JP2876139B2 - Manufacturing method of oxide superconducting sintered body - Google Patents

Manufacturing method of oxide superconducting sintered body

Info

Publication number
JP2876139B2
JP2876139B2 JP1342539A JP34253989A JP2876139B2 JP 2876139 B2 JP2876139 B2 JP 2876139B2 JP 1342539 A JP1342539 A JP 1342539A JP 34253989 A JP34253989 A JP 34253989A JP 2876139 B2 JP2876139 B2 JP 2876139B2
Authority
JP
Japan
Prior art keywords
silver
sintered body
oxide
oxide superconducting
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1342539A
Other languages
Japanese (ja)
Other versions
JPH03199160A (en
Inventor
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOGYO KK
Original Assignee
DOWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOGYO KK filed Critical DOWA KOGYO KK
Priority to JP1342539A priority Critical patent/JP2876139B2/en
Publication of JPH03199160A publication Critical patent/JPH03199160A/en
Application granted granted Critical
Publication of JP2876139B2 publication Critical patent/JP2876139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、酸化物超電導焼結体の製造方法に関し、更
に詳しくは酸化物超電導焼結体の表面の安定化法に関す
るものである。
The present invention relates to a method for producing an oxide superconducting sintered body, and more particularly to a method for stabilizing the surface of an oxide superconducting sintered body.

(ロ)従来技術 各種方法で製造した酸化物超電導体、例えば代表的な
Y1Ba2Cu3O7-x等は基本的に耐水性が低くかつ表面抵抗に
難点がある。
(B) Prior art oxide superconductors manufactured by various methods, for example, typical
Y 1 Ba 2 Cu 3 O 7- x and the like basically have low water resistance and have difficulty in surface resistance.

酸化物超電導材料のY1Ba2Cu3O7-xの合成粉を適当な圧
力で金型又はCIP(Cold Isostatic Pressing)で成形
し、該成型体を900〜980℃で焼結させてバルクを作製す
る方法において、例えば1μmと粉径を小さくし、バル
クの密度を高めて表面抵抗を下げることもできるが、こ
の方法では磁場に対してマイスナー効果が小さくなって
好ましくない。
An oxide superconducting material Y 1 Ba 2 Cu 3 O 7- x synthetic powder is molded in a mold or CIP (Cold Isostatic Pressing) at an appropriate pressure, and the molded body is sintered at 900 to 980 ° C. to form a bulk. In the method of manufacturing the method, the powder diameter can be reduced to, for example, 1 μm, and the bulk density can be increased to decrease the surface resistance. However, this method is not preferable because the Meissner effect with respect to the magnetic field decreases.

また、粉径を10μmとして密度を高めるためには、焼
結温度を高めて焼結すれば良いわけであるが、基本的に
平均粉径10μm以上では、大きな成型体を作製する場合
にバインダーを使用する必要があり、理論密度の90%以
上にすることは極めて難しい。従って密度が70〜90%で
マイスナー効果は強いがJc(臨界電流密度)が小さく、
表面抵抗も高くなるという欠点がある。
In order to increase the density by setting the powder diameter to 10 μm, sintering may be performed by raising the sintering temperature. It must be used, and it is extremely difficult to reach 90% or more of the theoretical density. Therefore, when the density is 70 to 90%, the Meissner effect is strong, but Jc (critical current density) is small,
There is a disadvantage that the surface resistance is also high.

次に、耐水性に関しては、上記の通りY1Ba2Cu3O7-xの
焼結体は基本的に水に弱く、例えば沸騰水に1分間浸漬
するだけで全体的に超電導特性が著しく劣化してしまう
が、その対策として該焼結体の作製時に、Y1Ba2Cu3O7-x
の合成粉に約5wt%の酸化銀を添加した後、成型・焼結
することによって、沸騰水中に20分間浸漬しても、該焼
結体内部の超電導特性は若干劣化する程度で維持される
が、表面抵抗の改善に関してはほとんどその効果は認め
られない。
Next, regarding the water resistance, as described above, the sintered body of Y 1 Ba 2 Cu 3 O 7- x is basically weak in water, and for example, the superconducting property is remarkably overall only by immersing it in boiling water for 1 minute. Degradation, but as a countermeasure, Y 1 Ba 2 Cu 3 O 7- x
After adding about 5 wt% of silver oxide to the synthetic powder of the above, molding and sintering, even if immersed in boiling water for 20 minutes, the superconductivity inside the sintered body is maintained to a degree that is slightly deteriorated. However, there is almost no effect on the improvement of the surface resistance.

上記のように、Y1Ba2Cu3O7-xの合成粉に銀又は酸化銀
を混合調整した後、成型・焼結する方法は、銀又は酸化
銀がバルク内に均一に分散してしまうために、耐水性の
向上には余り効果がなく、表面抵抗の改善には、その効
果はほとんど認められないのである。
As described above, after mixing and adjusting silver or silver oxide in the synthetic powder of Y 1 Ba 2 Cu 3 O 7- x, the method of molding and sintering is such that silver or silver oxide is uniformly dispersed in the bulk. Therefore, there is little effect in improving the water resistance, and almost no effect is recognized in improving the surface resistance.

(ハ)発明の開示 本発明は、上記のような欠点を解消するもので、酸化
物超電導焼結体の表面抵抗を下げ、更に耐水性を向上さ
せる方法を提供するものである。
(C) Disclosure of the Invention The present invention is to solve the above-mentioned disadvantages, and to provide a method for lowering the surface resistance of a sintered oxide superconductor and further improving the water resistance.

即ち、本発明は、酸化物超電導粉を成型し、次に銀又
は酸化銀のうち少なくとも一方で該成型体をコーティン
グした後、焼成することにより耐水性と導電性を向上さ
せることを特徴とする酸化物超電導焼結体の製造方法に
関するものである。
That is, the present invention is characterized in that the oxide superconducting powder is molded, and then the molded body is coated with at least one of silver and silver oxide, and then fired to improve water resistance and conductivity. The present invention relates to a method for producing an oxide superconducting sintered body.

以下、本発明法を詳述する。 Hereinafter, the method of the present invention will be described in detail.

酸化物超電導材として代表的なY1Ba2Cu3O7-xの合成微
粉を金型プレス又はCIP等で成型した後、銀ペースト、
酸化銀粉あるいは銀粉の少なくとも一方を該成型体表面
に所定厚さに均一に塗布し、これを充分乾燥した後、こ
の成型体を900〜980℃、好ましくは940〜960℃で数十時
間焼成することにより、銀が焼結過程で表面から内側に
拡散して表面の空隙を充填して行き、表面から内側へ銀
濃度分布が形成されるために、耐水性が著しく向上して
超電導特性を維持すると共に焼結性が良好となり、表面
抵抗を低下せしめるのである。
After molding a typical fine powder of Y 1 Ba 2 Cu 3 O 7- x as an oxide superconducting material by a mold press or CIP, a silver paste,
After at least one of silver oxide powder and silver powder is uniformly applied to the surface of the molded body to a predetermined thickness and dried sufficiently, the molded body is fired at 900 to 980 ° C, preferably 940 to 960 ° C for several tens of hours. As a result, silver diffuses inward from the surface during the sintering process and fills voids in the surface, forming a silver concentration distribution from the surface to the inside, which significantly improves water resistance and maintains superconductivity. In addition, the sinterability is improved and the surface resistance is reduced.

上記において、焼結体表面の銀が表面から内側に拡散
して行き、表面の銀濃度が高く、内側に行くに従って低
くなるような銀濃度分布を形成せしめるのが重要であっ
て、好ましいのである。
In the above, it is important and preferable to form a silver concentration distribution in which silver on the surface of the sintered body diffuses inward from the surface, and the silver concentration on the surface is high, and becomes lower toward the inside. .

この場合、上記酸化物超電導体がY1Ba2Cu3O7-xのペロ
ブスカイト型結晶構造を持った結晶であって、YやBaを
置換したものであってもよいことは勿論のこと、他の酸
化物超電導体にも適用することができる。
In this case, the oxide superconductor is a crystal having a perovskite-type crystal structure of Y 1 Ba 2 Cu 3 O 7- x, and of course, Y or Ba may be substituted. It can be applied to other oxide superconductors.

また、成型体をコーティングする場合、その具体的方
法の一つとして塗布等の手段がある。
In the case of coating a molded article, there is a method such as application as one of the specific methods.

次に、本発明を実施例により説明する。 Next, the present invention will be described with reference to examples.

(ニ)実施例 実施例1 Y1Ba2Cu3O7-xの平均粒径10μmの酸化物超電導粉を、
1ton/cm2の条件で金型により厚さ4mmの1inchペレットを
加圧成型し、この成型体の表面に銀ペースト(藤倉化成
(株)製)を厚さ20μm塗布した後、充分乾燥し、酸素
雰囲気下で温度950℃で20時間焼成して、酸化物超電導
焼結体を作製した。
(D) Example Example 1 An oxide superconducting powder having an average particle diameter of 10 μm of Y 1 Ba 2 Cu 3 O 7- x was
Under pressure of 1 ton / cm 2, a 4 mm thick 1 inch pellet was molded by pressure using a mold. A silver paste (manufactured by Fujikura Kasei Co., Ltd.) was applied to the surface of the molded body at a thickness of 20 μm, and then dried sufficiently. It was fired at a temperature of 950 ° C. for 20 hours in an oxygen atmosphere to produce an oxide superconductive sintered body.

この焼結体の表面抵抗値は5mΩ・cmと低かった。 The surface resistance of this sintered body was as low as 5 mΩ · cm.

上記焼結体を100℃の沸騰水中に20分間浸漬したが、
やや白色がかった程度で、超電導特性はほとんど変化が
なかった。
The sintered body was immersed in boiling water at 100 ° C for 20 minutes.
The superconducting properties were almost unchanged, although they were slightly white.

浸漬前のペレットのTc(臨界温度)は90Kで、浸漬処
理後は軽く研摩した面で測定すると89Kであった。
The Tc (critical temperature) of the pellet before immersion was 90K, and after immersion treatment, it was 89K when measured on a lightly polished surface.

実施例2 上記実施例1と同様にY1Ba2Cu3O7-x酸化物超電導粉
(平均粒径10μm)を実施例1と同条件で成型した1inc
h(厚さ4mm)ペレットを用いて、該ペレット表面に実施
例1と同様の銀ペーストを厚さ10μm塗布した後、実施
例1と同様の条件で焼成し、酸化物超電導焼結体を作製
した。
Example 2 As in Example 1, Y 1 Ba 2 Cu 3 O 7- x oxide superconducting powder (average particle size: 10 μm) was molded under the same conditions as in Example 1
Using an h (4 mm thick) pellet, the same silver paste as in Example 1 was applied to the surface of the pellet at a thickness of 10 μm, and then fired under the same conditions as in Example 1 to produce an oxide superconducting sintered body. did.

その結果、表面抵抗値も低く、沸騰水浸漬試験結果も
実施例1の場合と同様であった。
As a result, the surface resistance was low, and the results of the boiling water immersion test were the same as in Example 1.

実施例3 実施例1と同様のY1Ba2Cu3O7-x酸化物超電導粉(平均
粒径10μm)で実施例1と同条件で加圧成型した1inch
(厚さ4mm)ペレット成型体の表面に平均粒径3μmの
酸化銀(AgO)粉を塗布した後、実施例1と同様の条件
で焼成して焼結体を作製した。
Example 3 1 inch molded under the same conditions as in Example 1 with the same Y 1 Ba 2 Cu 3 O 7- x oxide superconducting powder (average particle size of 10 μm) as in Example 1.
(Thickness: 4 mm) Silver oxide (AgO) powder having an average particle size of 3 μm was applied to the surface of the molded pellet, and then fired under the same conditions as in Example 1 to produce a sintered body.

その結果、実施例1の場合と同様に表面抵抗値も低
く、沸騰水中への浸漬試験結果も実施例1と同様でほと
んど変化がなかった。
As a result, the surface resistance was low as in the case of Example 1, and the result of the immersion test in boiling water was similar to that of Example 1, and there was almost no change.

比較例1 上記実施例1と同じY1Ba2Cu3O7-x酸化物超電導粉(平
均粒径10μm)に酸化銀(AgO)を5wt%添加混合した混
合粉を金型で1ton/cm2の条件で1inch(厚さ4mm)ペレッ
トを加圧成型し、酸素雰囲気下で950℃で20時間焼成
し、酸化物超電導焼結体を作製した。
Comparative Example 1 A mixed powder obtained by adding 5 wt% of silver oxide (AgO) to Y 1 Ba 2 Cu 3 O 7- x oxide superconducting powder (average particle diameter: 10 μm) and mixing the same as in Example 1 was used in a mold at 1 ton / cm. Under the conditions of 2 , a 1-inch (4 mm-thick) pellet was press-molded and fired in an oxygen atmosphere at 950 ° C. for 20 hours to produce an oxide superconducting sintered body.

この酸化物超電導焼結体の表面抵抗値は15mΩ・cmで
あり、Tcは90Kであった。
The surface resistance of this oxide superconducting sintered body was 15 mΩ · cm, and Tc was 90K.

この焼結体を100℃の沸騰水中に20分間浸漬したとこ
ろ、表面が白色に変化し、軽く研摩しただけではTcは測
定できなかった。
When this sintered body was immersed in boiling water at 100 ° C. for 20 minutes, the surface turned white, and Tc could not be measured only by light polishing.

比較例2 実施例1と同じY1Ba2Cu3O7-x酸化物超電導粉(平均粒
径10μm)を金型で1ton/cm2の条件で1inch(厚さ4mm)
ペレットを加圧成型し、酸素雰囲気下で950℃で20時間
焼成した。
Comparative Example 2 The same Y 1 Ba 2 Cu 3 O 7- x oxide superconducting powder (average particle diameter: 10 μm) as in Example 1 was molded into a mold and 1 inch (4 mm thick) under the condition of 1 ton / cm 2.
The pellets were molded under pressure and fired at 950 ° C. for 20 hours in an oxygen atmosphere.

この焼成ペレットの表面に実施例1と同じ銀ペースト
を厚さ20μm塗布して乾燥した後、再度酸素雰囲気で95
0で20時間焼成した。
The same silver paste as in Example 1 was applied to the surface of the fired pellet at a thickness of 20 μm, dried, and then dried again in an oxygen atmosphere.
Baking at 0 for 20 hours.

得られた焼結体の表面抵抗値は100mΩ・cmと高く、沸
騰水浸漬試験結果も悪く、白色化し、Tcも著しく低下し
た。
The surface resistance of the obtained sintered body was as high as 100 mΩ · cm, the results of the boiling water immersion test were poor, the whiteness was increased, and the Tc was significantly reduced.

(ホ)発明の効果 本発明は上述したように、Y−Ba−Cu−O系等の酸化
物超電導粉を加圧成型した成型体の表面を銀又は酸化銀
でコーティングした後に焼成することにより、得られる
焼結体の表面に銀が表面から内側に拡散し、表面の濃度
が高く、内側が低くなるような銀濃度分布を形成せしめ
ることができるので、焼結体表面の耐水性が向上し、超
電導特性を維持することができると共に、焼結体の表面
抵抗を低くすることができるのである。
(E) Effect of the Invention As described above, the present invention provides a compact obtained by press-molding a Y-Ba-Cu-O-based oxide superconducting powder or the like by coating the surface with silver or silver oxide and then sintering. Since silver diffuses inward from the surface to the surface of the obtained sintered body to form a silver concentration distribution such that the surface concentration is high and the inside is low, the water resistance of the sintered body surface is improved. However, the superconductivity can be maintained, and the surface resistance of the sintered body can be reduced.

なお、上記実施例ではY−Ba−Cu−O系酸化物超電導
体について説明したが、他系の酸化物超電導体について
も本発明法を適用し得ることは勿論である。
In the above-described embodiment, the Y-Ba-Cu-O-based oxide superconductor has been described. However, it is needless to say that the method of the present invention can be applied to other types of oxide superconductors.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導粉を成型した後、銀ペース
ト,酸化銀あるいは銀粉の少なくとも一種を該成型体表
面に所定厚さに塗布し、乾燥した後、該成型体を900〜9
80℃で焼成することにより、銀が焼結過程で該焼結体表
面の銀濃度が高く内側に行くに従って低くなるように銀
濃度分布を形成せしめ、耐水性を向上させ、超電導特性
を維持すると共に表面抵抗を低下せしめることを特徴と
する酸化物超電導焼結体の製造方法。
After the oxide superconducting powder has been molded, at least one of silver paste, silver oxide and silver powder is applied to the surface of the molded body to a predetermined thickness, and after drying, the molded body is coated with 900 to 9%.
By sintering at 80 ° C., silver is formed in the sintering process to form a silver concentration distribution such that the silver concentration on the surface of the sintered body becomes higher as it goes inward and becomes lower, improving water resistance and maintaining superconductivity. A method for producing an oxide superconducting sintered body, characterized in that the superconducting sintered body further reduces the surface resistance.
JP1342539A 1989-12-27 1989-12-27 Manufacturing method of oxide superconducting sintered body Expired - Fee Related JP2876139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342539A JP2876139B2 (en) 1989-12-27 1989-12-27 Manufacturing method of oxide superconducting sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342539A JP2876139B2 (en) 1989-12-27 1989-12-27 Manufacturing method of oxide superconducting sintered body

Publications (2)

Publication Number Publication Date
JPH03199160A JPH03199160A (en) 1991-08-30
JP2876139B2 true JP2876139B2 (en) 1999-03-31

Family

ID=18354533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342539A Expired - Fee Related JP2876139B2 (en) 1989-12-27 1989-12-27 Manufacturing method of oxide superconducting sintered body

Country Status (1)

Country Link
JP (1) JP2876139B2 (en)

Also Published As

Publication number Publication date
JPH03199160A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JP3008453B2 (en) Method for manufacturing bismuth-based superconductor
JP2876139B2 (en) Manufacturing method of oxide superconducting sintered body
JPH04224111A (en) Rare earth type oxide superconductor and its production
JP2995796B2 (en) Manufacturing method of oxide superconductor
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
US5145836A (en) Method for producing shaped parts from high temperature oxide metal superconductive composites
JP2728706B2 (en) Aluminum nitride sintered body
JPH052933A (en) Manufacture of oxide superconductive wire
JPS63239147A (en) Production of superconductive material
KR0166708B1 (en) Fabricating method of high tc superconducting thick film
JPS63260882A (en) Ceramic superconductivity-forming material
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH03201320A (en) Manufacture of bismuth oxide superconductor
JPH0375103A (en) Production of superconductive layer
JPH02207422A (en) Manufacture of oxide superconducting wire rod
KR950014349B1 (en) Method of manufacturing high temperature super conductor wire material
JPH0393685A (en) Surface stabilizing treatment for oxide superconductive bulk
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
Koshy et al. The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system
JPH0380145A (en) Production of oxide superconductor
JPS63308814A (en) Forming method for oxide superconductor
JPH035359A (en) Superconductive ceramic material, precursor composition of said material and manufacture
JPH02271920A (en) Production of superconductor oxide material
JPH05339009A (en) Production of bi-base superconducting material and superconducting thick film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees