JPH01108742A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01108742A
JPH01108742A JP26611787A JP26611787A JPH01108742A JP H01108742 A JPH01108742 A JP H01108742A JP 26611787 A JP26611787 A JP 26611787A JP 26611787 A JP26611787 A JP 26611787A JP H01108742 A JPH01108742 A JP H01108742A
Authority
JP
Japan
Prior art keywords
wiring
function block
composite function
wiring region
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26611787A
Other languages
Japanese (ja)
Inventor
Yasushige Furuya
安成 降矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26611787A priority Critical patent/JPH01108742A/en
Publication of JPH01108742A publication Critical patent/JPH01108742A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Abstract

PURPOSE:To make it possible to reduce the wiring region by a factor about 2 without losing regularity, by converting simply the figure data of a composite function block. CONSTITUTION:Composite function block 1, 3 (F1, F3) and inverted composite function block 2, 4 (F2', F4') of line symmetry in the vertical direction are used. F2 and F3 are adjacent to each other. Between F1 and F2' and between F3 and F4', wiring regions 8, 9 are arranged. Terminals to be connected to external wirings are arranged on the outer periphery. These terminals are positioned at the lower side in F1 and F3, and on the higher side in F2' and F4' wiring is constituted of two layer. A first layer and a second layer are connected via contacts (X mark). Signals 5 are connected with terminals A1, A2, A3, A4 of F1, F2', F3, F4'. What is most distinctive, is that, for example, at the time of connecting A1 and A2, signal lines trace the same route as far as the wiring region 8 existing between F1 and F2, and are separated up and down on the wiring region 8 to be connected with A1 and A2. Therefore, the wiring region belonging to two composite function blocks can be commonly used. As a result, the area of wiring region can be reduced by a factor of about 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチップ上に操り返しパターンの多い半導体集積
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor integrated device having many repeated patterns on a chip.

〔従来の技術〕[Conventional technology]

我々の身の回りにあるシステムを信頼性が高く安(て小
型にする為、半導体集積化の波は日増しに広がっている
。システムの中には同じ機構を持つものが複数個ありそ
れらを制御するというタイプのものが意外と多い、この
様はシステムを半導体集積化すると、同様の機能を寿つ
複合機能ブロックがチップ上に複数個並ぶことになる。
In order to make the systems around us more reliable, cheaper, and smaller, the wave of semiconductor integration is expanding day by day.In a system, there are multiple devices with the same mechanism, and it is necessary to control them. This type of system is surprisingly common. When a system is integrated with semiconductors, multiple complex function blocks with similar functions are lined up on a chip.

その際の複合機能ブロックの配置は従来tJ2図の様に
行われて来た。第2図は2層配線技術を用いて、4つの
複合機能ブロック1,2,3.4を配置した図である。
In this case, the arrangement of the multifunctional blocks has conventionally been done as shown in diagram tJ2. FIG. 2 is a diagram in which four composite function blocks 1, 2, 3.4 are arranged using two-layer wiring technology.

v1合機能ブロック内の配II!領域はブロック内配線
に使用されており、複合機能ブロックの上を他からの配
線が通ることはないとする。v1合機能ブロック1,2
,3.4の間は配5tia域8.9,10.11となっ
ている。信号5は各複合機能ブロックの端子AI、A2
.A3.A4へ接続されていて、信号6.7も各複合機
能ブロックの端子と接続されている。
Arrangement II in the v1 function block! It is assumed that the area is used for intra-block wiring, and that no wiring from other areas passes over the multifunctional block. v1 function block 1, 2
, 3.4, the distribution range is 8.9, 10.11. Signal 5 is the terminal AI, A2 of each composite function block.
.. A3. A4, and signals 6.7 are also connected to the terminals of each composite function block.

(発明が解決しようとする問題点) しかしながら従来の配置方法は規則性はあるが配領領域
の面積が多いという問題点を育していた。特に複合機能
ブロックの数が多くなる程、上記問題点は拡大され、チ
ップサイズの増大を招く。
(Problems to be Solved by the Invention) However, although the conventional arrangement method has regularity, it has the problem that the area of the arrangement region is large. In particular, as the number of multi-function blocks increases, the above problem becomes more serious, leading to an increase in chip size.

そこで本発明は複合輌能ブロックの図形データを簡単な
幾何学的変換をすることにより、規則性を失わずに配線
領域を約手分位に減らすことを目的としている。
Therefore, an object of the present invention is to reduce the wiring area to about the same size without losing regularity by performing a simple geometrical transformation on the graphic data of a composite power block.

(問題点を解決するための手段〕 本発明の半導体集積装置は、複合機能ブロックを1チッ
プに2n個配置する際、基の複合機能ブロックと上下対
称(又は左右対称)な図形データを持つ反転複合機能ブ
ロックと、2i番目(i=1.2…)を前記反転複合機
能ブロック、2i−1番目(i=1.2…)を前記複合
機能ブロックとして上下(又は左右)に並べた配置と、
2i番目と2i+1番目(i=1.2…−1)の複合機
能ブロックを隣接した配置と、2i−1番目と2i番目
(i=1.2…)の複合機能ブロック間を配線領域とし
たことを特徴とする。
(Means for Solving the Problems) When arranging 2n complex function blocks on one chip, the semiconductor integrated device of the present invention has an inverted shape having vertically symmetrical (or horizontally symmetrical) graphic data with respect to the original complex function block. The composite functional blocks are arranged vertically (or horizontally) with the 2i-th (i=1.2...) being the inverted composite functional block and the 2i-1st (i=1.2...) being the composite functional block. ,
The 2i-th and 2i+1st (i=1.2...-1) multifunction blocks are placed adjacent to each other, and the wiring area is set between the 2i-1st and 2i-th (i=1.2...) multifunctional blocks. It is characterized by

〔実施例〕〔Example〕

本発明の実施例を第1図を用いて説明する。複合機能ブ
ロック1.3(以下F、、F、)及び上下に線対称な反
転複合機能ブロック2.4(以下F、’、F、’)があ
り、F、′とF、は隣接しており%F1とF!′及びF
、とF、7の間には配!I領域8,9がある。各複合機
能ブロックの上はブロック内素子間の配線に使用されて
おり、ブロック外からの配線領域には使用されないとす
る。外部配線と結線されるべき端子は各複合機能ブロッ
クの外周上に設けられており第1図の例ではF、、F、
は下辺にF 、 J 、 F、 Iでは上辺にある。又
配線は2層配tS<例えばポリシリコン−アルミ、アル
ミ−アルミ)とし、1層目と2層目はコンタクト(図中
の×印)を介して接続されている。信号5はF 1 p
 F* ’ + ps I Fa′の端子AI、A2.
A3.A4と接続されるが、最も特徴的なことは、AI
、A2と接続する際、FiとF、′の間にある配線領域
8までは同一の経路をたどり配線領域8の上で上下に分
かれ、A1゜A2に接続されることである。A3.A4
と接続する際も配線領域9までは同一 の経路で、配線
領域9の上で上下に分かれAS、A4と接続される。同
様に信号6ば端子Bl、B2.B3.B4とill’続
され、信号7は端子C1,C2,C3,C4と接続され
る。
An embodiment of the present invention will be described with reference to FIG. There is a composite function block 1.3 (hereinafter referred to as F,,F,) and an inverted composite function block 2.4 (hereinafter referred to as F,',F,') which is vertically line-symmetrical, and F,' and F, are adjacent to each other. Ori%F1 and F! ' and F
, and between F and 7! There are I areas 8 and 9. It is assumed that the upper part of each composite function block is used for wiring between elements within the block, and is not used for wiring from outside the block. Terminals to be connected to external wiring are provided on the outer periphery of each complex function block, and in the example of Fig. 1, terminals are F, , F,
is on the bottom side, and F, J, F, and I are on the top side. Further, the wiring has a two-layer arrangement tS<for example, polysilicon-aluminum, aluminum-aluminum), and the first layer and the second layer are connected via contacts (marked with an x in the figure). Signal 5 is F 1 p
F*' + ps I Fa' terminals AI, A2.
A3. It is connected to the A4, but the most distinctive feature is the AI
, A2, the same route is followed up to the wiring area 8 between Fi and F,', and the wiring area 8 is divided vertically and connected to A1 and A2. A3. A4
When connecting to the wiring area 9, it follows the same route, but is divided into upper and lower parts above the wiring area 9 and connected to AS and A4. Similarly, the signal 6 terminals Bl, B2 . B3. The signal 7 is connected to terminals C1, C2, C3, and C4.

つまり第2図の様に従来の配置方法によれば、各複合機
能ブロック度に外部ia線の本数に応じた容量の配線領
域中が必要であったが、本発明の配置方法によれば2つ
の複合機能ブロックに付属する配4I領域を共有できる
為、各複合機能ブロック間に存在する配線領域をほぼ半
分の面積にすることができる。
In other words, as shown in Fig. 2, according to the conventional arrangement method, each complex function block requires a wiring area with a capacity corresponding to the number of external IA lines, but according to the arrangement method of the present invention, two Since the 4I area attached to each composite function block can be shared, the area of the wiring area existing between each composite function block can be reduced to approximately half.

次に複合機能ブロックの反転ということを第3を用いて
説明を加える。
Next, the inversion of the composite function block will be explained using the third example.

複合機能ブロックF、を直線Xに線対称に移動したもの
がF、′でF内の素子、配線等の図形データは全て直’
*xに対称に移動する。F、の下辺にある端子At、B
l、CIはF %の上辺へ移りA2.B2.C2となる
。一般的に半導体集積回路の図形はデジタイズによる図
形登録あるいはグラフィック端末からの論理登録等、計
算機による処理が多く、上記線対称な図形データを作る
ことは容易に行える。又端子は同じX座標に移る為、配
線する際も規則性は失われない。
The composite function block F, moved symmetrically to the straight line
*Move symmetrically to x. Terminals At and B on the lower side of F,
l, CI moves to the upper side of F% A2. B2. It becomes C2. In general, the graphics of semiconductor integrated circuits are often processed by computers, such as registering the graphics by digitizing or registering logic from a graphics terminal, and it is easy to create the line-symmetrical graphics data. Also, since the terminals move to the same X coordinate, regularity is not lost when wiring.

最後に本発明による配置方法の実施例をもう1つ第4図
に示す。第1図の配置方法で複合機能ブロックの数が4
個増えた場合、縦に8個並べても良いが、左右方向に同
じ配置方法で4個追加しても良い。全てを縦に並べるか
、横方法にも追加してゆくかは、複合機能ブロックの大
きさと、チップ全体のバランスから決められる。この場
合2゜4.12.14は反転複合機能ブロックで、配線
領域8の左半分を複合機能ブロック1.2で、右半分を
複合機能ブロック11.12で共有し、配II IJj
域9の左半分を複合機能ブロック3.4で右半分を、複
合機能ブロック13.14で共存していることになる。
Finally, another embodiment of the arrangement method according to the present invention is shown in FIG. With the arrangement method shown in Figure 1, the number of composite function blocks is 4.
If the number increases, 8 pieces may be arranged vertically, or 4 pieces may be added in the same arrangement method horizontally. Whether to arrange everything vertically or add horizontally is determined by the size of the multifunctional block and the overall balance of the chip. In this case, 2゜4.12.14 is an inverted composite function block, the left half of the wiring area 8 is shared by the composite function block 1.2, the right half is shared by the composite function block 11.12, and the wiring area 8 is shared by the composite function block 11.12.
The left half of area 9 coexists with the composite function block 3.4, and the right half with the composite function block 13.14.

尚本実施例では複合機能ブロックが偶数個の例であった
が、奇数個の場合でも端の1個を除けば本発明がそのま
ま適用できることは自明である。
In this embodiment, the number of composite function blocks is an even number, but it is obvious that the present invention can be applied as is even in the case of an odd number of composite function blocks, with the exception of one at the end.

又本発明はポリシリコン−アルミ−アルミ等の3Fs配
線以上の技術を持つ半導体集積装置にも適用可能である
The present invention is also applicable to semiconductor integrated devices having a technology of 3Fs wiring or higher, such as polysilicon-aluminum-aluminum.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明は複合機能ブロックを複数個配置す
る際、従来とられていた配置方法が育する「規則性が良
い」という利点を失わずに、複合機能ブロック間に存在
する配線領域の面積を約半分にすることにより、チップ
面積の低減をはかることができるという効果を有する。
As described above, when arranging a plurality of multi-functional blocks, the present invention enables wiring areas existing between multi-functional blocks to be arranged without losing the advantage of "good regularity" that conventional arrangement methods have. This has the effect of reducing the chip area by approximately halving the area.

さらに今後半導体素子の微細化が進むと予想されるが、
配線素子のサイズは電流による許容熱容量の制限から実
際的にはあまり小さ(できない。
Furthermore, it is expected that the miniaturization of semiconductor devices will progress in the future.
In practice, the size of the wiring element is not very small due to limitations on allowable heat capacity due to current.

するとチップ全体に占める配線領域の割合はきらに増え
、本発明の育効性はさらに高まる。
This dramatically increases the proportion of the wiring area in the entire chip, further increasing the effectiveness of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反転機能ブロックの配W1図、第2図は従来方
法による配置図、第3図は複合機能ブロックの線対称移
動図、第4図は、2次元的反転機能ブロックの配置図で
ある。 1.3・・・複合機能ブロック 2.4・・・反転複合機能ブロック 8.9・・・複合機能ブロック間の配線領域5.8.7
・・・外部配線 以  上 八90 −−一−−−−−−−−−−−−−−−−・−・−X第
3図 第4図
Figure 1 is a layout W1 diagram of the inversion function block, Figure 2 is a layout diagram according to the conventional method, Figure 3 is a line-symmetrical movement diagram of the composite function block, and Figure 4 is a layout diagram of the two-dimensional inversion function block. be. 1.3... Composite function block 2.4... Inverted compound function block 8.9... Wiring area between compound function blocks 5.8.7
... External wiring or more 890 ----------------------X Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  2層配線技術を用いた半導体集積装置において、複数
の素子郡及びそれらの配線を含む同一の複合機能ブロッ
クを1チップ上に2n個配置する際、基の複合機能ブロ
ックと上下対称(又は左右対称)な図形データを持つ反
転複合機能ブロックと、2i(i=1、2、…n)番目
を前記反転複合機能ブロック、2i−1(i=1、2…
)番目を前記複合機能ブロックとして上下(又は左右)
に並べた配置と、2i番目と2i+1番目(i=1、2
…n−1)の複合機能ブロックを隣接した配置と、2i
−1番目と2i番目(i=1、2…)の複合機能ブロッ
ク間を配線領域としたことを特徴とする半導体集積装置
In a semiconductor integrated device using two-layer wiring technology, when arranging 2n identical complex function blocks including multiple element groups and their wiring on one chip, the structure is vertically symmetrical (or horizontally symmetrical) with respect to the base complex functional block. ), and the 2i (i=1, 2, . . . n)-th inverted compound function block, 2i-1 (i=1, 2, . . . )
)-th as the above-mentioned composite function block
and the 2i-th and 2i+1-th (i=1, 2
...n-1) multifunctional blocks adjacent to each other, and 2i
- A semiconductor integrated device characterized in that a wiring region is formed between a first and a 2i-th (i=1, 2, . . . ) multifunctional block.
JP26611787A 1987-10-21 1987-10-21 Semiconductor integrated circuit device Pending JPH01108742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26611787A JPH01108742A (en) 1987-10-21 1987-10-21 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26611787A JPH01108742A (en) 1987-10-21 1987-10-21 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01108742A true JPH01108742A (en) 1989-04-26

Family

ID=17426558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26611787A Pending JPH01108742A (en) 1987-10-21 1987-10-21 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01108742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859449A (en) * 1994-08-05 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859449A (en) * 1994-08-05 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
KR100434233B1 (en) Logical three-dimensional interconnection between integrated circuit chips using two-dimensional multichip module packages
US5327023A (en) Programmable logic device
JPS59172250A (en) Universal array
KR960006977B1 (en) Master slice type semiconductor integrated circuit
JP3053559B2 (en) Integrated circuit package
US3407357A (en) Planar interconnecting network avoiding signal path crossovers
JPH01108742A (en) Semiconductor integrated circuit device
JPH0293917A (en) Clock distributing circuit
JPS6066833A (en) Solid integrated circuit
KR100360074B1 (en) Logical three-dimensional interconnection between integrated circuit chips using two-dimensional multichip module packages
JPH06140566A (en) Semiconductor integrated circuit
JPS5833864A (en) Semiconductor device
JPS62179744A (en) Semiconductor integrated circuit
JPH0550143B2 (en)
JPH0691157B2 (en) Semiconductor integrated circuit device
JPH07249687A (en) Bus wiring
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit
JPS59132144A (en) Manufacture of semiconductor integrated circuit device
JPS62273751A (en) Integrated circuit
JPS60134462A (en) Integrated semiconductor logic circuit device
JPH02138758A (en) Semiconductor device
JPS61198751A (en) Semiconductor integrated circuit
JPS6233441A (en) Semiconductor integrated circuit
JPH04186749A (en) Semiconductor integrated circuit device
JPS6278848A (en) Large scale semiconductor integrated circuit