸化膜を
形成し、B2O3を含むSOGを塗布して、該溝の底部を部分
的に埋込み乾燥する工程と、該溝の内面に第2の酸化膜
を形成して、B2O3とP2O5を含むSOGを塗布して、該溝を
全面的に埋込み乾燥する工程と、熱処理により該溝の周
辺にp+拡散領域を形成する工程を含む集積回路の素子
分離方法によって解決される。
The above-mentioned problem is that in the element isolation trench forming step of the integrated circuit, after the isolation trench is formed, the first oxide film is formed on the inner surface of the trench, and SOG containing B 2 O 3 is applied to the trench. The step of partially embedding the bottom of the groove and drying, and forming a second oxide film on the inner surface of the groove, applying SOG containing B 2 O 3 and P 2 O 5 to completely cover the groove. This is solved by an element isolation method for an integrated circuit including a step of burying and drying and a step of forming a p + diffusion region around the groove by heat treatment.

〔作用〕[Action]

チャネルカットの不純物領域の形成を、分離溝を埋込ん
だB2O3を含んだSOGからのBの熱拡散により行ってい
る。
The formation of the channel cut impurity region is performed by thermal diffusion of B from SOG containing B 2 O 3 filling the isolation trench.

そのため不純物量のコントロールが容易であり、チャネ
ルカットの形成と分離溝の埋込みを同時に行うことが可
能となる。
Therefore, the amount of impurities can be easily controlled, and it becomes possible to simultaneously form the channel cut and fill the isolation trench.

上記B2O3を含んだSOGによる溝の埋込みを2工程に分離
して、最初にB2O3のみを含むSOGを用いて部分的に分離
溝を埋込み、次の工程でB2O3とP2O5とを含むSOGで埋込
み、後工程でのエッチングレートを小さくして平坦化作
業を容易とすることが出来る。
Separating the embedding groove by SOG containing the B 2 O 3 in two steps, embedding the partial separation trench using a SOG containing first only the B 2 O 3, B 2 O 3 in the next step It is possible to bury it with SOG containing P 2 O 5 and P 2 O 5 and reduce the etching rate in the subsequent process to facilitate the planarization work.

また本発明の方法で、チャネルカット領域のプロファイ
ルのコントロールも容易となる。
The method of the present invention also facilitates control of the profile of the channel cut region.

〔実施例〕〔Example〕

本発明による一実施例を第1図により第3図の従来技術
と比較して詳細説明する。
An embodiment of the present invention will be described in detail with reference to FIG. 1 in comparison with the prior art of FIG.

第1図において、U字型素子分離溝5の形成工程迄は従
来の技術の項で説明せる方法と特に変わらない。
In FIG. 1, the method up to the step of forming the U-shaped element isolation groove 5 is the same as the method described in the section of the conventional technique.

先ず、前記溝5の内面に熱酸化により酸化膜8を200Å
形成する。
First, an oxide film 8 of 200 Å is formed on the inner surface of the groove 5 by thermal oxidation.
Form.

次いで、従来技術第3図ではB2O3を混入せるSOG10を塗
布して溝を全面的に埋込む。SOG(Spin On Glass)はRn
Si(OH)4-nの成分を持つ液状の物質で、通常ウエハー
・プロセスでAl配線層のヒロックによる不良を防止する
のに用いられている。
Next, in the prior art FIG. 3 , SOG10 in which B 2 O 3 is mixed is applied to completely fill the groove. SOG (Spin On Glass) is R n
A liquid substance containing Si (OH) 4-n , which is usually used in wafer processing to prevent defects due to hillocks in Al wiring layers.

約450℃でN2ガス中にてアニールすることにより上記塗
布された材料は乾燥固化する。更に、約950℃の温度でN
2ガス中にてアニールすることによりp+拡散領域として
のチャネルカット13が形成される。
The coated material is dried and solidified by annealing in N 2 gas at about 450 ° C. Furthermore, at a temperature of about 950 ° C, N
A channel cut 13 as ap + diffusion region is formed by annealing in 2 gas.

上記従来術第3図の方法では、素子分離溝に埋込まれた
B2O3を含むSOGはエッチング・レートが大であり、平坦
化プロセスで問題があるので埋込み工程を2工程に分離
することにより、作業性が改善される。
In the conventional method shown in FIG. 3, the element isolation trench is buried.
Since SOG containing B 2 O 3 has a high etching rate and has a problem in the planarization process, the workability is improved by separating the embedding step into two steps.

これを第1図によって説明する。素子分離溝が形成され
た後、B2O3を混入せるSOG10を塗布して溝を部分的に埋
込む。
This will be described with reference to FIG. After the element isolation groove is formed, SOG10 containing B 2 O 3 is applied to partially fill the groove.

約450℃でN2ガス中にてアニールすることにより上記塗
布された材料は乾燥固化する。
The coated material is dried and solidified by annealing in N 2 gas at about 450 ° C.

次いで、再び熱酸化によりU字型溝の残された上部領域
に酸化膜11を約300Å形成する。
Then, again by thermal oxidation, an oxide film 11 of about 300 Å is formed in the upper region where the U-shaped groove is left.

更に、B2O3とP2O5を混入せるSOG12を塗布して、溝5を
完全に埋込み、前回と同様に熱処理して固化させる。
Further, SOG12 in which B 2 O 3 and P 2 O 5 are mixed is applied, the groove 5 is completely filled, and the same heat treatment as the previous time is performed to solidify.

以上の工程を経て、約950℃の温度でN2ガス中にてアニ
ールすることによりp+拡散領域としてのチャネルカット
13が形成される。
Through the above steps, by annealing in N 2 gas at a temperature of about 950 ° C, channel cut as a p + diffusion region
13 is formed.

〔発明の効果〕〔The invention's effect〕

以上に説明せるごとく、本発明の分子分離溝の形成方法
を適用することにより所望のプロファイルをもったp+
ャネルカットの形成が可能で、然も、平坦化プロセスが
改善され、且、チャネルカットの形成と分離溝の埋込み
を同時に実施することが出来るので、工数の削減と品質
の向上に寄与する所大である。
As explained above, by applying the method for forming a molecular separation groove of the present invention, it is possible to form a p + channel cut having a desired profile, and the planarization process is improved and the channel cut is improved. Since it is possible to simultaneously form the trenches and bury the isolation trenches, it is a major contribution to reducing the number of steps and improving the quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかわる素子分離溝の形成方法を説明
する断面図、 第2図及び第3図は従来の素子分離溝の形成方法を説明
する断面図、 を示す。 図面において、 1はp型基板、 2,8,11は酸化膜、 3は窒化膜、 4は分離溝形成領域、 5はU字型素子分離溝、 6は溝底面の周辺領域、 7,13はチャネルカット(p+拡散領域)、 9はポリシリコン、 10はB2O3を含むSOG、 12はB2O3とP2O5を含むSOG、 をそれぞれ示す。
FIG. 1 is a sectional view for explaining a method for forming an element isolation groove according to the present invention, and FIGS. 2 and 3 are sectional views for explaining a conventional method for forming an element isolation groove. In the drawing, 1 is a p-type substrate, 2, 8 and 11 are oxide films, 3 is a nitride film, 4 is an isolation groove forming region, 5 is a U-shaped element isolation groove, 6 is a peripheral region of the groove bottom surface, 7, 13 Is a channel cut (p + diffusion region), 9 is polysilicon, 10 is SOG containing B 2 O 3 , and 12 is SOG containing B 2 O 3 and P 2 O 5 , respectively.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】集積回路の素子分離溝形成工程において、
分離溝(5)を形成した後、 該溝の内面に第1の酸化膜(8)を形成し、B2O3を含む
SOG(10)を塗布して、該溝の底部を部分的に埋込み乾
燥する工程と、 該溝の内面に第2の酸化膜(11)を形成して、B2O3とP2
O5を含むSOG(12)を塗布して、該溝を全面的に埋込み
乾燥する工程と、 熱処理により該溝の周辺にp+拡散領域(13)を形成す
る工程を含むことを特徴とする集積回路の素子分離方
法。
1. In an element isolation groove forming process of an integrated circuit,
After forming the separation groove (5), a first oxide film (8) is formed on the inner surface of the groove and contains B 2 O 3 .
A step of applying SOG (10) to partially bury and dry the bottom of the groove, and forming a second oxide film (11) on the inner surface of the groove to form B 2 O 3 and P 2
An integration characterized by including a step of applying SOG (12) containing O 5 and completely filling the groove and drying, and a step of forming ap + diffusion region (13) around the groove by heat treatment. Circuit element isolation method.
JP60246662A 1985-11-01 1985-11-01 Element isolation method for integrated circuit Expired - Lifetime JPH0789562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246662A JPH0789562B2 (en) 1985-11-01 1985-11-01 Element isolation method for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246662A JPH0789562B2 (en) 1985-11-01 1985-11-01 Element isolation method for integrated circuit

Publications (2)

Publication Number Publication Date
JPS62106645A JPS62106645A (en) 1987-05-18
JPH0789562B2 true JPH0789562B2 (en) 1995-09-27

Family

ID=17151751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246662A Expired - Lifetime JPH0789562B2 (en) 1985-11-01 1985-11-01 Element isolation method for integrated circuit

Country Status (1)

Country Link
JP (1) JPH0789562B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1225631B (en) * 1988-11-16 1990-11-22 Sgs Thomson Microelectronics TAPERING OF HOLES THROUGH DIELECTRIC LAYERS TO FORM CONTACTS IN INTEGRATED DEVICES.
US5308790A (en) * 1992-10-16 1994-05-03 Ncr Corporation Selective sidewall diffusion process using doped SOG
US5435888A (en) * 1993-12-06 1995-07-25 Sgs-Thomson Microelectronics, Inc. Enhanced planarization technique for an integrated circuit
US6284584B1 (en) 1993-12-17 2001-09-04 Stmicroelectronics, Inc. Method of masking for periphery salicidation of active regions
US5518950A (en) * 1994-09-02 1996-05-21 Advanced Micro Devices, Inc. Spin-on-glass filled trench isolation method for semiconductor circuits
US6737333B2 (en) * 2001-07-03 2004-05-18 Texas Instruments Incorporated Semiconductor device isolation structure and method of forming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182537A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Manufacture of semiconductor device
JPS6037142A (en) * 1983-08-10 1985-02-26 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS62106645A (en) 1987-05-18

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US8008205B2 (en) Methods for producing a semiconductor device having planarization films
JPH0513566A (en) Manufacture of semiconductor device
JPH10189713A (en) Semiconductor element isolating structure and its forming method
JPH0774235A (en) Semiconductor device and its manufacture
US6784042B2 (en) Integration process on a SOI substrate of a semiconductor device comprising at least a dielectrically isolated well
JPH0279445A (en) Forming method of element isolating region
JPH1174340A (en) Manufacture of semiconductor device
JPH0586673B2 (en)
JPH06318634A (en) Isolating method for element in semiconductor device
US6544861B2 (en) Method for forming isolation trench
US6433400B1 (en) Semiconductor fabrication employing barrier atoms incorporated at the edges of a trench isolation structure
JPH10321716A (en) Semiconductor device and manufacture therefor
US4903107A (en) Buried oxide field isolation structure with composite dielectric
JPH0789562B2 (en) Element isolation method for integrated circuit
JPS6038831A (en) Semiconductor device and manufacture thereof
JPH0969609A (en) Buried element isolation substrate and its manufacturing method
KR100281272B1 (en) Method for forming element isolation insulating film of semiconductor element
JPH11195701A (en) Semiconductor device and manufacture thereof
JPH11340316A (en) Method for forming trench element isolation film by using annealing
KR20030088627A (en) Method for manufacturing shallow trench isolation free from bad effect of dent
JPH01134947A (en) Manufacture of semiconductor device
JPS6376480A (en) Semiconductor device and manufacture thereof
JPH01196847A (en) Semiconductor device and manufacture thereof
JPH09172060A (en) Semiconductor device with trench element separation structure and its preparation