JPH01109772A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01109772A
JPH01109772A JP26844087A JP26844087A JPH01109772A JP H01109772 A JPH01109772 A JP H01109772A JP 26844087 A JP26844087 A JP 26844087A JP 26844087 A JP26844087 A JP 26844087A JP H01109772 A JPH01109772 A JP H01109772A
Authority
JP
Japan
Prior art keywords
gate electrode
gaas substrate
metal layers
layer
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26844087A
Other languages
Japanese (ja)
Inventor
Takayuki Fujii
隆行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26844087A priority Critical patent/JPH01109772A/en
Publication of JPH01109772A publication Critical patent/JPH01109772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To decrease the resistance of a gate electrode, by covering the exposed part of a GaAs substrate in a recess with an insulating film before multilayered metal layers are evaporated, and forming the gate electrode comprising the multilayered metal layers. CONSTITUTION:At least a metal layer 3 with a Schottky junction is formed in a region, where multilayered metal layers are to be formed. The exposed part of a GaAs substrate in a recess 1a is covered with an insulating film 7. Thereafter, metal layers 4 and 5 are sequentially formed. Thus, a gate electrode comprising the multilayered metal layers 3-5 is formed. Since the resistance of the gate electrode is made low, metal is not diffused into the GaAs substrate 1. The upper metal layers 3-5 can be formed readily and thickly. In this way, the implementation of the low resistance of the gate electrode can be realized with good reproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、リセス内にゲート電極を備えた半導体装置
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device having a gate electrode within a recess.

〔従来の技術〕[Conventional technology]

第2図(a)、(b)は従来のリセス内にゲート電極を
備えた半導体装置の製造工程を示す断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views showing the manufacturing process of a conventional semiconductor device having a gate electrode in a recess.

この製造工程は、まず第2図(a)に示すように、Ga
As基板1上に、写真製版によりレジスト2を所望の寸
法にパターニングし、このレジスト2をマスクにして、
ウェットエツチングによりリセス1aを形成する。
In this manufacturing process, first, as shown in FIG. 2(a), Ga
A resist 2 is patterned to desired dimensions on an As substrate 1 by photolithography, and this resist 2 is used as a mask.
A recess 1a is formed by wet etching.

次に、第2図(b)に示すように、ゲート金属を多層に
蒸着し、レジスト2を除去することにより、リセス1a
内に多層構造のゲート電極が形成される。
Next, as shown in FIG. 2(b), gate metal is deposited in multiple layers, and the resist 2 is removed to create a recess 1a.
A multilayered gate electrode is formed inside.

通常ゲート電極は、第2図(b)に示すように、チタン
層3.白金層4.金層5の3層構造になっている。チタ
ン層3によりショットキ電極を形成し、金層5はゲート
電極の抵抗を下げる役目をし、白金層4は金層5がGa
As基板1中に拡散するのを防ぐ役目をしている。
Normally, the gate electrode is formed of a titanium layer 3.0 as shown in FIG. 2(b). Platinum layer 4. It has a three-layer structure with five gold layers. The titanium layer 3 forms a Schottky electrode, the gold layer 5 serves to lower the resistance of the gate electrode, and the platinum layer 4 serves to reduce the resistance of the gate electrode.
It serves to prevent diffusion into the As substrate 1.

(発明が解決しようとする問題点) 従来の半導体装置のゲート電極は、以上のようにして形
成されるが、金層5を蒸着する時、レジスト2の下方の
リセス部分は、GaAs基板1表−面が直接露出してい
るため、蒸着中に金がGaAs基板1に回り込み、FE
T特性の劣化を招く可能性がある。
(Problems to be Solved by the Invention) The gate electrode of a conventional semiconductor device is formed as described above, but when depositing the gold layer 5, the recessed portion below the resist 2 is formed on the surface of the GaAs substrate 1. - Since the surface is directly exposed, gold wraps around the GaAs substrate 1 during evaporation, causing the FE
This may lead to deterioration of T characteristics.

また、よりゲート電極の抵抗を下げるため、金層5の膜
厚を厚くすると、リフトオフ不良が生じやすくなり、逆
にリフトオフ不良を無くすためにレジスト膜厚を厚くす
るとレジストの寸法制御が困難になる等の問題点があっ
た。
Furthermore, if the thickness of the gold layer 5 is increased in order to further reduce the resistance of the gate electrode, lift-off defects are likely to occur, and conversely, if the resist film thickness is increased to eliminate lift-off defects, it becomes difficult to control the dimensions of the resist. There were problems such as.

この発明は、上記のような問題点を解消するためなされ
たもので、蒸着中に低抵抗化のための金属がGaAs基
板中に拡散する恐れがなく、かつ容易に低抵抗化のため
の金属の膜厚を厚くすることができる半導体装置の製造
方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and there is no fear that the metal for reducing resistance will diffuse into the GaAs substrate during vapor deposition, and the metal for reducing resistance can be easily mixed. An object of the present invention is to obtain a method for manufacturing a semiconductor device that can increase the film thickness of the semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置の製造方法は、多層金属層を
形成する領域以外のリセス内のGaAs基板の露出部分
を絶縁膜で覆った後、金属層を順次形成し、多層金属層
からなるゲート電極を形成するようにしたものである。
In the method for manufacturing a semiconductor device according to the present invention, after covering the exposed portion of the GaAs substrate in the recess other than the region where the multilayer metal layer is formed with an insulating film, metal layers are sequentially formed, and a gate electrode made of the multilayer metal layer is formed. It is designed to form a .

〔作用〕 この発明においては、多層金属層を蒸着する前にリセス
内のGaAs基板の露出した部分を絶縁膜で覆ったこと
から、多層金属層の形成に際してもゲート電極の低抵抗
化のための金属がGaAs基板に拡散することがない。
[Function] In this invention, since the exposed portion of the GaAs substrate in the recess is covered with an insulating film before depositing the multilayer metal layer, it is possible to reduce the resistance of the gate electrode even when forming the multilayer metal layer. Metal does not diffuse into the GaAs substrate.

また、多層金属層の形成時には厳しいレジストの寸法制
御を必要としないため、容易にゲート電極の低抵抗化を
図ることができる。
Further, since strict dimensional control of the resist is not required when forming the multilayer metal layer, it is possible to easily reduce the resistance of the gate electrode.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)〜(e)はこの発明の半導体装置の製造方
法の一実施例の工程を示す断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views showing steps in an embodiment of the method for manufacturing a semiconductor device of the present invention.

まず、第1図(a)に示すように、GaA s基板1上
にCVD法などによりシリコン酸化膜6を形成し、続い
て、このシリコン酸化膜6上に写真製版によりレジスト
2をパターニングする。その後、レジスト2をマスクに
して異方性ドライエツチングによりシリコン酸化膜6を
エツチングし、続いてウェットエツチングによりGaA
s基板1にリセス1aを形成する。
First, as shown in FIG. 1(a), a silicon oxide film 6 is formed on a GaAs substrate 1 by CVD or the like, and then a resist 2 is patterned on this silicon oxide film 6 by photolithography. Thereafter, the silicon oxide film 6 is etched by anisotropic dry etching using the resist 2 as a mask, and then GaA is etched by wet etching.
A recess 1a is formed in the s-substrate 1.

次に、第1図(b)に示すように、チタン層3を蒸着し
た後、レジスト2を除去することにより、ショットキ電
極を形成する。
Next, as shown in FIG. 1(b), after depositing a titanium layer 3, the resist 2 is removed to form a Schottky electrode.

その後、第1図(C)に示すように、GaAs基板1の
表面が直接露出しないようにCVD法などにより、シリ
コン酸化膜6より異方性エツチング速度の速いシリコン
窒化膜7を形成し、全面を異方性エツチングすると、第
1図(、d)に示すようにリセス1a内のGaAs基板
1の露出部分を覆うようにシリコン窒化膜7の側壁7a
が形成される。
Thereafter, as shown in FIG. 1C, a silicon nitride film 7 having a faster anisotropic etching rate than the silicon oxide film 6 is formed by CVD or the like so that the surface of the GaAs substrate 1 is not directly exposed. When the silicon nitride film 7 is anisotropically etched, the sidewall 7a of the silicon nitride film 7 covers the exposed portion of the GaAs substrate 1 in the recess 1a, as shown in FIG.
is formed.

この後、第1図(e)に示すように、写真製版により、
第1図(a)より大きくレジストのパターニングを行っ
た後、白金および金を蒸着しりフトオフ法により、白金
層4.金層5を形成する。
After this, as shown in FIG. 1(e), by photolithography,
After patterning the resist to a larger size than that shown in FIG. 1(a), a platinum layer 4. A gold layer 5 is formed.

なお、上記実施例では、チタン層3をリフトオフ法によ
り形成した後、シリコン窒化膜7を形成したが、チタン
層3.白金層4までリフトオフ法により形成した後、シ
リコン窒化膜7を形成し、最後に金層5だけを形成して
も同様の効果が得られる。
In the above embodiment, the silicon nitride film 7 was formed after the titanium layer 3 was formed by the lift-off method, but the titanium layer 3. The same effect can be obtained by forming up to the platinum layer 4 by the lift-off method, then forming the silicon nitride film 7, and finally forming only the gold layer 5.

また、上記実施例では、チタン・白金・金構造のゲート
電極の場合について説明したが、他の多層金属をゲート
電極に使用した場合にも適用できる。さらに、シリコン
酸化膜、シリコン窒化膜の2種類の絶縁膜を用いたが、
異方性エツチングの精度をコントロールすれば同一の絶
縁膜または他の2種類の絶縁膜を用いても同様の効果が
得られる。
Furthermore, in the above embodiments, the case where the gate electrode has a titanium/platinum/gold structure has been described, but the present invention can also be applied to cases where other multilayer metals are used for the gate electrode. Furthermore, two types of insulating films, silicon oxide film and silicon nitride film, were used.
If the precision of anisotropic etching is controlled, the same effect can be obtained even if the same insulating film or two other types of insulating films are used.

また、リフトオフ法により、白金層、金層を形成したが
、スパッタリング法により全面に白金層、金層を形成し
、写真製版によりレジストをパターニングした後、白金
層、金層を異方性エツチングし、ゲート電極を形成して
も同様の効果が得られる。
In addition, the platinum layer and the gold layer were formed by the lift-off method, but the platinum layer and the gold layer were formed on the entire surface by the sputtering method, the resist was patterned by photolithography, and then the platinum layer and the gold layer were anisotropically etched. A similar effect can be obtained by forming a gate electrode.

〔発明の効果〕 以上説明したように、この発明は、多層金属層を形成す
る領域に少なくともショットキー接合の金属層を形成後
、リセス内のGaAs基板の露出部分を絶縁膜で覆った
後、金属層を順次形成し、多層金属層からなるゲート電
極を形成するようにしたので、ゲート電極の低抵抗化の
ための金属がGaAs基板中に拡散する恐れがなく、ま
た、容易に上層の金属層を厚く形成することができ、ゲ
ート電極の低抵抗化を再現性よく実現することができる
効果がある。
[Effects of the Invention] As explained above, in the present invention, after forming at least a Schottky junction metal layer in a region where a multilayer metal layer is to be formed, and after covering the exposed portion of the GaAs substrate in the recess with an insulating film, Since the metal layers are sequentially formed to form a gate electrode made of a multilayer metal layer, there is no risk that the metal used to reduce the resistance of the gate electrode will diffuse into the GaAs substrate, and the metal layer of the upper layer can be easily absorbed. This has the effect that the layer can be formed thickly and that the resistance of the gate electrode can be reduced with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)はこの発明の半導体装置の製造方
法の一実施例の工程を示す断面図、第2図(a)、(b
)は従来の半導体装置の製造工程を示す断面図である。 図において、1はGaAs基板、2はレジスト、3はチ
タン層、4は白金層、5は金層、6はシリコン酸化膜、
7はシリコン窒化膜である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図
FIGS. 1(a) to (e) are cross-sectional views showing steps of an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIGS. 2(a) to (b)
) is a sectional view showing the manufacturing process of a conventional semiconductor device. In the figure, 1 is a GaAs substrate, 2 is a resist, 3 is a titanium layer, 4 is a platinum layer, 5 is a gold layer, 6 is a silicon oxide film,
7 is a silicon nitride film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1

Claims (1)

【特許請求の範囲】[Claims]  GaAs基板に形成されたリセス内にショットキー接
合をなす金属層と低抵抗化のための金属層とを含む多層
金属層からなるゲート電極を備えた半導体装置の製造方
法において、前記多層金属層を形成する領域に少なくと
もショットキー接合の金属層を形成後、前記リセス内の
前記GaAs基板の露出部分を絶縁膜で覆った後、金属
層を順次形成し、前記多層金属層からなるゲート電極を
形成することを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device including a gate electrode made of a multilayer metal layer including a metal layer forming a Schottky junction and a metal layer for reducing resistance in a recess formed in a GaAs substrate, the multilayer metal layer is After forming at least a Schottky junction metal layer in the region to be formed, and covering the exposed portion of the GaAs substrate in the recess with an insulating film, metal layers are sequentially formed to form a gate electrode made of the multilayer metal layer. A method for manufacturing a semiconductor device, characterized in that:
JP26844087A 1987-10-22 1987-10-22 Manufacture of semiconductor device Pending JPH01109772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26844087A JPH01109772A (en) 1987-10-22 1987-10-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26844087A JPH01109772A (en) 1987-10-22 1987-10-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01109772A true JPH01109772A (en) 1989-04-26

Family

ID=17458527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26844087A Pending JPH01109772A (en) 1987-10-22 1987-10-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01109772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242927A (en) * 1990-02-21 1991-10-29 Matsushita Electric Ind Co Ltd Formation of electrode of gallium arsenide semiconductor device
US5449932A (en) * 1993-05-26 1995-09-12 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having gate and source regions in recesses
JPH09181094A (en) * 1995-12-26 1997-07-11 Nec Corp Field-effect transistor and fabrication thereof
CN107251238A (en) * 2015-02-19 2017-10-13 欧司朗光电半导体有限公司 Method for manufacturing semiconductor body
US10468555B2 (en) 2015-02-19 2019-11-05 Osram Opto Semiconductors Gmbh Method for producing a semiconductor body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242927A (en) * 1990-02-21 1991-10-29 Matsushita Electric Ind Co Ltd Formation of electrode of gallium arsenide semiconductor device
US5449932A (en) * 1993-05-26 1995-09-12 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having gate and source regions in recesses
JPH09181094A (en) * 1995-12-26 1997-07-11 Nec Corp Field-effect transistor and fabrication thereof
CN107251238A (en) * 2015-02-19 2017-10-13 欧司朗光电半导体有限公司 Method for manufacturing semiconductor body
JP2018508988A (en) * 2015-02-19 2018-03-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Manufacturing method of semiconductor body
US10424509B2 (en) 2015-02-19 2019-09-24 Osram Opto Semiconductors Gmbh Method for producing a semiconductor body
US10468555B2 (en) 2015-02-19 2019-11-05 Osram Opto Semiconductors Gmbh Method for producing a semiconductor body

Similar Documents

Publication Publication Date Title
KR960030371A (en) Oxynitride film, method of forming the same, and method of forming an element isolation oxide film using the oxynitride film
JPH01109772A (en) Manufacture of semiconductor device
JPH06326091A (en) Formation method for field oxide film in semiconductor element
JPH07326621A (en) Minute pattern forming method for semiconductor element
JPS59141222A (en) Manufacture of semiconductor device
JPS61222236A (en) Semiconductor device and manufacture thereof
JP2558124B2 (en) Method for manufacturing semiconductor device
JPH02192724A (en) Semiconductor device and its manufacture
JPH01268150A (en) Semiconductor device
JPH01120026A (en) Manufacture of semiconductor device
JPH02199825A (en) Manufacture of electrode
JPH04356944A (en) Semiconductor device and its manufacture
JPH0464470B2 (en)
JPS59194451A (en) Manufacture of semiconductor device
JPH03225821A (en) Manufacture of semiconductor device
JPS5994437A (en) Semiconductor device
JPH02307231A (en) Manufacture of semiconductor device
JPH0748494B2 (en) Method for manufacturing semiconductor device
JPH05308068A (en) Manufacture of semiconductor device
JPH02105529A (en) Manufacture of semiconductor device
JPS6149437A (en) Semiconductor device
JPH02138751A (en) Manufacture of semiconductor device
JPH03152931A (en) Manufacture of semiconductor device
JPS62160741A (en) Manufacture of semiconductor device
JPS63204629A (en) Formation of electrode