JPH01127649A - High magnetic flux density alloy and its manufacture - Google Patents

High magnetic flux density alloy and its manufacture

Info

Publication number
JPH01127649A
JPH01127649A JP955187A JP955187A JPH01127649A JP H01127649 A JPH01127649 A JP H01127649A JP 955187 A JP955187 A JP 955187A JP 955187 A JP955187 A JP 955187A JP H01127649 A JPH01127649 A JP H01127649A
Authority
JP
Japan
Prior art keywords
alloy
less
flux density
magnetic flux
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP955187A
Other languages
Japanese (ja)
Inventor
Seiichi Watanabe
征一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP955187A priority Critical patent/JPH01127649A/en
Publication of JPH01127649A publication Critical patent/JPH01127649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title alloy having good workability by coarsening the ferrite grain size in an alloy having specific compsn. consisting of Co, Si, Al, N, O and Fe by a specific rolling-heat treatment. CONSTITUTION:The alloy having the compsn. consisting of, by weight, 13-35% Co, <=0.75% Si, and/or <=0.08% Sol.Al, <=0.008% N, <=0.005% O and the balance Fe with inevitable impurities is subjected to soaking to 1,050-1,250 deg.C. The alloy is then rolled to finish at >=750 deg.C. After that, said alloy is heated as well to 750-920 deg.C, is retained and left cool or gradually cooled. By said rolling-heat treatment, the ferrite grain size is coarsened from the 7th of ferrite grade number. In this way, the contents of expensive Co is reduced and the use of V is furthermore eliminated to obtain the high magnetic flux density alloy having good workability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加工性の良好な高磁束密度合金、特に安価な
合金およびその製法を提供することである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a high magnetic flux density alloy with good workability, particularly an inexpensive alloy, and a method for producing the same.

(従来の技術) 高磁束密度合金、例えばFe −50%Co合金、Fe
 −50%Co−2χV合金(商品名:バーメンデュー
ル)は、■飽和磁束密度が高い、■初透磁率が高い等の
特色をもつため、各種の電子機器の小型化、高性能化を
図るために用いられる。
(Prior art) High magnetic flux density alloys, such as Fe-50%Co alloy, Fe
-50%Co-2χV alloy (trade name: Vermendur) has characteristics such as ■high saturation magnetic flux density and ■high initial magnetic permeability, so it can be used to miniaturize and improve the performance of various electronic devices. used for

この種の磁性合金は、今日でもかなり多量に使用されて
いるが、今後も、特殊モータ用コア、ドツトプリンタヘ
ッド等の新規分野に大幅に需要が拡大するものと考えら
れる。
Although this type of magnetic alloy is still used in large quantities today, it is thought that demand will continue to expand significantly in new fields such as cores for special motors and dot printer heads.

しかしながら、この種の合金はCOが多量に使用されて
いるため、かなり高価なものとなっている。
However, this type of alloy uses a large amount of CO, making it quite expensive.

しかも、FeCo規則合金が生成するため加工性が著し
く劣化し、そのため加工性が要求される場合、1.8〜
2%のVを添加しているが、このように加工性を改善す
るために添加するVなども高価であるため、材料コスト
の上昇はさけられない。
Moreover, since a FeCo ordered alloy is formed, the workability is significantly deteriorated, and therefore, when workability is required, 1.8~
Although 2% of V is added, since V added to improve workability is also expensive, an increase in material cost cannot be avoided.

(発明が解決しようとする問題点) したがって、本発明の目的は、Co使用量の低減をはか
って材料コストの低い高磁束密度合金およびその製法を
提供することである。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a high magnetic flux density alloy with low material cost by reducing the amount of Co used, and a method for producing the same.

さらに、本発明の別の目的は、加工性改善にVの添加を
必要としない、材料コストの低い高磁束密度合金および
その製法を提供することである。
Furthermore, another object of the present invention is to provide a high magnetic flux density alloy with low material cost and a method for producing the same, which does not require the addition of V to improve workability.

(問題点を解決するための手段) 本発明者は、かかる問題を解決すべく、種々検討を重板
た結果、従来0.01〜0.02%程度は不可避的に含
まれる酸素含有量を大幅に低減したところ、磁気特性が
著しく改善され、その分だけCo11を低減でき、しか
もFeCo規則合金の生成しない領域にまでCo含有量
を低減させることができるため、今度は、V添加を必要
とせずに所要の加工性を確保できることを知り、本発明
を完成した。
(Means for Solving the Problems) In order to solve the problems, the inventors of the present invention have conducted various studies and found that the oxygen content, which is conventionally unavoidably contained at about 0.01 to 0.02%, has been When it is significantly reduced, the magnetic properties are significantly improved, Co11 can be reduced by that amount, and the Co content can be reduced to a region where FeCo ordered alloys do not form, so V addition is no longer necessary. The present invention was completed based on the knowledge that the required workability could be ensured without any problems.

ここに、本発明の要旨とするところは、ii量%で、 Co:13〜35%、 Si:0.75%以下および/またはsol、へt2:
o、08%以下、 N :o、oog%以下、 酸素:0.005%以下、
Feおよび付随不純物:残部 から成る組成を有する加工性の良好な高磁束密度合金で
ある。
Here, the gist of the present invention is that ii amount% is Co: 13 to 35%, Si: 0.75% or less and/or sol, and t2:
o, 08% or less, N: o, oog% or less, oxygen: 0.005% or less,
It is a high magnetic flux density alloy with good workability and a composition consisting of Fe and accompanying impurities: balance.

また、別の面からは、本発明の要旨とするところは、 重量%で、 Co:13〜35%、 Si:0.75%以下および/またはsol、A(!:
0.08%以下、 N :O,002%以下、 酸素:0.005%以下、
Feおよび付随不純物:残部 から成る組成を有する合金を1050〜1250℃区均
熱加熱した後圧延を行い750℃以上で仕上げ、さらに
750〜920℃に加熱、保持後放冷または徐冷する圧
延−熱処理によりフェライト粒径をフェライト粒度番号
7番より粗大化することを特徴とする、加工性の良好な
高磁束密度合金の製法である。
In addition, from another aspect, the gist of the present invention is as follows: In weight%, Co: 13 to 35%, Si: 0.75% or less and/or sol, A(!:
0.08% or less, N: O, 002% or less, Oxygen: 0.005% or less,
Fe and accompanying impurities: Rolling in which an alloy having a composition consisting of the remainder is soaked and heated in a range of 1050 to 1250 °C, then finished at 750 °C or higher, further heated to 750 to 920 °C, held, and then allowed to cool or gradually cooled. This is a method for producing a high magnetic flux density alloy with good workability, which is characterized by making the ferrite grain size coarser than ferrite grain size number 7 by heat treatment.

このように、本発明によれば; ■Co量を35%以下として規則合金生成域を避けるこ
とによって加工性の改善を図れるため、■の添加を必要
とせず、安価な合金とすることができる。
As described above, according to the present invention: (1) It is possible to improve workability by setting the Co amount to 35% or less and avoiding the ordered alloy formation region, so it is possible to make an inexpensive alloy without the need for the addition of (2). .

なお、FeCo規則合金の生成領域はほぼCo = 3
5%(超)〜65%である。
Note that the formation region of FeCo ordered alloy is approximately Co = 3
It is 5% (more than) to 65%.

■CO添加量を減らすことによる磁気特性の劣化は特に
、本系鋼に混入しやすい酸素量を減らすことによって改
善し得る。また、八QNの生成も磁気特性を著しく劣化
させるのでN量.Al量ともに低くするのである。
(2) The deterioration of magnetic properties caused by reducing the amount of CO added can be particularly improved by reducing the amount of oxygen that tends to be mixed into this steel. Also, the generation of 8QN significantly deteriorates the magnetic properties, so the amount of N should be adjusted accordingly. Both amounts of Al are lowered.

■圧延条件−熱処理条件を改善することにより、フェラ
イト粒径の粗大化をはかり、さらに磁気特性の改善を図
ることにより、さらに磁気特性の改善をはかるのである
(2) Rolling Conditions - By improving the heat treatment conditions, the ferrite grain size is made coarser, and the magnetic properties are further improved by further improving the magnetic properties.

(作用) ここで、本発明において合金組成を上述のように制限し
た理由を詳述する。
(Function) Here, the reason why the alloy composition is limited as described above in the present invention will be explained in detail.

CO: Co11を13%以上としたのは、それより低いといく
ら介在物をへらし、かつフェライト粒径を粗大化しても
、飽和磁束密度が低くなってしまうので、高磁束密度合
金であるバーメンデュールの代替鋼としての役目を果た
しえない、また、35%を越えるとFeCo規則合金を
生成し易くなるため、本発明にあってはCo11を13
〜359Aに制限する。
CO: The reason why Co11 is set to 13% or more is because if it is lower than that, the saturation magnetic flux density will be low even if the inclusions are reduced and the ferrite grain size is coarsened. In the present invention, Co11 is replaced by 13 because it cannot serve as a substitute steel for FeCo, and if it exceeds 35%, it tends to form an ordered FeCo alloy.
~359A.

酸素(0): 酸素を低く限定したのは、本系鋼はCo原料から酸素が
混入し易く、酸素が混入すると著しく磁気特性が劣化す
るからである。酸素含有量を低くおさえることが本発明
では重要である。通常、酸素が0.02%程度混入する
が、この程度でも混入すると13〜35%Co −Fe
ではバーメンデュール代替用としての性能は発揮し得な
くなる。
Oxygen (0): The reason why oxygen is limited to a low level is because this steel is easily contaminated with oxygen from the Co raw material, and when oxygen is mixed in, the magnetic properties are significantly deteriorated. It is important in the present invention to keep the oxygen content low. Normally, about 0.02% oxygen is mixed in, but if even this level is mixed, 13 to 35% Co - Fe
In this case, it will not be able to demonstrate its performance as a substitute for Vermendur.

ここに、添付図面の第1図ないし第3図はそれぞれ(a
)50χCo−2χV−0,02χ酸素−Fe合金、(
b)30χCo−0,02χ酸素−Fe合金、そして(
c) 30χCo−0゜002χ酸素−Fe合金の3ケ
ースの場合についてそれらのB−8曲線を示すものであ
る。
Here, Figures 1 to 3 of the attached drawings are respectively (a
)50χCo-2χV-0,02χoxygen-Fe alloy, (
b) 30χCo-0,02χoxygen-Fe alloy, and (
c) B-8 curves are shown for three cases of 30χCo-0°002χ oxygen-Fe alloy.

第1図は、従来例に相当する。第2図は、比較例に相当
し、酸素含有量が高い、第3図は本発明例である。
FIG. 1 corresponds to a conventional example. FIG. 2 corresponds to a comparative example with a high oxygen content, and FIG. 3 shows an example of the present invention.

これらからも明らかなように、13〜35%Co −F
e合金系をパーメンデニール代替用として使用しようと
すると、酸素0.002%以下にすることが必要である
ことが分かる。そこでさらに種々検討を重ねたところ、
その限界がo、oos%にあることが判明し、したがっ
て、本発明においては酸素はo、oos%以下に制限さ
れるのである。
As is clear from these, 13-35%Co-F
If the e-alloy system is to be used as a substitute for permendenier, it is found that it is necessary to reduce the oxygen content to 0.002% or less. After further consideration, we found that
It has been found that the limit is o,oos%, and therefore, in the present invention, oxygen is limited to less than o,oos%.

このように酸素を低く抑えるためにはいわゆる脱酸剤と
してStおよび/またはAl1を添加してS1%M酸化
物として混入酸素を浮上せしめて、酸素を抑えることが
好ましい、もちろん、酸素が低く抑えられるのであれば
、特にSiは添加する必要はない、 A(!であっても
よい、その他、真空脱ガス処理等適宜脱ガス処理によっ
て脱酸を行ってもよい。
In order to keep oxygen low in this way, it is preferable to add St and/or Al1 as a so-called deoxidizing agent and float the mixed oxygen as S1%M oxide to suppress oxygen.Of course, it is preferable to keep oxygen low. If it is possible, there is no particular need to add Si.A(!) may be used.In addition, deoxidation may be performed by appropriate degassing treatment such as vacuum degassing treatment.

Si: Siは脱酸剤として添加される。しかし、Si含有量が
増えると飽和磁束密度が低下するので、添加する場合で
も0.75%以下に制限する。
Si: Si is added as a deoxidizing agent. However, as the Si content increases, the saturation magnetic flux density decreases, so even when Si is added, it is limited to 0.75% or less.

AQ: AQも脱酸材として添加し、酸素を減らすのに有効であ
るが、Al2.O,あるいはAO,Nとして留まると磁
気特性を劣化させるので、本発明においてAQを添加す
る場合にあってもM含有量の上限は0.08%とする。
AQ: AQ is also added as a deoxidizer and is effective in reducing oxygen, but Al2. If it remains as O, AO, or N, the magnetic properties will deteriorate, so even when AQ is added in the present invention, the upper limit of the M content is set to 0.08%.

N: Nは酸素と同様にMと結び付いてMNを生成するが、酸
化物のように溶湯中に析出し、浮上し易いという性質は
なく、固溶状態で存在し、固相になり、圧延中あるいは
熱処理中にAQNあるいはSiNとして析出する。 A
QN 5SiNは低磁場域の磁化過程で重要な磁壁の移
動を妨げるので好ましくはない、したがって、Nも可及
的に少ない量にまで低減させる。
N: Similar to oxygen, N combines with M to form MN, but unlike oxides, N does not have the property of precipitating in the molten metal and floating easily, but exists in a solid solution state, becomes a solid phase, and is rolled. It precipitates as AQN or SiN during or during heat treatment. A
QN 5SiN is not preferable because it interferes with the movement of the domain wall, which is important in the magnetization process in the low magnetic field region.Therefore, N is also reduced to the lowest possible amount.

Nはかなりの部分が大気中から溶湯に溶は込むことによ
って入ってくるのであうで、かかるNの混入を防止する
には大気との接触をさけることが重要であり、^rガス
シールを行いながら、溶解および造塊操作を行ってもよ
い。
A considerable portion of N enters the molten metal from the atmosphere by melting, so to prevent such N from entering, it is important to avoid contact with the atmosphere, and provide a gas seal. However, melting and agglomeration operations may also be performed.

Nはo、oos%以下で制限しなければ、パーメンデニ
ールの代替となり得ない。
Unless N is limited to o, oos% or less, it cannot be used as a substitute for permendenier.

不純物としてのP、Sは少ないほどよいが、本発明にあ
っては特に制限はされず、例えばP≦0゜03%、S≦
0.01%程度であれば問題はない。
The smaller the amount of P and S as impurities, the better, but in the present invention, there is no particular restriction. For example, P≦0°03%, S≦
There is no problem if it is about 0.01%.

以上は本発明にかかる合金の組成限定の理由であるが、
本発明にかかる合金は、熱間圧延板でも、あるいは冷間
圧延材でもまた鋳造材であってもいずれの状態で使用し
ても圧延加工および熱処理を実施して残留応力および残
留歪はできる限り低くしなければならない、残留応力、
歪除去のために行うかかる圧延−熱処理はすでに以上の
説明から当業者には明らかであるから、これ以上の言及
は説明を簡明にするために省略する。
The above are the reasons for limiting the composition of the alloy according to the present invention,
Whether the alloy of the present invention is used as a hot-rolled sheet, cold-rolled material, or cast material, the alloy is rolled and heat treated to reduce residual stress and strain as much as possible. Residual stress, which must be kept low,
Since such rolling-heat treatment for removing strain is already clear to those skilled in the art from the above description, further reference is omitted for the sake of brevity.

ところで、本発明にあっては、得られる合金のフェライ
ト結晶粒を、好ましくはフェライト粒度番号で7以上に
粗大化して磁気特性の改善をはかるのであるが、そのた
めの好適態様においては、圧延加ニー熱処理は次によう
にして行う。
By the way, in the present invention, the ferrite crystal grains of the obtained alloy are coarsened, preferably to a ferrite grain size number of 7 or more, in order to improve the magnetic properties. The heat treatment is performed as follows.

ミクロ偏析等を均一化するため均熱加熱を1050℃以
上で行なわなければならないが、1250℃を越えて長
時間加熱することは加熱炉の耐火物を損傷するので10
50〜1250℃とする。
In order to uniformize micro-segregation, soaking heating must be carried out at a temperature of 1050°C or higher, but heating over 1250°C for a long time will damage the refractories in the heating furnace, so
The temperature shall be 50 to 1250°C.

また圧延加工により所定の板厚に仕上げるについて仕上
げ温度を750℃以上で行うのは750℃より低くする
と耳割れを発生し歩留りを著しく減少させるからである
Furthermore, the reason why the finishing temperature is 750° C. or higher to finish the sheet to a predetermined thickness by rolling is that if it is lower than 750° C., edge cracks will occur and the yield will be significantly reduced.

さらに熱処理において750〜920℃としたのはフェ
ライト粒径を充分粗大化させるには750℃以上で焼鈍
する必要があるが、920℃を越えるとオーステナイト
が生成し、粒径がかえって微細になるからである。
Furthermore, the heat treatment was set at 750 to 920°C because in order to make the ferrite grain size sufficiently coarse, it is necessary to anneal at a temperature of 750°C or higher, but if the temperature exceeds 920°C, austenite will form and the grain size will become finer. It is.

次に、本発明を実施例によってさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

実施例1 第1表に示す各合金組成を有する各供試合金A〜nを溶
製後、1220℃に加熱し、熱間圧延を行い、合計圧下
率95%で900℃で圧延を終了する0次いで圧延終了
後、0.5℃/winで300℃にまで冷却した。
Example 1 Each sample alloy A to n having the alloy composition shown in Table 1 was melted, heated to 1220°C, hot rolled, and rolled at 900°C with a total reduction of 95%. Then, after the rolling was completed, it was cooled down to 300°C at a rate of 0.5°C/win.

このようにして得た各供試合金について磁気特性を測定
し、その結果を同じく第1表にまとめて示す・。
The magnetic properties of each sample gold thus obtained were measured, and the results are summarized in Table 1.

同表に示す結果から明らかなように、本発明によれば、
いずれも磁気特性が従来の高CO合金と同等であるが、
絞り率はいずれも30%以上と満足のいくものであった
As is clear from the results shown in the same table, according to the present invention,
Both have magnetic properties equivalent to conventional high CO alloys, but
The reduction ratio was 30% or more in all cases, which was satisfactory.

比較例に示した従来の高CO合金ではこの絞り率は15
%以下とかなり低くIILのように1.9%Vを添加し
なければならない。
In the conventional high CO alloy shown in the comparative example, this reduction ratio is 15
% or less, and 1.9% V must be added like IIL.

なお、1111Mは加工性に優れているとして知られて
いる深絞り用低炭素鋼である。これと比較しても例えば
本発明にかかるmc 、 E 、 Fなどは遜色ない。
Note that 1111M is a low carbon steel for deep drawing that is known to have excellent workability. Even when compared with this, for example, mc, E, F, etc. according to the present invention are comparable.

実施例2 第2表に示す合金組成をベースに、酸素量が変化したと
きの磁束密度の変化をみた。加工熱処理法は実施例1に
同様であった。
Example 2 Based on the alloy composition shown in Table 2, changes in magnetic flux density were observed when the amount of oxygen was changed. The processing heat treatment method was the same as in Example 1.

結果を第2図にグラフにまとめて示す。The results are summarized in a graph in Figure 2.

酸素が50 ppn+以下、つまり0.005%以下で
13s。
13 seconds when oxygen is below 50 ppn+, i.e. below 0.005%.

が2.2(T)とかなり高い磁束密度を示すことが分か
る。酸素≧0.02%ではBso42.0(T)となっ
て、酸素量の増加に伴なう磁束密度の低下は著しい。
It can be seen that the magnetic flux density is quite high at 2.2 (T). When oxygen≧0.02%, Bso becomes 42.0 (T), and the magnetic flux density decreases significantly as the amount of oxygen increases.

第2表 (発明の効果) このように、本発明によれば、従来のパーメンデュール
に比較して添加Co量が大幅に低減されるとともに、加
工性改善にVを添加する必要はなく、したがって、その
材料コストは著しく低減できる。
Table 2 (Effects of the Invention) As described above, according to the present invention, the amount of added Co is significantly reduced compared to conventional permendur, and there is no need to add V to improve workability. Therefore, the material cost can be significantly reduced.

しかも、そのようにして得られた合金の磁気特性につい
でも何ら遜色なく、むしろ改善される傾向を示すことも
あるなど優れた内容である。加工性は従来のり添加合金
よりはるかに優れたものとなり、深絞り用極低炭素鋼に
匹敵する深絞り性を示すものも得られる。
Moreover, the magnetic properties of the alloys obtained in this way are not inferior in any way, and are excellent in that they sometimes even show a tendency to be improved. The workability is far superior to that of conventional glue-added alloys, and it is possible to obtain products that exhibit deep drawability comparable to ultra-low carbon steel for deep drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、従来例、比較例、そして本発明
例のそれぞれの合金についてのB−H曲線を示すグラフ
;および 第4図は、酸素含有量と磁束密度との関係を示すグラフ
である。
Figures 1 to 3 are graphs showing the B-H curves for each alloy of the conventional example, comparative example, and inventive example; and Figure 4 shows the relationship between oxygen content and magnetic flux density. It is a graph.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 Co:13〜35%、 Si:0.75%以下および/またはsol.Al:0
.08%以下、 N:0.008%以下、酸素:0.005%以下、Fe
および付随不純物:残部 から成る組成を有する加工性の良好な高磁束密度合金。
(1) Co: 13 to 35%, Si: 0.75% or less and/or sol. Al: 0
.. 08% or less, N: 0.008% or less, Oxygen: 0.005% or less, Fe
and accompanying impurities: a high magnetic flux density alloy with good workability.
(2)重量%で、 Co:13〜35%、 Si:0.75%以下および/またはsol.Al:0
.08%以下、 N:0.008%以下、酸素:0.005%以下、Fe
および付随不純物:残部 から成る組成を有する合金を1050〜1250℃に均
熱加熱した後圧延を行い750℃以上で仕上げ、さらに
750〜920℃に加熱、保持後放冷または徐冷する圧
延−熱処理によりフェライト粒径をフェライト粒度番号
7番より粗大化することを特徴とする、加工性の良好な
高磁束密度合金の製法。
(2) Co: 13 to 35%, Si: 0.75% or less and/or sol. Al: 0
.. 08% or less, N: 0.008% or less, Oxygen: 0.005% or less, Fe
and incidental impurities: The alloy having the composition consisting of the remainder is soaked and heated to 1050 to 1250°C, then rolled and finished at 750°C or higher, further heated to 750 to 920°C, held, and then allowed to cool or gradually cooled. Rolling-heat treatment A method for producing a high magnetic flux density alloy with good workability, characterized by making the ferrite grain size coarser than ferrite grain size number 7.
JP955187A 1987-01-19 1987-01-19 High magnetic flux density alloy and its manufacture Pending JPH01127649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP955187A JPH01127649A (en) 1987-01-19 1987-01-19 High magnetic flux density alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP955187A JPH01127649A (en) 1987-01-19 1987-01-19 High magnetic flux density alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH01127649A true JPH01127649A (en) 1989-05-19

Family

ID=11723413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP955187A Pending JPH01127649A (en) 1987-01-19 1987-01-19 High magnetic flux density alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH01127649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252130A (en) * 1989-09-20 1993-10-12 Hitachi, Ltd. Apparatus which comes in contact with molten metal and composite member and sliding structure for use in the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252130A (en) * 1989-09-20 1993-10-12 Hitachi, Ltd. Apparatus which comes in contact with molten metal and composite member and sliding structure for use in the same
US5380264A (en) * 1989-09-20 1995-01-10 Hitachi, Ltd. Roller for use in molten metal bath
US5634977A (en) * 1989-09-20 1997-06-03 Hitachi, Ltd. Apparatus which comes in contact with molten metal and composite member and sliding structure for use in the same

Similar Documents

Publication Publication Date Title
JP4880467B2 (en) Improved manufacturing method of non-oriented electrical steel sheet
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JP2019026891A (en) Nonoriented magnetic steel sheet, and method of producing the same
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
JPH1088298A (en) Nonoriented silicon steel sheet
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3843955B2 (en) Non-oriented electrical steel sheet
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2898789B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH01127649A (en) High magnetic flux density alloy and its manufacture
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JPS5834531B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH06304607A (en) Manufacture of preventing crack in hot rolling of cr-ni base stainless steel alloy
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JPH05186834A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JPH10330893A (en) Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
CN115003845A (en) Non-oriented electrical steel sheet and method for manufacturing the same