JPS63260882A - Ceramic superconductivity-forming material - Google Patents

Ceramic superconductivity-forming material

Info

Publication number
JPS63260882A
JPS63260882A JP62096633A JP9663387A JPS63260882A JP S63260882 A JPS63260882 A JP S63260882A JP 62096633 A JP62096633 A JP 62096633A JP 9663387 A JP9663387 A JP 9663387A JP S63260882 A JPS63260882 A JP S63260882A
Authority
JP
Japan
Prior art keywords
ceramic
molded body
forming material
superconducting molded
ceramic superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62096633A
Other languages
Japanese (ja)
Inventor
Masanao Mimura
三村 正直
Kaname Matsumoto
要 松本
Yasuzo Tanaka
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62096633A priority Critical patent/JPS63260882A/en
Publication of JPS63260882A publication Critical patent/JPS63260882A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To contrive to improve chemical stabilization and mechanical strength of ceramic superconductivity-forming material, by covering the whole surface and inner void part of the material with an organic resinous substance. CONSTITUTION:Wax or an organic resinous substance of epoxy resin is prepared. The whole surface and inner void part of ceramic superconductivity- forming material of an oxide are covered with the organic resinous substance. The superconductivity-forming material is chemically stabilized and has excellent mechanical strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス超電導体に関し、機械的強度の
良好なセラミックス超電導成形体に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic superconductor, and more particularly to a ceramic superconducting molded body having good mechanical strength.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来(A、 〜BII)、Cub oc  (A iア
ルカリ土金属、B:希土類元素0<x<1.a −b・
C:正の整数)なる化学式で示される複合酸化物系超電
導セラミックスが数種類報告されている。
Conventional (A, ~BII), Cuboc (A i alkaline earth metal, B: rare earth element 0<x<1.a - b
Several types of composite oxide-based superconducting ceramics have been reported that are represented by the chemical formula (C: positive integer).

これらは各元素の配合比、原料の組成、焼成条件などに
より超電導の臨界温度(Tc)が30Kから室温付近ま
で幅広く分布している。いずれのセラミックス超電導体
も出発原料は酸化物もしくは炭酸塩硝酸塩などの形をと
り、これらを混合し焼成することに゛よって複合酸化物
としている。複合酸化物系超電導セラミックスは他の酸
化物セラミックスと同様、粉状の出発原料を塊状に成形
し、これを焼結して作るため、多孔質で機械的強度も低
いという問題点がある。また、複合酸化物系超電導セラ
ミックスは、酸化物系が化学的に不安定であるため、大
気中に放置されると超電導特性が劣化する。実用上では
、冷媒として液体窒素が使用されるが、酸化物超電導材
料に水分が含まれていると、冷却過程で水分が氷となり
材料を破壊する恐れがある。また、液体窒素で使用後空
気中に放置すると水分が付着し、材料の特性が劣化する
The critical temperature (Tc) of superconductivity of these materials is widely distributed from 30 K to around room temperature depending on the blending ratio of each element, composition of raw materials, firing conditions, etc. The starting materials for all ceramic superconductors are in the form of oxides, carbonates, nitrates, etc., which are mixed and fired to form composite oxides. Composite oxide superconducting ceramics, like other oxide ceramics, are made by molding a powdered starting material into a lump and sintering it, so they have the problem of being porous and having low mechanical strength. Further, since the oxide system of composite oxide superconducting ceramics is chemically unstable, the superconducting properties of composite oxide superconducting ceramics deteriorate if they are left in the atmosphere. In practice, liquid nitrogen is used as a refrigerant, but if the oxide superconducting material contains moisture, there is a risk that the moisture will turn into ice during the cooling process and destroy the material. Furthermore, if the material is left in the air after being used with liquid nitrogen, moisture will adhere to it and the properties of the material will deteriorate.

本発明は以上のような点に鑑みてなされたもので、その
目的とするところは、化学的に安定であり、機械的強度
の高いセラミックス超電導成形体を提供することにある
The present invention has been made in view of the above points, and its purpose is to provide a ceramic superconducting molded body that is chemically stable and has high mechanical strength.

〔問題点を解決するための手段および作用〕即ち本発明
は、セラミックス超電導成形体の全表面並びに不可避的
に生じた内部のボイド部などが有機樹脂状物により覆わ
れていることを特徴とするセラミックス超電導成形体で
、かかるセラミックス超電導成形体はセラミックス超電
導成形体を有機樹脂状物溶液中に浸漬し含浸し、ついで
これを乾燥することにより提供される。前記セラミック
ス超電導成形体のボイド部分をワックス、エポキシなど
の有機樹脂状物で封孔すると、水分の浸入が妨げられる
とともに、機械的特性が補強される。また、封孔処理に
用いる有機樹脂状物溶液中に金属粉を分散させると冷却
特性がなくなる。
[Means and effects for solving the problems] That is, the present invention is characterized in that the entire surface of the ceramic superconducting molded body and the internal voids that inevitably occur are covered with an organic resin-like material. The ceramic superconducting molded body is provided by immersing the ceramic superconducting molded body in an organic resin solution to impregnate it, and then drying the same. When the void portions of the ceramic superconducting molded body are sealed with an organic resin material such as wax or epoxy, the infiltration of moisture is prevented and the mechanical properties are reinforced. Furthermore, if metal powder is dispersed in the organic resinous solution used for sealing, the cooling property will be lost.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on Examples.

(実施例1) 高温超電導材料であるYBaCu−0系の試料を通常の
乾式方法でペレット状に焼結する。このペレットを長さ
20mmX5■×2閣の板杖に切り出し、これに蒸着法
によりAu電極端子を形成した。なお、而して成形した
ペレット状物のTcは通常の4端子法による抵抗測定に
より求めた。出来上がった試料ペレット状物のTcを1
2時間以内に測定するとTc5(転移の開始温度)は1
02°に、Tce(転移の終了温度)は97°にであっ
た。この試料ベレット状物を室温に戻し、再び冷却して
Tcを測定すると、Tc5−100° K、Tce=9
4’ Kであった。これを繰り返し測定した結果を第1
図に示す0次に電極付けした試料ベレット状物を、パラ
フィンを100°c’r溶かし融液中に3分間浸漬し含
浸処理した後、これを空気中で冷却固化させた。
(Example 1) A sample of YBaCu-0, which is a high-temperature superconducting material, is sintered into a pellet shape using an ordinary dry method. This pellet was cut into a board with a length of 20 mm x 5 mm x 2 squares, and an Au electrode terminal was formed thereon by vapor deposition. The Tc of the pellet-like material thus formed was determined by resistance measurement using the usual four-terminal method. The Tc of the finished sample pellet is 1
When measured within 2 hours, Tc5 (transition onset temperature) is 1
At 02°, Tce (end of transition temperature) was 97°. When this sample pellet was returned to room temperature, cooled again, and measured for Tc, Tc5-100°K, Tce=9
It was 4'K. The results of repeated measurements are the first
The sample pellet shown in the figure with a zero-order electrode attached thereto was impregnated by immersing it in a melt of paraffin at 100°C'r for 3 minutes, and then it was cooled and solidified in air.

而して得た試料ベレット状物について前記と同様な測定
を行った結果を第2図に示す。
FIG. 2 shows the results of measurements similar to those described above performed on the pellet-like sample thus obtained.

図から明らかな如く両者の相違は明らかで、パラフィン
を含浸していない試料ベレット状物はTcsの変化はあ
まりないが、Tceは大きく減少する。
As is clear from the figure, there is a clear difference between the two, with the sample pellet not impregnated with paraffin having little change in Tcs, but a large decrease in Tce.

一方、パラフィンを含浸した試料ベレット状物は繰り返
し測定を行ってもTceはあまり減少しない。
On the other hand, the Tce of the sample pellet impregnated with paraffin does not decrease much even after repeated measurements.

次に、これらの試料ベレット状物について空気中に放置
した場合のTcの経時変化を測定すると、1週間経過し
ても両者の間には大きな差は見出されなかった。そこで
、両者を液体窒素にて冷却してTcを測定後、大気中に
放置し、放置時間によるTceの変化を測定した。その
結果を第3図に示す。
Next, when the time-dependent changes in Tc of these sample pellets were measured when they were left in the air, no significant difference was found between the two even after one week had passed. Therefore, after cooling both with liquid nitrogen and measuring Tc, they were left in the air and the change in Tce was measured depending on the standing time. The results are shown in FIG.

パラフィン含浸処理していない試料ベレット状物のTc
eは大きく減少し、測定値のバラ・ンキは大きい、一方
、パラフィンの含浸処理した試料の時間が経過してもほ
とんど変化しない。
Tc of sample pellet-like material not subjected to paraffin impregnation treatment
e decreases greatly, and the variation in measured values is large; on the other hand, samples impregnated with paraffin hardly change over time.

(実施例2) 実施例1におけるパラフィンの代わりに、ポリビニール
ブチラール樹脂溶液中 て試料ベレット状物を作り、これについて前記実施例と
同様に、含浸後天気中で乾燥させて操り返しTcの経時
変化を測定した結果を第4図に示す。
(Example 2) Instead of paraffin in Example 1, a sample pellet was prepared in a polyvinyl butyral resin solution, and in the same manner as in the previous example, it was impregnated and then dried in the weather, and the Tc was measured over time. Figure 4 shows the results of measuring changes.

その他に、含浸用有機樹脂状物としてホルマール樹脂、
アミドイミド樹脂、エポキシ系樹脂などを溶媒に熔かし
た有機樹脂溶液を用いて含浸処理したが、その効果もほ
ぼ同様であった。
In addition, formal resin, organic resin material for impregnation,
Impregnation treatment was performed using an organic resin solution in which amide-imide resin, epoxy resin, etc. were dissolved in a solvent, but the effect was almost the same.

(実施例3) 試料ベレット状物の冷却速度を速くするため、含浸用樹
脂液としてポリビニールブチラール樹脂溶液中に粒径1
μm以下のアルミナを含ませたものを用いた。冷却速度
の測定は、ペレット状のサンプルを2枚重ねてその中に
熱電対をはさみ、その状態で含浸させた。アルミナを含
むものと、含まないものとの冷却速度の測定結果を第5
図に示す、アルミナを含むものは2分程度で液体窒素温
度になるが、アルミナを含まないものは4分程度で液体
窒素温度になる。また、アルミナの代わりにAu、 P
t、 Tiなども同様な効果を示した。
(Example 3) In order to increase the cooling rate of the sample pellet, particles with a particle size of 1
A material containing alumina of μm or less was used. The cooling rate was measured by stacking two pellet samples, sandwiching a thermocouple therein, and impregnating the sample in that state. The results of measuring the cooling rate of those containing alumina and those that do not contain alumina are shown in the fifth column.
As shown in the figure, the material containing alumina reaches the temperature of liquid nitrogen in about 2 minutes, while the material without alumina reaches the temperature of liquid nitrogen in about 4 minutes. Also, Au, P instead of alumina
T, Ti, etc. also showed similar effects.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明、セラミックス超電導成形体
はその全表面並びに不可避的に生じた内部のボイド部な
どが有機樹脂状物により覆われているため、化学的に安
定化し、機械的強度が改善されるという優れた効果があ
る。
As explained above, the ceramic superconducting molded body of the present invention is chemically stabilized and has improved mechanical strength because its entire surface and the internal voids that inevitably occur are covered with an organic resin material. It has the excellent effect of being

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTcと繰り返し冷却回数との関係を示す図、第
2図はパラフィンを含浸させた場合のTcと繰り返し冷
却回数との関係を示す図、第3図はTcと液体窒素冷却
後の大気中放置時間の関係を示す図、第4図はポリビニ
ールブチラール樹脂を含浸させた場合のTcと繰り返し
冷却回数との関係を示す図である。第5図はポリビニー
ルブチラール樹脂を含浸させた場合の冷却時間と温度の
関係を示す図である。 特別出願人   古河電気工業株式会社シ1訂旧吟し り 1目 慄za 第31 を1口 /Z3’4ff(石) 一1間 ’dr  lコ
Figure 1 is a diagram showing the relationship between Tc and the number of repeated coolings, Figure 2 is a diagram showing the relationship between Tc and the number of repeated coolings when impregnated with paraffin, and Figure 3 is a diagram showing the relationship between Tc and the number of repeated coolings after cooling with liquid nitrogen. FIG. 4 is a diagram showing the relationship between the time left in the atmosphere and the number of times of repeated cooling when impregnated with polyvinyl butyral resin. FIG. 5 is a diagram showing the relationship between cooling time and temperature when impregnated with polyvinyl butyral resin. Special Applicant: Furukawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)セラミックス超電導成形体の全表面並びに不可避
的に生じた内部のボイド部などが有機樹脂状物により覆
われていることを特徴とするセラミックス超電導成形体
(1) A ceramic superconducting molded body characterized in that the entire surface of the ceramic superconducting molded body as well as the inevitably generated internal voids are covered with an organic resin-like substance.
(2)セラミックス超電導成形体が酸化物系超電導成形
体であることを特徴とする特許請求の範囲第1項記載の
セラミックス超電導成形体。
(2) The ceramic superconducting molded body according to claim 1, wherein the ceramic superconducting molded body is an oxide-based superconducting molded body.
(3)有機樹脂状物がワックスまたはエポキシ樹脂であ
ることを特徴とする特許請求の範囲第1項記載のセラミ
ックス超電導成形体。
(3) The ceramic superconducting molded article according to claim 1, wherein the organic resinous material is wax or epoxy resin.
(4)有機樹脂状物が金属粉が分散されたものであるこ
とを特徴とする特許請求の範囲第1項記載のセラミック
ス超電導成形体。
(4) The ceramic superconducting molded article according to claim 1, wherein the organic resinous material is one in which metal powder is dispersed.
JP62096633A 1987-04-20 1987-04-20 Ceramic superconductivity-forming material Pending JPS63260882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096633A JPS63260882A (en) 1987-04-20 1987-04-20 Ceramic superconductivity-forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096633A JPS63260882A (en) 1987-04-20 1987-04-20 Ceramic superconductivity-forming material

Publications (1)

Publication Number Publication Date
JPS63260882A true JPS63260882A (en) 1988-10-27

Family

ID=14170238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096633A Pending JPS63260882A (en) 1987-04-20 1987-04-20 Ceramic superconductivity-forming material

Country Status (1)

Country Link
JP (1) JPS63260882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413624B1 (en) 1999-03-09 2002-07-02 International Superconductivity Technology Center Oxide superconductor and process for producing same
US7046110B2 (en) 2002-06-12 2006-05-16 International Superconductivity Technology Center, The Juridical Foundation Superconducting magnet made of high-temperature bulk superconductor and process of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413624B1 (en) 1999-03-09 2002-07-02 International Superconductivity Technology Center Oxide superconductor and process for producing same
US7046110B2 (en) 2002-06-12 2006-05-16 International Superconductivity Technology Center, The Juridical Foundation Superconducting magnet made of high-temperature bulk superconductor and process of producing same
US8512799B2 (en) 2002-06-12 2013-08-20 International Superconductivity Technology Center, The Juridical Foundation Process of producing a superconducting magnet made of a high-temperature bulk superconductor

Similar Documents

Publication Publication Date Title
JPS63260882A (en) Ceramic superconductivity-forming material
Koshy et al. Transport properties of the percolation system YBa 2 Cu 3 O 7− δ-YBa 2 SnO 5.5
JP2592838B2 (en) Method for manufacturing compound superconducting wire
JP2621344B2 (en) Superconductor manufacturing method
JP2876139B2 (en) Manufacturing method of oxide superconducting sintered body
JP2556095B2 (en) Superconductor manufacturing method
JP2699407B2 (en) Superconductor manufacturing method
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPS63237314A (en) Manufacture of superconductive compound material
JP2556096B2 (en) Superconductor manufacturing method
JP2727565B2 (en) Superconductor manufacturing method
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH0465319A (en) Production of oxide superconducting material
JPH01160855A (en) Production of superconductor
JPH0393685A (en) Surface stabilizing treatment for oxide superconductive bulk
JPH01128408A (en) Manufacture of ceramics system superconductor coil
JPH01179718A (en) Superconducting oxide
JPH05339009A (en) Production of bi-base superconducting material and superconducting thick film
JPH01141869A (en) Production of superconductor
JPH01128406A (en) Manufacture of ceramics system superconductive coil
JPH01111764A (en) Superconducting ceramic composition
JPH02199053A (en) Production of superconductor
JPH02221149A (en) Production of oxide superconductor
JPH01278466A (en) Production of superconductor
JPH03500831A (en) Weak link superconductor loop device