JPH0753602B2 - Porcelain composition - Google Patents

Porcelain composition

Info

Publication number
JPH0753602B2
JPH0753602B2 JP1007232A JP723289A JPH0753602B2 JP H0753602 B2 JPH0753602 B2 JP H0753602B2 JP 1007232 A JP1007232 A JP 1007232A JP 723289 A JP723289 A JP 723289A JP H0753602 B2 JPH0753602 B2 JP H0753602B2
Authority
JP
Japan
Prior art keywords
temperature
mol
composition
liquid nitrogen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1007232A
Other languages
Japanese (ja)
Other versions
JPH02188464A (en
Inventor
昌宏 伊藤
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1007232A priority Critical patent/JPH0753602B2/en
Publication of JPH02188464A publication Critical patent/JPH02188464A/en
Publication of JPH0753602B2 publication Critical patent/JPH0753602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は抵抗体磁器組成物、とくに酸化ビスマス(BiO
1.5)と酸化ストロンチウム(SrO)と酸化カルシウム
(CaO)と酸化銅(CuO)およびフッ化鉛(PbF2)の成分
で構成される抵抗体磁器組成物に関し、室温での抵抗率
(ρ300)が小さいのみならず、室温からオンセット臨
界温度(TCO)までの抵抗率(ρCO)が小さく、さらに
液体窒素温度以下において抵抗率が零を示す超伝導体磁
器を提供するものである。
The present invention relates to a resistor porcelain composition, particularly bismuth oxide (BiO).
1.5 ), strontium oxide (SrO), calcium oxide (CaO), copper oxide (CuO), and lead fluoride (PbF 2 ), at room temperature resistivity (ρ 300 ) The present invention provides a superconducting porcelain not only having a small value but also having a small resistivity (ρ CO ) from room temperature to the onset critical temperature (T CO ), and having a resistivity of zero below the liquid nitrogen temperature.

従来の技術 近年、Ba−La−Cu−O系における高温超伝導体材料の可
能性がベドノルツ(Bednorz)とミュラー(Mller)
により1986年のツアイトシュリフト フイア フイジク
(Zeitschrift fr Physik)B64巻189頁に発表され
た。この報告では材料の抵抗率(ρ)が急激に低下し始
めるオンセット臨界温度(TCO)は絶対温度30度付近で
あるが、抵抗率が零となる零抵抗臨界温度(TC)は絶対
温度13度と低く、またこの材料では冷却剤に高価な液体
ヘリウムを必要とするために実用化に際して大きな障害
となっていた。さらに、本材料を室温からオンセット臨
界温度までの範囲で低抵抗の導伝性材料として使用する
ときは電力損失をできるだけ小さくするために材料の密
度が大きく、抵抗率のより小さい材料が要求される。
2. Description of the Related Art In recent years, the possibility of high-temperature superconductor materials in the Ba-La-Cu-O system has been increased by Bednorz and Muller.
By 1986 Zeitschrift fr Physik, B64, p. 189. In this report, the onset critical temperature (T CO ) at which the resistivity (ρ) of the material begins to drop rapidly is around 30 degrees absolute, but the zero resistance critical temperature (T C ) at which the resistivity becomes zero is absolute. The temperature was as low as 13 degrees, and this material required expensive liquid helium as a coolant, which was a major obstacle to practical use. Furthermore, when this material is used as a low resistance conductive material in the range from room temperature to the onset critical temperature, a material with high density and low resistivity is required to minimize power loss. It

発明が解決しようとする課題 これらの課題を解決するために、材料の密度が大きくよ
り高温のTCと室温からTCOまでの温度範囲でより小さい
抵抗率をもった材料を開発することが要望されている。
Problems to be Solved by the Invention In order to solve these problems, it is desirable to develop a material having a high material density, a higher temperature T C, and a lower resistivity in the temperature range from room temperature to T CO. Has been done.

本発明は上記の欠点を改善するためになされたものであ
り、焼結した材料の室温からオンセット臨界温度までの
抵抗率が小さく、さらに安価な液体窒素の温度で超伝導
特性を示すTCの高い新規な磁器組成物を提供するもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, that is, the resistivity of the sintered material from room temperature to the onset critical temperature is small, and T C that exhibits superconducting properties at the temperature of inexpensive liquid nitrogen. A novel porcelain composition having a high price is provided.

課題を解決するための手段 酸化ビスマス(BiO1.5)と酸化ストロンチウム(SrO)
と酸化カルシウム(CaO)と酸化銅(CuO)およびフッ化
鉛(PbF2)の成分で構成される組成において、BiO1.5
28.4〜14.0モル%,SrOが28.6〜20.0モル%,CaOが22.2〜
14.3モル%,CuOが40.0〜28.6モル%,PbF2が6.7〜0.1モ
ル%の範囲とする。
Means for Solving the Problems Bismuth oxide (BiO 1.5 ) and strontium oxide (SrO)
In the composition composed of calcium oxide (CaO), copper oxide (CuO) and lead fluoride (PbF 2 ), BiO 1.5
28.4 ~ 14.0 mol%, SrO 28.6 ~ 20.0 mol%, CaO 22.2 ~
14.3 mol%, CuO 40.0-28.6 mol%, PbF 2 6.7-0.1 mol%.

作用 上記の組成物は室温からオンセット臨界温度まですぐれ
た抵抗体磁器であり、また液体窒素中で超伝導体磁器に
なる。
Action The above composition is a resistor porcelain excellent from room temperature to the onset critical temperature, and also becomes a superconductor porcelain in liquid nitrogen.

実 施 例 出発原料には化学的に高純度のBiO1.5(99.9%),SrCO3
(99%以上),CaCO3(99%以上),CuO(99.5%以上)お
よびPbF2(99%)を所定の組成になるように秤量し、め
のうボールを備えたポリエチレン製のボールミルで水と
ともに17時間湿式混合した。この混合物をボールミルか
らとり出して乾燥したのち粉末をアルミナ質るつぼに入
れ空気中において780〜800℃の温度で12時間仮焼した。
得られた仮焼物はめのう乳鉢とめのう乳棒を備えた擂潰
機により粉砕した。粉砕の終った粉末に対してバインダ
ーとしてプロピルアルコールを5重量%添加して均質と
したのち32メッシュのふるいを通して整粒した。整粒粉
体は金型と油圧プレスを用いて成形圧力800kg/cm2で矩
形棒(18×4×厚さ約3mm)と円板試料(直径10mm×厚
さ約2mm)を成形した。成形体は高純度のアルミナさせ
鉢の中に入れたのち、空気中において840〜875℃の範囲
内の温度で96時間保持して焼成し、表に示す配合組成の
抵抗体磁器を得た。円板試料から重量と寸法を測定し密
度を算出した。矩形棒の試料には直径0.12mmの絶縁被覆
銅線を50回巻き、LCRメータを用いて周波数10KHzでイン
ダクタンスの温度変化(液体窒素温度から室温まで)に
よる変化を測定した。これらの試料の室温におけるイン
ダクタンスの値は3〜5μHであった。液体窒素温度近
傍でインダクタンスが急激に減少する(1/3〜1/2)試料
については矩形棒の長辺に垂直な両端面と長辺部に10mm
の幅をあけて4端子状の電極を金蒸着又は焼付銀の方法
で取付け、一定電流(10mA)の下での抵抗の温度変化
(液体窒素温度から室温まで)を測定した。それらの実
験結果を表に示す。なお、表において*印を付した試料
は本発明の範囲外の比較例であり、これ以外の試料が本
発明の範囲内の実施例である。
Practical example The starting material was chemically pure BiO 1.5 (99.9%), SrCO 3
(99% or more), CaCO 3 (99% or more), CuO (99.5% or more) and PbF 2 (99%) are weighed to a specified composition, and then they are mixed with water in a polyethylene ball mill equipped with agate balls. Wet mixed for 17 hours. The mixture was taken out from a ball mill and dried, and then the powder was put into an alumina crucible and calcined in the air at a temperature of 780 to 800 ° C. for 12 hours.
The obtained calcined product was crushed by a crusher equipped with an agate mortar and agate pestle. 5% by weight of propyl alcohol as a binder was added to the pulverized powder to make it homogeneous, and the powder was sized through a 32 mesh sieve. The sized powder was molded into a rectangular rod (18 × 4 × thickness about 3 mm) and a disk sample (diameter 10 mm × thickness about 2 mm) at a molding pressure of 800 kg / cm 2 using a die and a hydraulic press. The molded body was made into high-purity alumina, put in a pot, and then held in air at a temperature in the range of 840 to 875 ° C. for 96 hours to be fired to obtain a resistor porcelain having the composition shown in the table. The weight and dimensions were measured from the disk sample to calculate the density. A rectangular rod sample was wound 50 times with a 0.12 mm diameter insulating coated copper wire, and the change in inductance due to temperature change (from liquid nitrogen temperature to room temperature) was measured at a frequency of 10 KHz using an LCR meter. The inductance value of these samples at room temperature was 3 to 5 μH. For the sample where the inductance sharply decreases in the vicinity of the liquid nitrogen temperature (1/3 to 1/2), the end faces perpendicular to the long side of the rectangular rod and the long side are 10 mm.
The four-terminal electrode was attached by the method of gold vapor deposition or baking silver and the temperature change of resistance (from liquid nitrogen temperature to room temperature) under a constant current (10 mA) was measured. The experimental results are shown in the table. The samples marked with * in the table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention.

表から明らかなように、本発明の範囲内のPbF2によりBi
O1.5の一部を置換した磁器組成物は室温からオンセット
臨界温度までの範囲で抵抗率を小さくすることができる
とともに、液体窒素温度以下で零抵抗臨界温度(TC)の
高い材料が得られる。従って、本発明の磁器組成物を用
いることにより冷却剤として安価で豊富に利用できる液
体窒素を用いて電気抵抗が零を示す超伝導特性を容易に
得ることができる。
As can be seen from the table, PbF 2 within the scope of the present invention
A ceramic composition in which a part of O 1.5 is replaced can have a low resistivity in the range from room temperature to the onset critical temperature, and a material with a high zero resistance critical temperature (T C ) can be obtained at a temperature below liquid nitrogen temperature. To be Therefore, by using the porcelain composition of the present invention, it is possible to easily obtain the superconducting property having an electric resistance of zero by using liquid nitrogen which is inexpensive and can be used in abundance as a coolant.

本発明の組成範囲を限定した理由を説明すると、PbF2
よるBiO1.5の置換量が7モル%以上になると焼結密度が
低下するとともに室温およびオンセット臨界温度までの
抵抗率が大きくなり、本発明の効果が得られなくなる。
また、PbF2による置換量が0.1モル%以下になると、焼
結密度が低くまた室温の抵抗率が大きくなるために本発
明の範囲から除かれる。また、酸化ビスマス,酸化スト
ロンチウムと酸化銅の成分組成はいずれも特許請求の範
囲外の組成になると液体窒素温度以下で電気抵抗が零を
示す超伝導特性が得られなくなるために本発明の範囲か
ら除かれる。
Explaining the reason for limiting the composition range of the present invention, when the substitution amount of BiO 1.5 by PbF 2 is 7 mol% or more, the sintering density is lowered and the resistivity up to room temperature and the onset critical temperature is increased. The effect of the invention cannot be obtained.
Further, when the substitution amount by PbF 2 is 0.1 mol% or less, the sintered density is low and the resistivity at room temperature is high, so that it is excluded from the scope of the present invention. Further, if the composition of bismuth oxide, strontium oxide and copper oxide is all outside the scope of the claims, the superconducting property showing an electric resistance of zero below the liquid nitrogen temperature cannot be obtained. Excluded.

発明の効果 本発明の磁器組成物は高価は液体ヘリウムや水素を使用
することなく資源的に豊富で価格的に廉価な液体窒素を
冷却剤に使用することにより、液体窒素の温度で超伝導
特性が得られる。従って、本発明の磁器組成物は液体窒
素で冷却することにより核融合炉やリニヤモーターカー
用の強力な磁場が作り出せる超伝導磁石や、ジョセフソ
ン素子などの超高速コンピュータ用素子や、大電力送電
線や超伝導印刷回路など幅広い分野での応用に適し、安
価で高性能の電子機器や回路部品を作ることができ工業
的に利用価値の著しく大きいものである。
EFFECTS OF THE INVENTION The porcelain composition of the present invention has a superconducting property at the temperature of liquid nitrogen by using liquid nitrogen, which is abundant in resources and inexpensive as a coolant, without using expensive liquid helium or hydrogen. Is obtained. Therefore, the porcelain composition of the present invention is a superconducting magnet that can produce a strong magnetic field for a fusion reactor or a linear motor car by cooling with liquid nitrogen, an element for ultra-high-speed computers such as Josephson element, or a high power transmission. It is suitable for applications in a wide range of fields such as electric wires and superconducting printed circuits, and it is possible to manufacture inexpensive and high-performance electronic devices and circuit parts, which is of great utility value industrially.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化ビスマス(BiO1.5)と酸化ストロンチ
ウム(SrO)と酸化カルシウム(CaO)と酸化銅(CuO)
とフッ化鉛(PbF2)からなり、その成分組成がモル百分
率で表わしたとき、BiO1.5が2.84〜14.0モル%,SrOが2
8.6〜20.0モル%,CaOが22.2〜14.3モル%,CuOが40.0〜2
8.6モル%,PbF2が6.7〜0.1モル%の範囲にあることを特
徴とする磁器組成物。
1. Bismuth oxide (BiO 1.5 ), strontium oxide (SrO), calcium oxide (CaO) and copper oxide (CuO)
It is composed of lead fluoride (PbF 2 ) and its composition is expressed as a mole percentage. BiO 1.5 is 2.84 to 14.0 mol%, SrO is 2
8.6 to 20.0 mol%, CaO 22.2 to 14.3 mol%, CuO 40.0 to 2
A porcelain composition characterized in that 8.6 mol% and PbF 2 are in the range of 6.7 to 0.1 mol%.
JP1007232A 1989-01-13 1989-01-13 Porcelain composition Expired - Fee Related JPH0753602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007232A JPH0753602B2 (en) 1989-01-13 1989-01-13 Porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007232A JPH0753602B2 (en) 1989-01-13 1989-01-13 Porcelain composition

Publications (2)

Publication Number Publication Date
JPH02188464A JPH02188464A (en) 1990-07-24
JPH0753602B2 true JPH0753602B2 (en) 1995-06-07

Family

ID=11660251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007232A Expired - Fee Related JPH0753602B2 (en) 1989-01-13 1989-01-13 Porcelain composition

Country Status (1)

Country Link
JP (1) JPH0753602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115874B2 (en) * 1989-01-28 1995-12-13 科学技術庁無機材質研究所長 Method for manufacturing Bi-based oxide superconductor

Also Published As

Publication number Publication date
JPH02188464A (en) 1990-07-24

Similar Documents

Publication Publication Date Title
JP2571789B2 (en) Superconducting material and its manufacturing method
JPH0753602B2 (en) Porcelain composition
EP0348986A2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O system superconductor
JPH01249646A (en) Porcelain composition
JPS63252954A (en) Porcelain composition
JPH01257163A (en) Porcelain composition
JPS63248764A (en) Porcelain composition
JPH01249647A (en) Porcelain composition
JPH0226858A (en) Ceramic composition
JPH01257162A (en) Porcelain composition
JPS63252955A (en) Porcelain composition
JPS63248763A (en) Porcelain composition
JPS63252953A (en) Porcelain composition
JPS63285160A (en) Porcelain composition
JPH0226859A (en) Ceramic composition
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01249648A (en) Porcelain composition
JPH01197353A (en) Ceramic composition
JPH038754A (en) Oxide superconductor composition and production thereof
JP2727565B2 (en) Superconductor manufacturing method
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JPH01275433A (en) Multiple oxide superconducting material and production thereof
KR910001306B1 (en) Superconductive compound of k2nif4 structural type having high transition temperature and method for fabricating same
JPH07102971B2 (en) Oxide superconductor composition and method for producing the same
JP2590370B2 (en) Superconducting material and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees