JPS6037142A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6037142A
JPS6037142A JP14496883A JP14496883A JPS6037142A JP S6037142 A JPS6037142 A JP S6037142A JP 14496883 A JP14496883 A JP 14496883A JP 14496883 A JP14496883 A JP 14496883A JP S6037142 A JPS6037142 A JP S6037142A
Authority
JP
Japan
Prior art keywords
concentration
vicinity
grooves
impurity
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14496883A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Akira Sato
朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14496883A priority Critical patent/JPS6037142A/en
Publication of JPS6037142A publication Critical patent/JPS6037142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve characteristics in a fine device in small thickness, particularly, 1mum or less, and to form the semiconductor device having the high density of integration by making impurity concentration in a diffusion layer high in the bottom of a groove and a section in the vicinity of the bottom and low in a section in the vicinity of the surface. CONSTITUTION:B diffusion layers 5 in 5X10<16>cm<-3> concentration are formed to the bottoms of grooves and side surfaces in the vicinity of the bottoms and B diffusion layers 6 in 5X10<15>cm<-3> concentration to sections in the vicinity of the surfaces of the side surfaces in a region 2, which is formed to a Si substrate 1 of a P type (100) face and 10OMEGAcm and to which a device separated by the grooves must be shaped, and the grooves are buried with an insulator 4. Impurity concentration in the vicinity of the surface is made low, and a narrow channel effect is prevented. On the other hand, a device having high impurity concentration has the higher effect of a channel stopper, and the leakage currents of a channel must be brought to 10<-14>A or less per one element. Accordingly, sections in the vicinity of the bottoms of the grooves must be doped in high concentration. The high-concentration impurity layer is useful for improving the performance of a fine device because it is of use for preventing the punch-through of the device.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体業績回路装置(以下ICと略ンの集子
間分離構造の改善に関するもので、さらに詳述すれば、
素子間を電気的に分離するために、−導電型をゼする半
導体基板中に形成した溝の側面および底部にいわゆるチ
ャネルストッパを形成するため、該半導体基板と同−導
′#i型にドープするに当シ、該溝底部近傍は高濃度に
、また半導体基板表面近傍は低濃度におのおのドープす
るIC構造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an improvement in the isolation structure between semiconductor circuit devices (hereinafter abbreviated as IC).
In order to form so-called channel stoppers on the sides and bottom of a groove formed in a semiconductor substrate of -conductivity type in order to electrically isolate between elements, a conductive layer doped with the same conductivity type as that of the semiconductor substrate. The present invention relates to an IC structure in which the vicinity of the groove bottom is doped with a high concentration, and the vicinity of the semiconductor substrate surface is doped with a low concentration.

〔発明の背景〕[Background of the invention]

従来のICの素子間分離は、いわゆるLOCO8(Lo
cal 0xidation of 5i1icon:
ジエーエーアベルズ他フィリップス・リサーチ・レポー
ト25巻、118jj 1970年; J、 A、 A
pl)elset aA。
Conventional IC isolation between elements is so-called LOCO8 (Lo
cal Oxidation of 5i1icon:
J. A. Abels et al. Phillips Research Report Vol. 25, 118jj 1970; J, A, A
pl) else aA.

philips Res Ropt 25 、118 
(1970)、)構造が王に用いられていたが、この構
造の主な問題点は、以下に要約できる。
philips Res Ropt 25, 118
(1970), ) structure was used for kings, and the main problems with this structure can be summarized as follows.

(υ 素子間分離用酸化膜形成時に、+mt酸化性膜と
して用いる窒化シリコンj換の下側にば素が運やかに拡
散し、横方向に酸化が進行するだめ、パターンの実効的
な幅が減少する。いわゆる゛バード・ピーク”という現
象が起こる。
(υ When forming the oxide film for isolation between elements, the effective width of the pattern is The so-called "bird peak" phenomenon occurs.

この”バード・ビーク″によシ減少するノくクーンの鴨
は、一般に素子間分離用酸化膜厚と同程度でおる。
The thickness of the thin film that is reduced due to this "bird beak" is generally the same as the thickness of the oxide film used for isolation between devices.

(2)素子間分離用酸化膜のしきい電圧(VT R’)
を高く保ち、゛電気的な素子間分離を可能にするために
、チャネル・ストッパとして、基板と同−s屯形の不純
物をドープするが、この不純物が酸化時に横方向拡散を
起こし、いわゆる″狭チャネル効果″の原因となる。こ
の横方向拡散は、酸化膜厚の5倍程度まで進み、例えは
0.5μmの酸化膜厚では片側2.5μm1程度すなわ
ち、5μm鴨のパターンもとの“′狭チャネル効果″の
影響を受ける。
(2) Threshold voltage of oxide film for element isolation (VTR')
In order to maintain a high value and enable electrical isolation between elements, an impurity having the same shape as the substrate is doped as a channel stopper, but this impurity causes lateral diffusion during oxidation, resulting in the so-called " This causes "narrow channel effect". This lateral diffusion progresses up to about 5 times the oxide film thickness, and for example, with an oxide film thickness of 0.5 μm, it is about 2.5 μm on one side, that is, it is affected by the “narrow channel effect” of the 5 μm duck pattern. .

これらの問題点は、特に1μm以下の微#1/クターン
を用いるサブμmICにおいて、特(cm著な影響を及
はし、Vra那の素子特性のばらつきの原因と万るため
、LOCO8構造を用いる事は不可能である。
These problems have a significant effect on ICs, especially in sub-μm ICs that use fine #1/cturns of 1 μm or less, and may cause variations in device characteristics of Vra. Therefore, the LOCO8 structure is used. Things are impossible.

本発明は、このような従来技術の問題点を解決して用い
る溝をSi基板中に形成し、溝の側面およびJfcmに
チャネルストツノくとして、Si基板と同一導電型を与
える不純物をドープするに当り、溝の底部および底部に
近い側面を4u対的に高濃度に、また、表面に近い側面
を低諷度にドーグする技術に関するものである。特に、
溝をシラノールのアルコール溶液からなる塗布ガラス、
例えば0CD59310 (闇品名二東京応化製)によ
、baめ込む構造をとる事によシ、従来技術で間越とな
ったデバイス特性上の問題点f:除く挙が=J能となる
The present invention solves the problems of the prior art by forming a groove in a Si substrate, doping the side surfaces of the groove and Jfcm with an impurity that provides the same conductivity type as the Si substrate as a channel stop. The present invention relates to a technique in which the bottom of the groove and the side surfaces near the bottom are doped with 4U at a high concentration, and the side surfaces near the surface are doped with a low concentration. especially,
Coat the glass grooves with an alcoholic solution of silanol,
For example, in the case of 0CD59310 (black market name: manufactured by Tokyo Ohka), by adopting a structure in which it is embedded, the problem in device characteristics, which has been overcome with the prior art, can be eliminated.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を、実施例に基づき、−14体的に説明する
The present invention will be specifically described below based on Examples.

実施例1 本実施例では、本発明による不純物ドープ磯匿分布を持
つデバイス特性が、従来のメJ−ドープ分布を持つデバ
イスの特性に比較し、凌れている点について述べる。第
1図(a)は、従来技術の例として、示したものでP型
(100)面、10Ω副のSi基板1内に形成した、深
さ2 /j m、 +1@ 0.8μmの溝によシ分離
された、嘱2μmのデバイスを形成すべき領域2に形成
された、均一ドープ分布を持つボロン■濃度3 X 1
0” cm−”から成るチャネルストッパ3および溝を
埋めるように堆積された絶縁物4を持つ構造である。
Example 1 In this example, the characteristics of a device having an impurity doping distribution according to the present invention will be described as superior to those of a conventional device having a me-J-doping distribution. FIG. 1(a) shows an example of the prior art, in which a groove with a depth of 2/j m and +1 @ 0.8 μm is formed in a P-type (100) plane, 10Ω sub-Si substrate 1. A boron concentration of 3 x 1 with a uniform doping distribution is formed in the region 2 where a 2 μm device is to be formed.
This structure has a channel stopper 3 of 0"cm-" and an insulator 4 deposited to fill the trench.

第1図(b)は、本発明による構造を示した例で、P型
(ioo)面、10Ω副のSi基板1に形成した、深さ
2μm1幅0.8μmの溝によシ分離された、幅2μm
の、デバイスを形成すべき領域2に、該溝底部および底
部に近い側面に、磯度5×10”crn−3のB拡散層
5および側面の表面に近い部分に、磯匿5 X 10”
 cm−3のB拡散層6を形成し、さらに溝を絶縁物4
で埋め込んだ状態を示す。
FIG. 1(b) shows an example of a structure according to the present invention, in which the structure is separated by grooves of 2 μm in depth and 0.8 μm in width formed in a P-type (IOO) surface, 10Ω sub-Si substrate 1. , width 2μm
In the region 2 where a device is to be formed, a B diffusion layer 5 with a roughness of 5 x 10" crn-3 is placed on the bottom of the groove and on the side surfaces near the bottom, and a 5 x 10" roughness layer is placed on the region 2 near the surface of the side surface.
A B diffusion layer 6 with a thickness of cm-3 is formed, and a groove is further formed with an insulator 4.
shows the embedded state.

これらの二構造の電気的特性を従来のLOCO,S構造
も含めて比較した結果を第2図(a)に示す。しきい電
圧VTIIのチャネル幅W依存性を比較すると、従来の
LOGO8構造では、酸化膜厚を1μm(曲線7)とす
ると、WがlOμm程度から、また酸化j膜厚0.5μ
m(曲線8)ではWが5μm程度からおのおのVTII
は高くなシはじめる(狭チャネル効果)。一方、従来の
溝分離イ再造(曲線9)では、チャネル幅2μm程度か
ら極度にVTRが高くなる。
The results of comparing the electrical characteristics of these two structures, including the conventional LOCO and S structures, are shown in FIG. 2(a). Comparing the dependence of threshold voltage VTII on channel width W, in the conventional LOGO8 structure, when the oxide film thickness is 1 μm (curve 7), W starts from about 10 μm, and when the oxide film thickness is 0.5 μm.
m (curve 8), each VTII starts from about 5 μm.
starts to get high (narrow channel effect). On the other hand, in the conventional trench isolation reconstruction (curve 9), the VTR becomes extremely high from a channel width of about 2 μm.

本発明による溝分離横這(曲線10)では、チャネル幅
1μmまで、はば−足のVrIIk示し、サブμmデバ
イス実現のために、不可欠な手法である事がわかる。
It can be seen that the horizontal groove separation (curve 10) according to the present invention exhibits a short VrIIk up to a channel width of 1 μm, and is an indispensable method for realizing a sub-μm device.

本実施例の如く、本発明によるデバイスの狭チャネル効
果が小さい理由は、溝側面の表面近傍(おける不純物濃
度(5X I 015cm−”)が、チャネルドープに
よる不純物製置(約1 x 1016cm−” )よシ
も低いため、ゲートにバイアスが印加された時に生ずる
反転層の形成が、チャネルドープによる不純物にのみ依
存するためでおる。すなわち、VTRは、仕事関数ΦM
B、界面準位Q88、フェルミポテンシャルφt1ゲー
ト谷虚C08、基板不糾響濃度Nムお↓び基板バイアス
VIBによシ次式で弐わされる。
The reason why the narrow channel effect of the device according to the present invention as in this example is small is that the impurity concentration near the surface of the groove side surface (about 5 x I 015 cm-") is due to the impurity concentration (about 1 x 1016 cm-") due to channel doping. ) is also low, so the formation of an inversion layer that occurs when a bias is applied to the gate depends only on the impurity due to channel doping.In other words, the VTR has a work function ΦM
B, interface level Q88, Fermi potential φt1 gate valley imaginary C08, substrate resonant concentration Nm↓, and substrate bias VIB are increased by the following equation.

ここで、Kは酸化膜の誘電率等を衣わす定数である。し
たがってしきい電圧の変化ΔVTHはNAl/2に比例
し、8人が大きくなると、大きくなる。狭チャネル効果
は、このNムがチャネルドーグ不純物濃度よりも大きく
なる現尿と言い挨える事ができる。したがって本発明の
ように、表面近傍の不Stt物濃就を低くすると、狭チ
ャネル効果は防ぐ事ができる。
Here, K is a constant that affects the dielectric constant of the oxide film. Therefore, the change in threshold voltage ΔVTH is proportional to NAl/2, and increases as the number of 8 people increases. The narrow channel effect can be said to be a phenomenon in which N is greater than the channel impurity concentration. Therefore, as in the present invention, by reducing the concentration of non-Stt substances near the surface, the narrow channel effect can be prevented.

一方、チャネルストッパの効果は、不純物濃度の局い方
が大きく、チャネルのリーク電流も一累子当、り 10
”4A以下とする必要がある。このため、溝の紙部近傍
は、高濃度にドーグする事が心安である。葦た、この冒
痕贋不純物層は、デバイスのパンチ・スルーを防止する
のに役立つため、微小デバイスの高性能化に役立り。第
2図(b)は従来構造とにつき、本発明の構造について
、パンチ・スルー耐圧を比較した結果で、従来構造8a
ではチャネル長1μmでパンチ・スルー耐圧が2v程度
と低下するが、本発明によるデバイス10aでは約5■
と、大幅に改善される。
On the other hand, the effect of a channel stopper is large when the impurity concentration is localized, and the channel leakage current is also reduced per unit.
``4A or less.For this reason, it is safe to apply a high concentration of dope near the paper part of the groove.Reed, this impurity layer prevents punch-through of the device. Figure 2(b) shows the results of comparing the punch-through breakdown voltage of the structure of the present invention with the conventional structure.
In this case, the punch-through breakdown voltage decreases to about 2 V with a channel length of 1 μm, but in the device 10a according to the present invention, the punch-through breakdown voltage decreases to about 5 V.
is greatly improved.

実施例2 本実施例では、塗布ガラスを用いた不純物ドープの例に
ついて述べる。
Example 2 In this example, an example of impurity doping using coated glass will be described.

第3図(a)は、P型(100ン面10Ω画のSi基板
11に、幅0.8μm1深さ3μmの溝を、トランジス
タ等のデバイスを形成する領域を囲むように、ホトリソ
グラフィおよびドライエッチ技術によp形成し、さらに
1000t:’乾燥酸XW囲気中で酸化して、厚さ20
nmの酸化)換12を形成した状態を示す。第3図(b
)は塗布ガラスとして、0CD59310 (商品名:
東京応化製)を、回転数5000r−で回転塗布後、2
50C輩素雰囲気中でベークし、溶剤を蒸発させ、埋込
み増13を形成した後、再び0CD59210 (商品
名二東京応化製)を5000咽で回転塗布し、再び20
0t;’乾燥望素中で20分間ベークし、低不純物禮就
の埋込み盾14を形成した状態を示す。これらの頭布・
べ一り工程は、数回繰シ返す事もできる。第3図(C)
は、上記半導体基板を1000Cの窒*雰囲気中で30
分間アニールし、基板11中に、高濃度B拡散層(約5
 X 10” cm−3) 15および基板表面近プに
低績度B拡赦層(約5 X 10” cm−3) 16
を形成した状態を示す。
FIG. 3(a) shows a photolithography and drying process in which a groove of 0.8 μm in width and 3 μm in depth is formed in a P-type (100-square-face, 10-ohm pattern) Si substrate 11 so as to surround the area where devices such as transistors are to be formed. P was formed using etch technology, and further oxidized in a 1000t:' dry acid XW atmosphere to a thickness of 20%.
This shows the state in which oxidation of 12 nm is formed. Figure 3 (b
) is coated glass, 0CD59310 (product name:
(manufactured by Tokyo Ohka) at a rotational speed of 5000 r-, then
After baking in a 50C atmosphere to evaporate the solvent and form an embedded layer 13, 0CD59210 (trade name: manufactured by Tokyo Ohka) was again applied by spin coating at 5,000 mm.
0t;' This shows the state in which the embedded shield 14 containing low impurities was formed by baking in a dry solution for 20 minutes. These head cloths
The baking process can be repeated several times. Figure 3 (C)
The above semiconductor substrate was heated for 30 minutes in a nitrogen* atmosphere at 1000C.
After annealing for 1 minute, a high concentration B diffusion layer (approximately 5
x 10" cm-3) 15 and a low grade B forgiveness layer near the substrate surface (approximately 5 x 10" cm-3) 16
This shows the state in which it has been formed.

本実施例で示した構造では、Sl/8102構造安定化
のため、熱酸化膜を形成したが、これは必ずしも必須で
はない。また、溝以外の半導体基板表面を墾化シリコン
膜(Si3N4)で覆い、湿式酸化雰囲気中で該塗布ガ
ラスにょる埋込層をアニールする事によシ、Bの拡散を
増速しで、拡散深さを深くする事も可Hにである。
In the structure shown in this example, a thermal oxide film is formed to stabilize the Sl/8102 structure, but this is not necessarily essential. In addition, by covering the surface of the semiconductor substrate other than the grooves with a thickened silicon film (Si3N4) and annealing the buried layer of the coated glass in a wet oxidation atmosphere, the diffusion of B can be accelerated and It is also possible to increase the depth.

実施例3 本実施例では、イオン打込み法にょシBをドープする方
法について示す。第4図(a)は、P型(ioo)面1
0Ω副のSi基板11上に、厚さ2Qnmの熱酸化膜(
Si02)17およびCVD(1(C11einlC4
1VBpBV 1)epO8itlon法)にょシ厚さ
12Qnmの窒化シリコン膜(S’3N4) 18をお
のおの形成し、さらに通常のホトリソグラフィおよびド
ライエッチ技術によシ幅1μm、深さ4μmの溝をブ杉
成した後、イオン打込みによhR命イオンを” ×” 
o13z−”打込み、B+打込み盾19を形成した状態
を示す。この時、B+イオンは、主に溝底面および紙面
に近い部分の傾斜した側面に打込まれ、垂直に近い形状
を持つ衣簡に近い部分の溝の側面には殆んど打込まれる
事はない。
Example 3 In this example, a method of doping B using ion implantation method will be described. Figure 4(a) shows the P-type (ioo) surface 1
A thermal oxide film with a thickness of 2Q nm (
Si02)17 and CVD(1(C11einlC4
1VBpBV 1) epO8itlon method) A silicon nitride film (S'3N4) 18 with a thickness of 12Qnm is formed respectively, and a groove with a width of 1μm and a depth of 4μm is formed using conventional photolithography and dry etching techniques. After that, hR life ion is implanted by ion implantation.
o13z-" is implanted, and a B+ implant shield 19 is formed. At this time, B+ ions are implanted mainly into the bottom of the groove and the inclined side surfaces near the paper surface, and the B+ ions are implanted into the cloth plate, which has a nearly vertical shape. It is almost never driven into the sides of the groove in the vicinity.

第4図(b)は 81基板を乾燥酸素中で酸化し、厚さ
5Qnmの810220を形成した埃、低圧CVD法で
厚さ0.6 A m(7) 810221を堆積した状
態を示す。810221の堆積に、lニジ、Si基板に
形成した溝は、完全に埋め込まれ、また該Bイオン打込
み漕19は、アニールされて、7X10’6cn1−3
と高濃度で接合深さが約2μmと深い底面付近の部分と
接合深さが0.5μm1#度5 X 10”tM−3の
表面付近の屑が形成される。第4図(C)は該CVD8
i0a層21 、5jsN<層18.S凰02層エフを
、エッチし、デバイスを形成すべき領域のSi基板を露
出させた状態を示す。基板上にデバイスを作成する事に
よシ、実施例1に示したように、従来技術に比較し、良
好な特性を持つデバイスを実現できた。
FIG. 4(b) shows a state where an 81 substrate was oxidized in dry oxygen to form 810220 with a thickness of 5 Q nm, and 810221 with a thickness of 0.6 A m(7) was deposited by a low pressure CVD method. During the deposition of 810221, the trenches formed in the Si substrate were completely filled, and the B ion implantation chamber 19 was annealed to form 7X10'6cn1-3.
At a high concentration, debris is formed near the bottom with a junction depth of approximately 2 μm and near the surface with a junction depth of 0.5 μm 1 # degree 5 × 10”tM−3. Figure 4 (C) shows The CVD8
i0a layer 21, 5jsN<layer 18. The S-02 layer F is etched to expose the Si substrate in the region where a device is to be formed. By creating a device on a substrate, as shown in Example 1, a device with better characteristics than the conventional technology could be realized.

本実施例では、CVD法によシ堆積し7’cSiOgに
よシ溝を埋込んだが、実施例2と同体に塗布ガラスによ
シ埋込むφも可能である。またイオン打込みによるB+
イオン打込み時に、打込み角度を変え% 1jll壁に
ドープできるようにする事も可能である。イオンは直進
性が強いので、1i+Il壁郡では斜めに打込まれるた
め、基板への貫入深さが浅くない、本発明を実施する上
で有利である。
In this example, the grooves were filled with 7'cSiOg deposited by the CVD method, but it is also possible to fill the grooves with coated glass in the same manner as in Example 2. Also, B+ due to ion implantation
During ion implantation, it is also possible to dope the wall by changing the implantation angle. Since ions have a strong straight propagation property, they are implanted obliquely in the 1i+Il wall group, so that the penetration depth into the substrate is not shallow, which is advantageous in implementing the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で明らかな如く、本発明によれば特に1μ
m以下の倣細なデバイスにおける物性の改嵜が可11目
となシ、高乗積密度を持った半導体装置の形成に極めて
有用である。
As is clear from the above embodiments, according to the present invention, especially 1μ
It is possible to improve the physical properties of devices with a thickness of less than m, making it extremely useful for forming semiconductor devices with high product density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来構造を示す断面図、第2図は従来構
造と本発明の特性を比較した曲嶽図、第1図(b)、第
3図、第4図は、本発明の実施例をおのおの示す図であ
る。 1.11・・・シリコン基板、2・・・デバイス形成領
域、3.5,6,15,16.19・・・ボロン拡散層
、4.13.14.21・・・埋込み絶縁体、12゜冨
 1 図 (り 第 1 図 (b) ¥7:J z 図 (久ン 石 zrw (b) 七「ヤ1才ノL−L(Pmt 冨 3 図(L) 宴3図(b) 第 3 図(り 第4図(幻
FIG. 1(a) is a cross-sectional view showing the conventional structure, FIG. 2 is a curve diagram comparing the characteristics of the conventional structure and the present invention, and FIG. 1(b), FIG. 3, and FIG. FIG. 1.11... Silicon substrate, 2... Device formation region, 3.5, 6, 15, 16.19... Boron diffusion layer, 4.13.14.21... Buried insulator, 12゜Tomi 1 figure (ri 1st figure (b) ¥7:J z figure (Kunishi zrw (b) 7 ``Y1-year-old L-L (Pmt 3rd figure (L) banquet 3 figure (b) no. Figure 3 (Fig. 4 (phantom)

Claims (1)

【特許請求の範囲】 13−導電型を有するシリコン単結晶基板と、該基板中
に形成した溝と、線溝の0111面および底面に、チャ
ネルストッパとして働くべき第一の導電型を与える不純
物からなる拡散層を具備した構造において、該拡散層の
不純物rs度が、溝底部および近傍で^く、表面近傍で
低い事を特徴とする半導体装置。 2、該拡散層の不純物曖度が、少なくとも六面近坊で、
チャネルドープの濃度よシも低い事を特徴とする特許請
求の範囲第1項記載の半導体装置。 3、線溝は、絶縁物で埋込まれている事を特徴とする特
許請求の軛囲褐1項もしくは第2項記載の半導体装置。
[Claims] 13- A silicon single crystal substrate having a conductivity type, a groove formed in the substrate, and an impurity that gives a first conductivity type to the 0111 plane and the bottom surface of the line groove to function as a channel stopper. What is claimed is: 1. A semiconductor device having a structure comprising a diffusion layer, characterized in that the impurity rs degree of the diffusion layer is low at and near the trench bottom and low near the surface. 2. The impurity ambiguity of the diffusion layer is at least close to six sides,
2. The semiconductor device according to claim 1, wherein the concentration of channel doping is also lower. 3. The semiconductor device according to claim 1 or 2, wherein the line groove is filled with an insulator.
JP14496883A 1983-08-10 1983-08-10 Semiconductor device Pending JPS6037142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14496883A JPS6037142A (en) 1983-08-10 1983-08-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14496883A JPS6037142A (en) 1983-08-10 1983-08-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6037142A true JPS6037142A (en) 1985-02-26

Family

ID=15374377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14496883A Pending JPS6037142A (en) 1983-08-10 1983-08-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6037142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106645A (en) * 1985-11-01 1987-05-18 Fujitsu Ltd Element isolating method for integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106645A (en) * 1985-11-01 1987-05-18 Fujitsu Ltd Element isolating method for integrated circuit

Similar Documents

Publication Publication Date Title
US5488243A (en) SOI MOSFET with floating gate
US5346839A (en) Sidewall doping technique for SOI transistors
KR20020019047A (en) A high voltage thin film transistor with improved on-state characteristics and method for making same
JPH02302044A (en) Manufacture of semiconductor device
EP0965145A2 (en) A high voltage thin film transistor with improved on-state characteristics and method for making same
KR100319620B1 (en) Isolation structure for semiconductor device and fabricating method thereof
JPH03129765A (en) Semiconductor device and manufacture thereof
KR100382036B1 (en) Semiconductor device and manufacturing method thereof
KR20010106718A (en) Method for forming isolation in semiconductor device
JPS63293850A (en) Manufacture of semiconductor device
KR900007149B1 (en) Semiconductor device
JPS6037142A (en) Semiconductor device
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
JPS59182537A (en) Manufacture of semiconductor device
JPS6347335B2 (en)
GB2070858A (en) A shallow channel field effect transistor
KR100439110B1 (en) Isolation method of semiconductor device to improve separation characteristic and reliability
JPS5846648A (en) Manufacture of semiconductor device
US6376331B1 (en) Method for manufacturing a semiconductor device
KR940005720B1 (en) Manufacturing method for elements segregation of semiconductor device
KR100672768B1 (en) Method for forming isolation in semiconductor device
JPH06302790A (en) Manufacture of insulating isolating substrate
KR20000027849A (en) Method for forming field oxide layer which improved hump characteristics
JPH0569313B2 (en)
JPH04150053A (en) Compound semiconductor integrated circuit and manufacture thereof