JPS6155943A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6155943A
JPS6155943A JP17744084A JP17744084A JPS6155943A JP S6155943 A JPS6155943 A JP S6155943A JP 17744084 A JP17744084 A JP 17744084A JP 17744084 A JP17744084 A JP 17744084A JP S6155943 A JPS6155943 A JP S6155943A
Authority
JP
Japan
Prior art keywords
insulating film
resist
levelling
polycrystalline silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17744084A
Other languages
Japanese (ja)
Inventor
Iwao Higashinakagaha
東中川 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17744084A priority Critical patent/JPS6155943A/en
Publication of JPS6155943A publication Critical patent/JPS6155943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Abstract

PURPOSE:To facilitate the formation of minute elements by levelling the surface in projecting or recessed shape by using the formation of insulating films, the etching process of insulating films by use of one surplus mask, and the usual levelling technique. CONSTITUTION:On the substrate composed of a semiconductor substrate 1, an insulating film 2, and a polycrystalline silicon wiring 3 and which has a difference in level, an insulating film 4 whose thickness is almost same as said level difference is formed. Nextly, a resist film 5 is formed with leaving a width which is slightly wider than the level difference part. Subsequently, the part where no resist exists is removed by etching. After that, the resist is removed to produce the form in which the polycrystalline silicon 3 and the insulating film 4 are present side by side with interposing grooves 6. Then an insulating film 7 is formed by bias spattering of an insulating film thereby attaining the complete levelling.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に係シ、!侍に配線層
上の絶縁膜の平担化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device. This article relates to flattening the insulating film on the wiring layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

多層配線を行うためくは、絶縁膜の平担化は必須の技術
である。平担化手法としては、バイアススパッタリング
やポリイミド等の粘性を利用した手法がある。バイアス
スパッタリングはスバ、り付着とスパッタエツチングの
岨み合わせによって、凹部での再付着が平担部よ)大き
いことを利用して凹部をうめる。しかし凸部に関しては
、外への見込角は、平担部と違わないため微視的には角
はとれるが、巨視的には、平担化は達成されない。
In order to perform multilayer wiring, flattening the insulating film is an essential technique. Examples of flattening methods include bias sputtering and methods that utilize the viscosity of polyimide. Bias sputtering is a combination of sputtering, sputter etching, and fills in recesses by taking advantage of the fact that re-deposition is greater on recesses than on flat areas. However, regarding the convex portion, the outward angle is the same as that of the flat portion, so although the angle can be removed microscopically, flattening is not achieved macroscopically.

また、粘性を利用した平担化手法でも凸に対しては、バ
イアススパッタの時と同様忙角の部分は。
Also, even with the flattening method that uses viscosity, it is difficult to deal with convex portions as with bias sputtering.

なくなるが、巨視的には平担部ならない。It disappears, but macroscopically it does not become a flat area.

このように急峻な角をおとすことによシ段切れはなくな
るが、マスク合せの時の焦点深度と関連した平担化の目
的には、不十分でちる。
Reducing such a steep corner eliminates the step break, but it is insufficient for the purpose of flattening in relation to the depth of focus during mask alignment.

〔発明の目的〕[Purpose of the invention]

この発明は1通常の平担化技術では、平担化しくくい凸
起状の表面または巾のひろい凹状の表面を平担化するこ
とによりて半導体素子の微細素子形成を容易1ct、、
tfc信頼性を向上する半導体装置の製造方法を提供す
るものである。
This invention facilitates the formation of fine elements of semiconductor devices by 1 ct, by flattening convex surfaces or wide concave surfaces that are difficult to flatten using conventional flattening techniques.
The present invention provides a method for manufacturing a semiconductor device that improves TFC reliability.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁膜形成と一枚の余分のマスクを用いて絶
縁膜のエツチングプロセスと通常の平担化技術を用いる
ことにポイントがある。即ち、一枚の余分のマスクを用
いることによって、凸起または、巾のひろい凹のある絶
縁物表面を現在の平担化技術が得意としている巾のせま
い凹の形状の形Kかえた後、従来技術の平担化技術1例
えばバイアススパッタ等を用いて平担化を行うものであ
る。
The key point of the present invention is to form an insulating film, use an extra mask, perform an etching process on the insulating film, and use a conventional planarization technique. That is, by using one extra mask, the surface of the insulator, which has convexities or wide concavities, is changed to the narrow concave shape that current flattening technology is good at. Prior art planarization technique 1 For example, planarization is performed using bias sputtering or the like.

〔発明の効果〕〔Effect of the invention〕

このような技術によって、どのような表面形状の平担化
も可能になシ、素子設計の余裕度もうまれる。また溝を
例にとると巾がひろいと平担化する九めに大きな膜厚を
つけなければならないが、本発明を適用するととくよっ
て適度な膜厚形成によって平担化が可能となる。
Such a technique makes it possible to flatten any surface shape and provides more flexibility in device design. Further, taking a groove as an example, if the width is wide, it is necessary to make the film thicker to make it flat, but when the present invention is applied, it becomes possible to make the groove flat by forming an appropriate film thickness.

このように平担化することによってレジスト除去での段
差によるパタン異常、多結晶シリコン氏のアニール等の
段差(帰因する問題を避けることができる。
By flattening in this way, it is possible to avoid problems caused by pattern abnormalities due to steps during resist removal, steps caused by annealing of polycrystalline silicon, etc.

〔発明の実施例〕[Embodiments of the invention]

以下実施例に従って1本発明の詳細な説明する。 The present invention will be described in detail below according to examples.

(実施例1) 第1図(a)に凸の段差を持つ基板の例を示す。ここで
1は半導体基板、2は絶縁膜、3は多結晶シリコン配線
でおる。この膜厚を仮に3oooXとしておく。これK
 LPCVD等によりて段差と同程度の膜厚aoooi
の絶縁膜4を形成する(第1図(b))。
(Example 1) FIG. 1(a) shows an example of a substrate having a convex step. Here, 1 is a semiconductor substrate, 2 is an insulating film, and 3 is a polycrystalline silicon wiring. This film thickness is temporarily set to 3oooX. This is K
By LPCVD etc., the film thickness is aooooi which is the same as that of the step.
An insulating film 4 is formed (FIG. 1(b)).

次いで段差部より少し大きめの巾を残して、レジスト1
!X5を形成する(第1図(C))。続いてレジストの
ない部分をエツチングによって除去する。この工、チン
グは、湿式であれば、 NH4F系統のエツチング液を
用いればよい、またパタンか小さい場合には、反応性イ
オンエッチを用いることも可能である。このようなエツ
チングをしたのち、レジスト除去したものを第1図@)
に示す。ここで、先にあった多結晶シリコン3と、絶縁
膜4が11116を介して並んでいる形状になっている
0次いで、絶縁膜のバイアススパッタ法によって、絶縁
膜7を形成することによって、完全な平担化が達成され
る(第1図(e) ) 。
Next, leave a width slightly larger than the step part and apply resist 1.
! X5 is formed (FIG. 1(C)). Subsequently, the portions without resist are removed by etching. If this process is a wet process, an NH4F-based etching solution may be used, and if the pattern is small, reactive ion etching may be used. After such etching, the resist is removed as shown in Figure 1 (@)
Shown below. Here, the previously existing polycrystalline silicon 3 and the insulating film 4 are lined up with 11116 interposed between them. Next, the insulating film 7 is formed by the bias sputtering method of the insulating film, and the insulating film 7 is completely removed. A smooth flattening is achieved (FIG. 1(e)).

(実施例2) 前に述べたように、凹の段差であってもその巾がひろい
場合くは、平担化が困難である。しかしこのような場合
も本発明を適用することによシ有効な平担化が出来る。
(Example 2) As mentioned above, even if the step is a concave step, if the width thereof is wide, it is difficult to flatten the step. However, even in such cases, effective flattening can be achieved by applying the present invention.

第2図(a) K巾の広い凹の段差を持つ基板の例を示
す、11は半導体基板、12は絶縁膜である。この全面
に絶縁膜13を形成する(第2図(b) ’) 、続い
て1段差の凹部より少し小さい巾にレジスト14を形成
する(第2図(C) ) 、続いてこのレジスト層をマ
スクにして絶縁膜のエツチングを行う、この後、レジス
ト除去した時の様子をに2図(d) IC示す、15に
示す細い溝を介して、絶縁膜12.絶縁膜13が存在す
る形になっている。ここで上記実施例1°で示したよう
にバイアススパッタを行うととくよる平担な構造を得る
ことができる。
FIG. 2(a) shows an example of a substrate having a wide concave step with a width K, 11 is a semiconductor substrate, and 12 is an insulating film. An insulating film 13 is formed on this entire surface (Fig. 2(b)'), and then a resist 14 is formed in a width slightly smaller than the recess of one step (Fig. 2(C)).Subsequently, this resist layer is formed. The insulating film is etched using a mask. After that, the resist is removed and the insulating film 12. An insulating film 13 is present. Here, if bias sputtering is performed as shown in Example 1 above, a particularly flat structure can be obtained.

〔発明の他の実施例〕[Other embodiments of the invention]

上の2つの実施例で示した様に本発明は基板表面形状を
通常のバイアススパッタで埋め込み易いような形になお
すことKよって達成している。エツチング後く形成され
る溝の巾は1〜2μ世が適当と考えられる。技術的く困
難さが小いときは1μm以下が望ましい、これは平担化
のためのバイアススパッタ時間の節約にもつながる。
As shown in the above two embodiments, the present invention is achieved by modifying the surface shape of the substrate into a shape that facilitates embedding by normal bias sputtering. The appropriate width of the groove formed after etching is considered to be 1 to 2 microns. When the technical difficulty is small, the thickness is preferably 1 μm or less, which also leads to savings in bias sputtering time for flattening.

を九、上の実施例は、多結晶シリコンの段差。9. The above example is a polycrystalline silicon step.

及び絶縁膜中く形成された凹の段差を絶縁膜で埋め込む
ようKしてらり念が、この組合せは、これに限ることは
ない、金属間taをおおう絶縁膜上の段差の解消にも殆
ど発明要件をかえることなく適用することが出来る。
This combination is not limited to this, but is also effective in eliminating steps on the insulating film covering the intermetallic layer. It can be applied without changing the invention requirements.

ま九多結晶シリコン自身の平担化にもこの発明の主旨を
出ないでこの発明を適用することができることはいうま
でもない。
It goes without saying that this invention can also be applied to planarization of polycrystalline silicon itself without departing from the gist of the invention.

最後の平担化は、バイアススパッタで行うように説明し
たが、これもレジストの粘性を使りたもの、スピンオン
シリカ等の従来技術のいずれもが適用可能でおる。
Although it has been explained that the final leveling is performed by bias sputtering, any conventional technique such as one using the viscosity of the resist or spin-on silica can also be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の各実施例の製造工程を示す
断面図でちる。 1・・・半導体基板、   2・・・絶t&膜。 3・・・多結晶シリコン膜、  4・・・絶縁膜。 5・・・レジスト、      6・・・溝。 7・・・絶縁膜、      11・・・半導体基板。 12・・・絶縁膜、13・・・絶縁膜。 14・・・レジスト、15・・・溝、 16・・・絶縁膜。 代理人 弁理士 則近憲佑 (ほか1名)第1図
1 and 2 are cross-sectional views showing the manufacturing process of each embodiment of the present invention. 1... Semiconductor substrate, 2... Absolute T & film. 3... Polycrystalline silicon film, 4... Insulating film. 5...Resist, 6...Groove. 7... Insulating film, 11... Semiconductor substrate. 12... Insulating film, 13... Insulating film. 14...Resist, 15...Trench, 16...Insulating film. Agent: Patent attorney Kensuke Norichika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体装置の製造工程途中での基板表面を平担化するに
あたって、絶縁膜又は、半導体膜をその凹凸と同程度の
膜厚に形成したのち、その凹凸パタンと相関のあるレジ
ストパタンを形成し、続いて凸部をエッチング除去後、
バイアススパッタ、スピンオンシリカ、低融点ガラスの
リフロー等を用いたことを特徴とする半導体装置の製造
方法。
When flattening the surface of a substrate during the manufacturing process of a semiconductor device, an insulating film or a semiconductor film is formed to the same thickness as the unevenness, and then a resist pattern that correlates with the unevenness pattern is formed. Next, after removing the convex part by etching,
A method of manufacturing a semiconductor device characterized by using bias sputtering, spin-on silica, reflow of low melting point glass, etc.
JP17744084A 1984-08-28 1984-08-28 Manufacture of semiconductor device Pending JPS6155943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17744084A JPS6155943A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17744084A JPS6155943A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6155943A true JPS6155943A (en) 1986-03-20

Family

ID=16030980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17744084A Pending JPS6155943A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6155943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429730A (en) * 1992-11-02 1995-07-04 Kabushiki Kaisha Toshiba Method of repairing defect of structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429730A (en) * 1992-11-02 1995-07-04 Kabushiki Kaisha Toshiba Method of repairing defect of structure
US5639699A (en) * 1992-11-02 1997-06-17 Kabushiki Kaisha Toshiba Focused ion beam deposition using TMCTS

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPH03295239A (en) Manufacture of semiconductor device
US4710264A (en) Process for manufacturing a semiconductor arrangement
JPS6155943A (en) Manufacture of semiconductor device
JPH0551174B2 (en)
JPS5936929A (en) Fabrication of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPH0265256A (en) Manufacture of semiconductor device
JPS6313346B2 (en)
JPH02180052A (en) Manufacture of semiconductor device
JPS63172444A (en) Manufacture of semiconductor device
JPS61260638A (en) Manufacture of semiconductor device
JPH0249017B2 (en)
JPH01129443A (en) Manufacture of semiconductor device having multilayer interconnection structure
JPH01230254A (en) Flattening method
JPH09172075A (en) Manufacture for interlayer connection hole in multilayer wiring of semiconductor device
JPH02180017A (en) Flattening method of interlayer insulating film
JPH03153035A (en) Manufacture of semiconductor device
JPS6232611A (en) Manufacturing method for self-alignment-type built-in electrode contact
JPS6134956A (en) Method for forming wiring layer
JPS63226040A (en) Manufacture of semiconductor integrated circuit device
JPH03190137A (en) Manufacture of semiconductor device
JPH0258851A (en) Manufacture of semiconductor device
JPS60202954A (en) Manufacture of semiconductor device
JPS6362255A (en) Method for flattening semiconductor device