JPH01108180A - Superconducting ceramic structure - Google Patents

Superconducting ceramic structure

Info

Publication number
JPH01108180A
JPH01108180A JP62263443A JP26344387A JPH01108180A JP H01108180 A JPH01108180 A JP H01108180A JP 62263443 A JP62263443 A JP 62263443A JP 26344387 A JP26344387 A JP 26344387A JP H01108180 A JPH01108180 A JP H01108180A
Authority
JP
Japan
Prior art keywords
superconducting ceramic
superconducting
pores
ceramic
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263443A
Other languages
Japanese (ja)
Inventor
Masamitsu Nishida
西田 正光
Hamae Ando
安藤 浜江
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62263443A priority Critical patent/JPH01108180A/en
Publication of JPH01108180A publication Critical patent/JPH01108180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain structure comprising thin superconducting ceramic wire connected in a three-dimensional state in the structure prepared by molding and sintering a superconducting ceramic composition, by forming a great number of pores in the superconducting ceramic. CONSTITUTION:Raw materials for producing superconducting ceramic such as Y2O3, BaCO3 and CuO are blended, calcined, mixed with a molding binder (e. g. polyvinyl alcohol powder) eliminabIe by combustion and molded. The molded article is calcined to eliminate the molding binder by combustion to produce superconducting ceramic structure having a great number of pores. Since the prepared structure has structure wherein extremely thin wire of superconducting ceramic is connected in a three-dimensional state, a stable conductor having uniform current distribution and small loss can be formed. FIexibility of the structure can be improved by packing the pores with a metal or synthetic resin.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導セラミックスの構造に関するものであ
り、更には複合超電導セラミックスに関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of superconducting ceramics, and more particularly to composite superconducting ceramics.

従来の技術 従来、超電導セラミックスは電流密度を上げるため高密
度のセラミックスが要望されていた。
Prior Art Conventionally, superconducting ceramics have been required to have high density in order to increase current density.

又、電流密度を高めるため、及び安定性を高めるために
は成るべ(細い線材にする工夫がなされている。
In addition, in order to increase the current density and stability, efforts have been made to make the wire material as thin as possible.

発明が解決しようとする問題点 超電導セラミックスは延性が小さいため、細い線材にす
ることは困難である。又、μmのオーダーの線材に成形
し焼成することも容易ではない。
Problems to be Solved by the Invention Since superconducting ceramics have low ductility, it is difficult to make them into thin wires. Furthermore, it is not easy to form and fire a wire rod on the order of μm.

更に、超電導セラミックスは硬くて脆いため柔軟性が著
しく乏しい。
Furthermore, superconducting ceramics are hard and brittle and have extremely poor flexibility.

問題点を解決するための手段 超電導セラミックス組成物を成形焼結して成る超電導セ
ラミックス構造物に於いて、その超電導セラミックス中
に多数の空孔を形成する。
Means for Solving the Problems In a superconducting ceramic structure formed by molding and sintering a superconducting ceramic composition, a large number of pores are formed in the superconducting ceramic.

作用 本発明の超電導セラミックス構造物は、超電導セラミッ
クスが微細な大きさで3次元で接続している構造であり
、このためこの構造物は極めて細い超電導セラミックス
の線材が3次元で接続した構造になっている。このため
、本発明の構造物は細い超電導線材としての特徴がいか
せるとともに、3次元の接続により安定性が著しく向上
する。
Function The superconducting ceramic structure of the present invention has a structure in which superconducting ceramics are connected three-dimensionally in minute sizes, and therefore, this structure has a structure in which extremely thin superconducting ceramic wires are connected three-dimensionally. ing. Therefore, the structure of the present invention takes advantage of its characteristics as a thin superconducting wire, and the three-dimensional connection significantly improves stability.

実施例 以下実施例をしめす。Example Examples are shown below.

実施例I Y203 、B a C03及びCuOの粉体を1:4
:6のモル比に秤量し、これをエタノール中で20時間
ボールミルで混合したのち、950℃で20時間酸素雰
囲気中で仮焼した。その後仮焼品をエタノール中ボール
ミルで15時間扮粉砕たのち乾燥させた。この粉体とポ
リビニルアルコール(以後PVAと記す)の粉体く平均
粒子径11μm)を表1に記載した割合に秤量した後、
これらに成形用バインダーとして6%のPVA水溶液を
50容量%加えて混合した後、直径13mm、長さ20
mmの円柱状に加圧成形した。これを空気中700℃に
5時間(昇温速度50 ’C/時)保持し、可燃物を焼
却したのち、酸素雰囲気中1000℃で20時間焼成し
た。得られたセラミックスの嵩密度を測定した。又この
セラミックスを粉砕しビクノメータで真の密度を測定し
た。表1にはセラミックスの密度を相対密度(嵩密度/
真の密度)で示した。表1のセラミックスはす・\て液
体窒素温度では超電導体であった。
Example I Y203, B a C03 and CuO powders in a ratio of 1:4
:6 molar ratio, mixed in ethanol for 20 hours using a ball mill, and then calcined at 950° C. for 20 hours in an oxygen atmosphere. Thereafter, the calcined product was ground in a ball mill in ethanol for 15 hours, and then dried. After weighing this powder and polyvinyl alcohol (hereinafter referred to as PVA) powder (average particle diameter 11 μm) in the proportions listed in Table 1,
After adding 50% by volume of 6% PVA aqueous solution as a molding binder to these and mixing them, the diameter was 13mm and the length was 20mm.
It was press-molded into a cylindrical shape of mm. This was maintained at 700°C in air for 5 hours (heating rate 50'C/hour) to incinerate combustible materials, and then fired at 1000°C for 20 hours in an oxygen atmosphere. The bulk density of the obtained ceramics was measured. In addition, this ceramic was crushed and its true density was measured using a vicinometer. Table 1 shows the relative density (bulk density/
true density). All of the ceramics in Table 1 were superconductors at liquid nitrogen temperatures.

表1のN002〜4の超電導セラミックス構造物は相対
密度が低く33.8〜56.8%の空孔を含んでいる。
The superconducting ceramic structures No. 002 to 4 in Table 1 have low relative densities and contain 33.8 to 56.8% of pores.

この空孔は5〜25μm程度の大きさの連続した空孔に
なっている。又、超電導セラミックス本体も10〜30
μmの大きさの連続したセラミックスで構成されている
These pores are continuous pores with a size of about 5 to 25 μm. Also, the superconducting ceramic body is 10 to 30
It is composed of continuous ceramics with a size of μm.

実施例2 熔融した市販のPb−5n系ハンダに実施例1のNo、
4で得た多孔質の超電導セラミックスを浸種しその超電
導セラミックスの空孔に上記ハンダを充填したのち、冷
却して金属・超電導セラミックスの複合超電導セラミッ
クス構造物を作製した。この構造物は液体窒素温度では
超電導体であった。
Example 2 Melted commercially available Pb-5n solder No. of Example 1,
The porous superconducting ceramic obtained in step 4 was seeded, the pores of the superconducting ceramic were filled with the solder, and then cooled to produce a composite superconducting ceramic structure of metal and superconducting ceramic. This structure was a superconductor at liquid nitrogen temperatures.

実施例3 実施例1のNo、4で得た多孔質の超電導セラミックス
の空孔に脱気しながら市販のエポキシ樹脂を充填した。
Example 3 The pores of the porous superconducting ceramics obtained in Examples 1 and 4 were filled with a commercially available epoxy resin while being degassed.

その後、120℃に5時間保持しエポキシ樹脂を硬化さ
せて、有機高分子・超電導セラミックスの複合超電導セ
ラミックス構造物を作製した。この構造物は液体窒素温
度では超電導体であった。
Thereafter, the epoxy resin was cured by holding at 120° C. for 5 hours to produce a composite superconducting ceramic structure of organic polymer and superconducting ceramic. This structure was a superconductor at liquid nitrogen temperatures.

実施例1のNo、4及び実施例2と3の試料を1mm角
の棒状に切断した素子では後者の2つは前者のものに比
べて著しく可撓性に優れていた。
Among the elements obtained by cutting samples No. 4 of Example 1 and Examples 2 and 3 into 1 mm square rods, the latter two had significantly better flexibility than the former.

又、前者の素子は水中に24時間放置したあとでは液体
窒素温度で超電導を示さなかったが、後者の空孔に金属
または有機高分子材料を充填した?M構造物は水中に放
置したあとでも液体窒素温度で超電導を示した。
Also, the former device did not exhibit superconductivity at liquid nitrogen temperature after being left in water for 24 hours, but the pores of the latter were filled with metal or organic polymer material? The M structure exhibited superconductivity at liquid nitrogen temperatures even after being left in water.

実施例では、超電導セラミックス組成物にペロブスカイ
ト型構造の酸化物であるYBa2Cu2O7−Xを用い
たが、BaPb1−XB 1XOs等他の超電導セラミ
ックス組成物でもよい。又、空孔に充填する金属や有機
高分子材料も実施例に限定されることはな(実施例以外
の他の金属や有機高分子材料を充填してもよい。
In the examples, YBa2Cu2O7-X, which is an oxide with a perovskite structure, was used as the superconducting ceramic composition, but other superconducting ceramic compositions such as BaPb1-XB 1XOs may also be used. Furthermore, the metals and organic polymer materials that fill the pores are not limited to those in the examples (other metals and organic polymer materials other than those in the examples may also be used).

以上のように、本発明の超電導セラミックス構造物は、
超電導セラミックスが微細な大きさで3次元で接続して
いる構造であり、このためこの構造物は極めて細い超電
導セラミックスの線材が3次元で接続した構造になって
いる。このため、本発明の構造物は細い超電導線材とし
ての特徴がいかせるとともに、3次元の接続により安定
性が著しく向上する。即ち、本発明の超電導セラミ・ソ
クス構造物は極細多芯の線材と同じ構造でかつ横方向に
も接続しているため導体中での電流分布が均一になり損
失の少ない安定した導体を形成できる。多孔質のセラミ
ックスであるため比較的短時間に雰囲気焼成を均一にで
きる利点もある。
As described above, the superconducting ceramic structure of the present invention has
It has a structure in which superconducting ceramics are connected three-dimensionally in minute sizes, and therefore this structure has extremely thin superconducting ceramic wires connected three-dimensionally. Therefore, the structure of the present invention takes advantage of its characteristics as a thin superconducting wire, and the three-dimensional connection significantly improves stability. In other words, the superconducting ceramic/socket structure of the present invention has the same structure as an ultrafine multicore wire and is also connected laterally, so that the current distribution in the conductor becomes uniform and a stable conductor with low loss can be formed. . Since it is a porous ceramic, it also has the advantage that it can be fired in a uniform atmosphere in a relatively short time.

又、空孔に金属あるいは有機高分子材料を充填すること
によりこの超電導セラミックス構造物の可撓性を大きく
できるとともにセラミックスの脆さを改善することがで
きる。更に、充填物が金属の場合には超電導材料として
の安定性を更に高めることができる。尚、本発明の金属
を充填した超電導セラミックス構造物は可撓性が優れて
いるためセラミックスだけの場合に比べて延伸加工が容
易にできる特徴もある。又、空孔に金属あるいは有機高
分子材料を充填することにより超電導セラミックスの雰
囲気、特に水分による劣化を抑えることができる。
Furthermore, by filling the pores with metal or organic polymer material, the flexibility of this superconducting ceramic structure can be increased and the brittleness of the ceramic can be improved. Furthermore, when the filler is made of metal, the stability as a superconducting material can be further improved. The metal-filled superconducting ceramic structure of the present invention has excellent flexibility and therefore can be easily stretched compared to the case of ceramic alone. Furthermore, by filling the pores with metal or organic polymer material, it is possible to suppress deterioration of the superconducting ceramic due to the atmosphere, especially moisture.

発明の効果 本発明によれば、超電導セラミックス組成物を成形焼結
して成る超電導セラミックス構造物に於いて、その超電
導セラミックス中に多数の空孔を形成することにより、
超電導セラミックスが微細な大きさで3次元で接続して
いる構造であり、このためこの構造物は極めて細い超電
導セラミックスの線材が3次元で接続した構造になって
いる。
Effects of the Invention According to the present invention, in a superconducting ceramic structure formed by molding and sintering a superconducting ceramic composition, by forming a large number of pores in the superconducting ceramic,
It has a structure in which superconducting ceramics are connected three-dimensionally in minute sizes, and therefore this structure has extremely thin superconducting ceramic wires connected three-dimensionally.

ぞれにより、超電導線材としての特徴がいかせるととも
に、3次元の接続により安定性が著しく向上する。
These features make the most of the characteristics of superconducting wires, and the three-dimensional connection significantly improves stability.

Claims (4)

【特許請求の範囲】[Claims] (1)超電導セラミックス組成物を成形焼結して成る超
電導セラミックス構造物に於いて、その超電導セラミッ
クス中に多数の空孔を形成したこと特徴とする超電導セ
ラミックス構造物。
(1) A superconducting ceramic structure formed by molding and sintering a superconducting ceramic composition, characterized in that a large number of pores are formed in the superconducting ceramic.
(2)超電導セラミックス組成物がペロブスカイト型構
造の酸化物よりなることを特徴とする特許請求の範囲第
1項に記載の超電導セラミックス構造物。
(2) The superconducting ceramic structure according to claim 1, wherein the superconducting ceramic composition is made of an oxide having a perovskite structure.
(3)空孔に金属を充填したことを特徴とする特許請求
の範囲第1項に記載の超電導セラミックス構造物。
(3) The superconducting ceramic structure according to claim 1, wherein the pores are filled with metal.
(4)空孔に有機高分子材料を充填したことを特徴とす
る特許請求の範囲第1項に記載の超電導セラミックス構
造物。
(4) The superconducting ceramic structure according to claim 1, wherein the pores are filled with an organic polymer material.
JP62263443A 1987-10-19 1987-10-19 Superconducting ceramic structure Pending JPH01108180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263443A JPH01108180A (en) 1987-10-19 1987-10-19 Superconducting ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263443A JPH01108180A (en) 1987-10-19 1987-10-19 Superconducting ceramic structure

Publications (1)

Publication Number Publication Date
JPH01108180A true JPH01108180A (en) 1989-04-25

Family

ID=17389577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263443A Pending JPH01108180A (en) 1987-10-19 1987-10-19 Superconducting ceramic structure

Country Status (1)

Country Link
JP (1) JPH01108180A (en)

Similar Documents

Publication Publication Date Title
JPH01108180A (en) Superconducting ceramic structure
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JPS63241817A (en) Manufacture of superconducting material
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH0248459A (en) Production of compound oxide superconductor
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH01278420A (en) Superconductor and production thereof
JPH01155670A (en) Manufacture of superconductive material
JPH01278454A (en) Superconductor and production thereof
JPH01278458A (en) Production of superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH01304609A (en) Superconductive wire rod with high critical current density
JPH07115921B2 (en) Method for producing oxide superconducting material
JPH0753602B2 (en) Porcelain composition
JPH0465319A (en) Production of oxide superconducting material
JPH03114112A (en) Manufacture of bi oxide filling superconductive wire rod having high critical current density
JPS63260882A (en) Ceramic superconductivity-forming material
JPS63285161A (en) Superconductor and production thereof
JPH01278456A (en) Superconductor and production thereof
JPH01278460A (en) Production of superconductor
JPH01278451A (en) Superconductor and production thereof
JPS63291853A (en) Production of superconductor
JPH07115920B2 (en) Oxide superconducting material and method for producing the same
JPH01270558A (en) Production of ceramic
JPH01278452A (en) Superconductor and production thereof