JPH01129443A - Manufacture of semiconductor device having multilayer interconnection structure - Google Patents

Manufacture of semiconductor device having multilayer interconnection structure

Info

Publication number
JPH01129443A
JPH01129443A JP28793087A JP28793087A JPH01129443A JP H01129443 A JPH01129443 A JP H01129443A JP 28793087 A JP28793087 A JP 28793087A JP 28793087 A JP28793087 A JP 28793087A JP H01129443 A JPH01129443 A JP H01129443A
Authority
JP
Japan
Prior art keywords
conductive path
insulating film
film
trench
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28793087A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sugai
菅井 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP28793087A priority Critical patent/JPH01129443A/en
Publication of JPH01129443A publication Critical patent/JPH01129443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form two or more layers of multilayer interconnections extremely stably without generating defective insulation, disconnection, etc., by forming a trench in width slightly larger than a conductive-path forming predetermined region in an insulating film in a pattern through etching and shaping a conductive path into the trench while burying a clearance between the conductive path and the trench with silica and flattening the clearance. CONSTITUTION:A first insulating film 12 such as a thermal oxide film is formed onto the surface of a semiconductor substrate 11. A trench 13 in width slightly larger than the width of a first conductive path to be shaped in a postprocess is formed through etching by an etchant such as hydrofluoric acid. A metallic layer is shaped onto the whole surface and patterned, and the first conductive path 14 is formed into the trench 13. An SOG film 35 is applied onto the whole surface so as to bury a clearance between the side face of the trench 13 in the first insulating film 12 and the first conductive path 14. The SOG film 15 is etched back through ion etching by a gas such as CF4, the surfaces of the first conductive path 14 and the first insulating film 12 are exposed, SOG is left only in said clearances, and SOG regions 15a are formed. Accordingly, the first conductive path 14 is buried and shaped so that the surface of the conductive path 14 and the surface of the first in sulating film 12 are formed approximately flatly.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、平坦な多層配線が形成された多層配線構造の
半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device having a multilayer wiring structure in which flat multilayer wiring is formed.

[従来の技術] 第4図は従来方法により製造された多層配線構造の半導
体装置を示す断面図である。この従来方法においては、
先ず、半導体基板1上に第1絶縁膜2を形成し、この第
1絶縁[2上に金属膜を形成した後、パターニングして
第1導電路3を形成する9次いで、全面に窒化膜等の第
2絶縁膜4を形成し、この第2絶縁膜4の上面の段差が
大きい部分にシリカ(シリコン酸化物;以下、SOGと
いう)塗布液を塗布してこの段差をSOG領域5により
埋める。その後、第2導電路6をパターン形成する。こ
の従来技術においては、SOG領域5により段差を埋め
ることによって、上層配線層(第2導電路6)の断線を
防止している。
[Prior Art] FIG. 4 is a cross-sectional view showing a semiconductor device with a multilayer wiring structure manufactured by a conventional method. In this conventional method,
First, a first insulating film 2 is formed on a semiconductor substrate 1, and a metal film is formed on the first insulating film 2, and then patterned to form a first conductive path 3.Next, a nitride film or the like is formed on the entire surface. A second insulating film 4 is formed, and a silica (silicon oxide; hereinafter referred to as SOG) coating liquid is applied to a portion of the upper surface of the second insulating film 4 having a large step, thereby filling the step with an SOG region 5. Thereafter, the second conductive path 6 is patterned. In this prior art, disconnection of the upper wiring layer (second conductive path 6) is prevented by filling the step with the SOG region 5.

一方、第5図に示す従来技術(特開昭5O−88988
)においては、半導体基板l上に第1絶縁膜2を形成し
、この第1、絶縁膜2にその側面が傾斜した溝7を形成
し、この溝7内に金属膜をバターニングして第1導電路
3を形成する。そして、全面に第2絶縁膜4を形成し、
この第2絶縁膜4上に第2導電路6をパターン形成する
。この溝7の側面は第1絶縁膜2に対して15乃至45
″の角度で傾斜し、第1導電路3が第1絶縁膜2の上面
から上方へ突出する部分の高さが3000Å以下である
On the other hand, the prior art shown in FIG.
), a first insulating film 2 is formed on a semiconductor substrate l, a groove 7 whose side surfaces are inclined is formed in this first insulating film 2, and a metal film is patterned in this groove 7 to form a first insulating film 2. 1 conductive path 3 is formed. Then, a second insulating film 4 is formed on the entire surface,
A second conductive path 6 is patterned on this second insulating film 4. The side surface of this groove 7 is 15 to 45 mm with respect to the first insulating film 2.
The height of the portion where the first conductive path 3 protrudes upward from the upper surface of the first insulating film 2 is 3000 Å or less.

[発明が解決しようとする問題点] しかしながら、上述した第4図に示す従来技術において
は、積層された配線が多層の場合に凹凸が大きくなり、
配線が困難になるという問題点がある。特に、バイポー
ラ集積回路の場合は、第1絶縁膜2上の第1導電路3の
膜厚が約1μm存在する。このため、第2導電路6の配
線切れを防止すべく、第2絶縁膜4の膜厚を1μm以上
と厚くすると共に、断差が大きい部分には比較的粘性が
高い絶縁物であるSOGを塗布してSOG領域5を埋め
込んでいるものの、配線が3層以上になる場合は、凹凸
が大きくなり、配線しにくくなるという問題点がある。
[Problems to be Solved by the Invention] However, in the prior art shown in FIG.
There is a problem that wiring becomes difficult. In particular, in the case of a bipolar integrated circuit, the thickness of the first conductive path 3 on the first insulating film 2 is about 1 μm. Therefore, in order to prevent wiring breakage in the second conductive path 6, the thickness of the second insulating film 4 is increased to 1 μm or more, and SOG, which is an insulator with relatively high viscosity, is applied to the portions where the difference is large. Although the SOG region 5 is filled by coating, there is a problem in that when there are three or more wiring layers, the unevenness becomes large and it becomes difficult to wire.

また、第5図に示す従来技術においては、第1導電路3
をその側面が15乃至45°のテーパー角で傾斜した溝
7の中に形成し、その上を第2絶縁膜4で被覆している
が、テーパーが付いた領域の上方に第2絶縁膜4のくぼ
みが生じ、このため第2導電路6のステップカバレッジ
が劣化する虞れがあるという問題点がある。
Furthermore, in the prior art shown in FIG. 5, the first conductive path 3
is formed in a groove 7 whose side surfaces are inclined at a taper angle of 15 to 45 degrees, and is covered with a second insulating film 4. There is a problem in that a depression occurs, which may deteriorate the step coverage of the second conductive path 6.

本発明はかかる問題点に鑑みてなされたものであって、
絶縁不良及び断線等が生じる危険性を回避することがで
き、平坦な多層配線を設けることができる多層配線構造
の半導体装置の製造方法を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing a semiconductor device having a multilayer wiring structure, which can avoid the risk of insulation failure and disconnection, and can provide flat multilayer wiring.

[問題点を解決するための手段] 本発明に係る多層配線構造の半導体装置の製造方法は、
半導体素子が形成された半導体基板1に絶縁膜を形成す
る工程と9、この絶縁膜をその厚さ方向の一部を残存さ
せて所定のパターンでエツチング除去して溝を形成する
工程と、前記溝の内部に金属層を被着して導電路を形成
する工程と、前記溝の側面と導電路の側面との間隙を充
填しつつシリカ塗布膜を被着する工程と、このシリカ塗
布膜をエッチバックして前記導電路の表面を露出させる
工程と、を有することを特徴とする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device with a multilayer wiring structure according to the present invention includes:
a step 9 of forming an insulating film on the semiconductor substrate 1 on which the semiconductor element is formed; a step of etching away the insulating film in a predetermined pattern while leaving a portion of the insulating film in the thickness direction to form a groove; a step of depositing a metal layer inside the groove to form a conductive path; a step of depositing a silica coating film while filling the gap between the side surface of the groove and the side surface of the conductive path; and a step of depositing the silica coating film. The method is characterized by comprising a step of etching back to expose the surface of the conductive path.

[作用] 本発明においては、半導体基板上の絶縁膜に、形成せん
とする導電路の幅より若干幅広の溝を形成し、この溝に
導電路を形成した後、導電路と溝側面との間をシリカ塗
布膜で埋めつくす。そして、このシリカ塗布膜をエッチ
バックして導電路の表面を露出させる。これにより、導
電路を絶縁膜内に埋め込むことができ、しかもこの導電
路の表面と絶縁膜の表面とは略々面一であり、従って、
エッチバック処理後に、全面に第2の絶縁膜を形成した
場合は、くぼみがない平坦な絶縁膜を形成することがで
きる。このため、第2の絶縁膜上に第2の導電路を形成
すれば、第2の絶縁膜において絶縁不良は発生せず、ま
た第2の導電路に断線は発生しない。
[Function] In the present invention, a groove slightly wider than the width of the conductive path to be formed is formed in the insulating film on the semiconductor substrate, and after forming the conductive path in this groove, the conductive path and the side surface of the groove are Fill the space completely with silica coating. Then, this silica coating film is etched back to expose the surface of the conductive path. As a result, the conductive path can be embedded in the insulating film, and the surface of the conductive path and the surface of the insulating film are approximately flush with each other.
If the second insulating film is formed over the entire surface after the etch-back process, a flat insulating film without depressions can be formed. Therefore, if the second conductive path is formed on the second insulating film, no insulation failure will occur in the second insulating film, and no disconnection will occur in the second conductive path.

[実施例] 次に、本発明の実施例について添付の図面を参照して説
明する。
[Example] Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図(a)乃至(C)は本発明の実施例に係る多層配
線構造の半導体装置の製造方法を工程順に示す断面図、
第2図(a)はこの実施例方法12.−より形成した多
層配線構造を示す断面図、第2[閃(b)は同じくその
平面図である。
FIGS. 1A to 1C are cross-sectional views showing a method for manufacturing a semiconductor device with a multilayer wiring structure according to an embodiment of the present invention in order of steps;
FIG. 2(a) shows this embodiment method 12. - A cross-sectional view showing a multilayer wiring structure formed from the above, and the second figure (b) is a plan view thereof.

先ず、第1図(a)に示すように半導体基板11の表面
に熱酸化膜等の第1絶縁膜12を形成する。次いで、後
工程で形成すべき第1導電路の幅より若干幅が大きい溝
13を沸酸等のエツチング液によりエツチングして形成
する。この溝13の深さは第1導電路を構成する金属層
の厚さと同程度であって、:の第1導電路が埋まる位の
ものく約1μm)と12、溝13の底部には寄生MO3
効果が生じない程度(500Å以上)の厚さの第1絶縁
膜12を残存させる。
First, as shown in FIG. 1(a), a first insulating film 12 such as a thermal oxide film is formed on the surface of a semiconductor substrate 11. Next, a groove 13 having a width slightly larger than the width of the first conductive path to be formed in a later step is formed by etching with an etching liquid such as hydrochloric acid. The depth of this groove 13 is approximately the same as the thickness of the metal layer constituting the first conductive path, and is approximately 1 μm (1 μm) to the extent that the first conductive path is buried. MO3
The first insulating film 12 is left with a thickness that does not produce any effect (500 Å or more).

次に、第1図(b)に示すように、全面に金属層を形成
した後パターニングして、溝13内に第】導電路14を
形成する。この第1、導電路14の幅は溝13の幅より
若干狭いので、第1絶縁膜】2め溝13の側面と第1導
電路14との間に間隙が′tじる。そこで、この間隙を
埋めるようにして80G膜15を全面に塗布する。
Next, as shown in FIG. 1(b), a metal layer is formed on the entire surface and then patterned to form a conductive path 14 in the groove 13. Since the width of the first conductive path 14 is slightly narrower than the width of the groove 13, there is a gap between the side surface of the second groove 13 and the first conductive path 14. Therefore, the 80G film 15 is applied to the entire surface so as to fill this gap.

1−J<いで、第1図(c)に示すように、SOG膜1
−!5をCF4等のガスによるイオンエツチングにより
エッチバックして、第1導電路14及び第1絶縁膜12
の表面を露出させ、前記間隙にのみSOc=を残存させ
て、SOG領域15aを設ける。
1-J<, as shown in FIG. 1(c), the SOG film 1
-! 5 is etched back by ion etching using a gas such as CF4 to form the first conductive path 14 and the first insulating film 12.
The SOG region 15a is provided by exposing the surface of and leaving SOc= only in the gap.

こえ1.1・こより、第1導電路14をその表面と第1
絶縁膜12の表面とが略々面一になるように第1絶縁膜
12内に埋め込んで形成することができる。
1.1 From this, the first conductive path 14 is connected to its surface and the first conductive path 14.
It can be formed by being embedded in the first insulating film 12 so that the surface thereof is substantially flush with the surface of the insulating film 12.

、−の後、プラズマCVD法により約1μmの厚さ○窒
化膜等を堆積して第2絶縁膜】。6を全面に形成する。
After that, a second insulating film is formed by depositing a nitride film or the like to a thickness of about 1 μm by plasma CVD. 6 is formed on the entire surface.

次いで、第2絶縁膜16上に第1導電路14と直交する
第2導電路17を布線する。
Next, a second conductive path 17 orthogonal to the first conductive path 14 is laid on the second insulating film 16 .

二二・ハようにして形成された第1絶縁膜12と第1 
”I’ 電路14とは、その表面の段差が小さく、千に
’s、 ”:t’、が高い。従って、第1導電路14と
第2導電路17との間に形成される第2絶縁膜】6は極
めて平坦性が高く、段差部がないため絶縁不良が回避さ
れる。また、第2絶縁膜16上の第2導電路17が断線
することもない。このようにして、安定して2層以上の
多層配線を形成することができる。
The first insulating film 12 and the first insulating film 12 formed in the manner
The "I" electric path 14 has a small level difference on its surface and a high pitch. Therefore, the second insulating film 6 formed between the first conductive path 14 and the second conductive path 17 has extremely high flatness and has no stepped portion, thereby avoiding insulation defects. Moreover, the second conductive path 17 on the second insulating film 16 is not disconnected. In this way, a multilayer wiring having two or more layers can be stably formed.

第3図は本発明の第2の実施例方法により製造された多
層配線構造の半導体装置を示す断面図である。この実施
例においては、第1の実施例のように、第1絶縁wA1
2を単層の熱酸化膜により形成するのではなく、第1絶
縁膜12を、先ず熱酸化により下層絶縁膜18を形成し
、この下層絶縁膜18の上に常圧CVD法により酸化膜
を埋積させて上層絶縁膜19を形成することにより、2
層構造にしている。そして、上層絶縁膜19又は下層及
び上層絶縁膜18.19を選択的にエツチングし、下層
絶縁膜18の少なくとも一部を残存させて溝13を形成
する。その後、この講13に第1導電路14を形成する
FIG. 3 is a sectional view showing a semiconductor device having a multilayer wiring structure manufactured by the second embodiment method of the present invention. In this embodiment, as in the first embodiment, the first insulation wA1
2 is not formed by a single layer of thermal oxide film, but first the lower insulating film 18 is formed by thermal oxidation, and then an oxide film is formed on this lower insulating film 18 by atmospheric pressure CVD. By forming the upper insulating film 19 by burying the
It has a layered structure. Then, the upper insulating film 19 or the lower and upper insulating films 18 and 19 are selectively etched to form the groove 13 with at least a portion of the lower insulating film 18 remaining. Thereafter, a first conductive path 14 is formed in this groove 13.

次に、第1導電路14と溝13の側面との間隙4こS 
OGを充填するようにして全体をSOG膜により被覆し
、このS OG膜をエッチバックして第14電路14の
表面及び上層絶縁層1つの表面上の“60G膜を取去り
、前記間隙にSOG領域15aを残存させる。次いで、
第2絶縁膜16及び第2導電路17を第1の実施例と同
様にして形成する。
Next, the gap 4 S between the first conductive path 14 and the side surface of the groove 13 is
The entire surface is covered with an SOG film so as to be filled with OG, and the SOG film is etched back to remove the 60G film on the surface of the 14th electric circuit 14 and the surface of one of the upper insulating layers, and the SOG film is deposited in the gap. Region 15a is left. Then,
A second insulating film 16 and a second conductive path 17 are formed in the same manner as in the first embodiment.

この実施例においても、第1導電路4の表面と第1絶縁
膜12の上層絶縁膜膜1つの表面とは略ζ面一で平坦で
あるから、第1の実施例と同様の効果を奏する。また、
この実施例においては、第1絶縁膜12を下層及び上層
絶縁膜18.19の、2層構造にしたから、下層の熱酸
化により形成する絶縁膜18が薄くてすむ。このため、
素子形成段階で熱酸化時間が短いという利点がある。
Also in this embodiment, since the surface of the first conductive path 4 and the surface of one of the upper insulating films of the first insulating film 12 are flat and substantially flush with the ζ plane, the same effect as in the first embodiment is achieved. . Also,
In this embodiment, since the first insulating film 12 has a two-layer structure of a lower layer and an upper layer insulating film 18, 19, the insulating film 18 formed by thermal oxidation of the lower layer can be thin. For this reason,
There is an advantage that the thermal oxidation time is short in the element formation stage.

し発明の効果] 11上説明したように、本発明によれば絶縁膜におけも
導電路形成予定領域よりやや大きい幅の溝をエツチング
によりパターン形成し、この溝の中に導電路を形成する
と共に、導電路と溝との間隙をシリカで埋めて平坦化す
るから、この導電路上に、更に他の絶縁膜及び導電路を
形成した場合に、絶縁不良及び断線等の配線上の欠陥を
回避することができる。従って、本発明によれば、2層
以上の多層配線を極めて安定して、且つ、絶縁不良及び
断線等が生じることなく形成することができ、半導体装
置の製造上、多大の効果を奏する。
[Effects of the Invention] 11 As explained above, according to the present invention, a pattern is formed in the insulating film by etching to form a groove having a width slightly larger than the area in which a conductive path is to be formed, and a conductive path is formed in this groove. At the same time, since the gap between the conductive path and the groove is filled with silica and flattened, wiring defects such as poor insulation and disconnection can be avoided when another insulating film and conductive path are formed on this conductive path. can do. Therefore, according to the present invention, a multilayer wiring having two or more layers can be formed extremely stably and without causing insulation defects, disconnections, etc., and has great effects in manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至<c>は本発明の実施例に係る多層配
線構造の半導体装置の製造方法を工程順に示す断面図、
第2図(a)はこの実施例方法により形成された多層配
線構造を示す断面図、第2図(b)は同じくその平面図
、第3図は第2の実施例方法により形成された多層配線
構造を示す断面図、第4図及び第5図は従来方法により
製造された多層配線構造の半導体装置を示す断面図であ
る。
FIGS. 1(a) to <c> are cross-sectional views showing a method for manufacturing a semiconductor device with a multilayer wiring structure according to an embodiment of the present invention in order of steps;
FIG. 2(a) is a cross-sectional view showing a multilayer wiring structure formed by the method of this embodiment, FIG. 2(b) is a plan view thereof, and FIG. 3 is a multilayer wiring structure formed by the method of the second embodiment. 4 and 5 are cross-sectional views showing a semiconductor device with a multilayer wiring structure manufactured by a conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子が形成された半導体基板上に絶縁膜を
形成する工程と、この絶縁膜をその厚さ方向の一部を残
存させて所定のパターンでエッチング除去して溝を形成
する工程と、前記溝の内部に金属層を被着して導電路を
形成する工程と、前記溝の側面と導電路の側面との間隙
を充填しつつシリカ塗布膜を被着する工程と、このシリ
カ塗布膜をエッチバックして前記導電路の表面を露出さ
せる工程と、を有することを特徴とする多層配線構造の
半導体装置の製造方法。
(1) A step of forming an insulating film on a semiconductor substrate on which a semiconductor element is formed, and a step of etching away this insulating film in a predetermined pattern while leaving a part of the insulating film in the thickness direction to form a groove. , a step of depositing a metal layer inside the groove to form a conductive path, a step of depositing a silica coating film while filling the gap between the side surface of the groove and the side surface of the conductive path, and the silica coating. A method for manufacturing a semiconductor device with a multilayer wiring structure, comprising the step of etching back a film to expose the surface of the conductive path.
(2)前記絶縁膜は2層構造を有し、前記溝を形成する
工程においては少なくとも上層の絶縁膜を所定のパター
ンでエッチングして除去し下層の絶縁膜の少なくとも一
部を残存させて前記溝を形成することを特徴とする特許
請求の範囲第1項に記載の多層配線構造の半導体装置の
製造方法。
(2) The insulating film has a two-layer structure, and in the step of forming the groove, at least the upper insulating film is etched and removed in a predetermined pattern, and at least a part of the lower insulating film remains. A method of manufacturing a semiconductor device with a multilayer wiring structure according to claim 1, characterized in that a groove is formed.
JP28793087A 1987-11-14 1987-11-14 Manufacture of semiconductor device having multilayer interconnection structure Pending JPH01129443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28793087A JPH01129443A (en) 1987-11-14 1987-11-14 Manufacture of semiconductor device having multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28793087A JPH01129443A (en) 1987-11-14 1987-11-14 Manufacture of semiconductor device having multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPH01129443A true JPH01129443A (en) 1989-05-22

Family

ID=17723570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28793087A Pending JPH01129443A (en) 1987-11-14 1987-11-14 Manufacture of semiconductor device having multilayer interconnection structure

Country Status (1)

Country Link
JP (1) JPH01129443A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025310A (en) * 1973-03-01 1975-03-18
JPS62247549A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025310A (en) * 1973-03-01 1975-03-18
JPS62247549A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0775235B2 (en) Flattening method for forming through conductors in a silicon wafer
JPH063804B2 (en) Semiconductor device manufacturing method
JPH01129443A (en) Manufacture of semiconductor device having multilayer interconnection structure
JPS63260054A (en) Semiconductor integrated circuit device
JPS6376351A (en) Formation of multilayer interconnection
JPS63161645A (en) Manufacture of semiconductor device
JPS63275142A (en) Manufacture of semiconductor device
JPH06236928A (en) Semiconductor device and its manufacture
JPS61239646A (en) Formation of multilayer interconnection
KR960011250B1 (en) Semiconductor contact device manufacturing method
JPH0273652A (en) Manufacture of semiconductor device
JPH0758204A (en) Manufacture of semiconductor device
JPH09172075A (en) Manufacture for interlayer connection hole in multilayer wiring of semiconductor device
JP2787903B2 (en) Method for manufacturing semiconductor device
JPS58199553A (en) Manufacture of semiconductor device
JPS6132555A (en) Formation of multilayer interconnection structure
JPS6134956A (en) Method for forming wiring layer
KR20020006361A (en) Semiconductor device having increased pattern uniformity and fabrication method thereof
JPS624346A (en) Vertical wiring method for layered semiconductor device
JPS6381833A (en) Manufacture of semiconductor device
JPS62271453A (en) Manufacture of semiconductor element
JPH02137328A (en) Method for forming multilayer interconnections
JPH05267470A (en) Integrated circuit device and its manufacture
JPS6155943A (en) Manufacture of semiconductor device
JPH05160126A (en) Formation of multilayer wiring