JPH01270558A - Production of ceramic - Google Patents

Production of ceramic

Info

Publication number
JPH01270558A
JPH01270558A JP63095753A JP9575388A JPH01270558A JP H01270558 A JPH01270558 A JP H01270558A JP 63095753 A JP63095753 A JP 63095753A JP 9575388 A JP9575388 A JP 9575388A JP H01270558 A JPH01270558 A JP H01270558A
Authority
JP
Japan
Prior art keywords
thermal decomposition
binder
ceramic
binders
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095753A
Other languages
Japanese (ja)
Inventor
Toyosaku Sato
佐藤 豊作
Kazutoshi Ayusawa
鮎沢 一年
Yoichi Nishioka
洋一 西岡
Toru Arai
徹 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63095753A priority Critical patent/JPH01270558A/en
Publication of JPH01270558A publication Critical patent/JPH01270558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain ceramic in high yield while preventing cracks and fractures during thermal decomposition of binder by blending ceramic material powder with binders having different thermal decomposition temperatures, granulating, molding and calcining. CONSTITUTION:In production of ceramic by blending ceramic material powder with a binder, granulating, forming a molded article consisting of the granules and calcining the molded article, two or three binders having different thermal decomposition temperatures is used as the binder and the ceramic material powder is granulated. In the above-mentioned method, since two or three binders having different thermal decomposition temperatures are used, thermal decompositions successively occur in the order of the binder having a lower thermal decomposition temperature under a calcining condition at ordinary heating rate. Consequently, in the decomposition process, moderate thermal decomposition is advanced half stepwise and almost continuously during heating up to calcination temperature, so that abrupt expansion of calcined material can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はセラミックスの製造方法に関し、とくに電力
貯蔵、磁気浮上列車、超電導推進カー、電磁推進船、電
線材料、高速半導体素子、医療用心磁図・脳磁図用高感
度磁束計などに使用される超電導性を有するセラミック
スの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing ceramics, particularly for power storage, magnetic levitation trains, superconducting propulsion cars, electromagnetic propulsion ships, electric wire materials, high-speed semiconductor devices, medical magnetocardiograms, etc. The present invention relates to a method for manufacturing ceramics having superconductivity used in high-sensitivity magnetoencephalography magnetometers and the like.

[従来の技術] 従来、セラミックスの製造方法において、最終の焼成工
程の前に成形工程かあり、この成形時の造粒工程におい
てはバインダが使用されている。
[Prior Art] Conventionally, in the manufacturing method of ceramics, there is a molding step before the final firing step, and a binder is used in the granulation step during this molding.

バインダにはPVA (ポリビニールアルコール)等が
単独で使用されており、−例としてその添加量の選定や
その効果(焼結体に及はす影響)などについて、下記文
献に詳しく説明されている。
PVA (polyvinyl alcohol) or the like is used alone as a binder, and the selection of its addition amount and its effects (effects on the sintered body), etc., are explained in detail in the following literature. .

[セラミック誘電体工学」 ;岡崎清著、学献社、(1
969−9−15初版発刊) P、83〜92 、 P
 ]、 30〜1.3 L。
[Ceramic dielectric engineering]; Written by Kiyoshi Okazaki, Gakkensha, (1
969-9-15 first edition) P, 83-92, P
], 30-1.3 L.

この文献の第84頁において示されているようにバイン
ダの添加量としてはたとえば0.5 、1.0 ’+3
.0 、5.0wt%のように、添加される粉末すなわ
ちセラミックス原料の粉末の比表面積や比重によって、
半ば経験的に決められていた。
As shown on page 84 of this document, the amount of binder added is, for example, 0.5, 1.0'+3
.. Depending on the specific surface area and specific gravity of the powder added, that is, the ceramic raw material powder, such as 0.0 and 5.0 wt%,
It was determined partly by experience.

また、焼成時の昇温速度は通常150〜bhr程度であ
る。
Further, the temperature increase rate during firing is usually about 150 to bhr.

[発明か解決しようとする課題] しかしながら上記のような従来のバインダの選択方法で
は、焼成中においてバインダか1種類のため、通常の焼
成条件(昇温速度150°C〜300°C/hr)では
バインダの熱分解か急激におこり、上記文献の130〜
13」頁にも記載されているように、発生ずる熱分解カ
ス(たとえばCO2なと)により、焼成体すなわちセラ
ミックスにおいて、時にはクラックか入ってしまうとい
う問題かあった。なお、昇温速度を遅<(30°C/ 
h r以下)すればクラックの発生は防止できるか通常
の5〜10倍の焼成時間を必要とし、焼成炉の使用効率
か極端に悪くなってしまう。
[Problem to be solved by the invention] However, in the conventional binder selection method as described above, only one type of binder is used during firing, so the usual firing conditions (temperature increase rate of 150°C to 300°C/hr) are used. In this case, thermal decomposition of the binder occurs rapidly, and 130~ of the above-mentioned document
As described on page 13, there was a problem in that the generated thermal decomposition residue (such as CO2) sometimes caused cracks in the fired body, that is, ceramics. Note that the temperature increase rate should be slowed down to <(30°C/
If the firing time is 5 to 10 times longer than the usual firing time, the efficiency of using the firing furnace becomes extremely poor.

この発明は、超電導性を有するセラミックスの製造方法
において、バインダの熱分解に伴うクラックやワレの発
生を防止して歩留りのよい製造方法を提供することを目
的とするものである。
An object of the present invention is to provide a method for manufacturing ceramics having superconducting properties, which can prevent the occurrence of cracks and cracks due to thermal decomposition of a binder and can provide a high yield.

[課題を解決するための手段] この発明は超電性を有するセラミックスの製造方法にお
いて、セラミックス材料粉末に対して熱分解温度の異な
る2種又は3種のバインダを添加する工程を造粒工程中
に有するようにしたものである。
[Means for Solving the Problems] The present invention provides a method for producing ceramics having superelectricity, in which a step of adding two or three types of binders having different thermal decomposition temperatures to ceramic material powder is performed during the granulation step. It was designed to have the following characteristics.

[作用] この発明によるセラミックスの製造方法においては、造
粒工程において熱分解温度の異なるバインダを2種〜3
種用いるものであるから、通常の昇温速度による焼成条
件において熱分解温度の低いバインダから順次熱分解を
おこすので、バインダの急激な熱分解か抑制されるため
、その分解過程は焼成温度までの間の昇温時、半ば段階
的にかつほぼ連続性をもつ緩やかな熱分解か進行し、そ
のため焼成体の急激な膨脹か避けられる。
[Function] In the method for manufacturing ceramics according to the present invention, two to three types of binders having different thermal decomposition temperatures are used in the granulation process.
Since the binder uses seeds, thermal decomposition occurs sequentially starting from the binder with the lowest thermal decomposition temperature under the firing conditions with the normal heating rate, so the rapid thermal decomposition of the binder is suppressed, and the decomposition process is slowed down to the firing temperature. When the temperature is increased during the heating period, gradual thermal decomposition occurs in a semi-stepwise and almost continuous manner, thereby avoiding rapid expansion of the fired body.

[実施例] はじめに、この発明の一実施例として超電導性を有する
セラミックスの製造方法と得られたセラミックスの性能
について順次説明する。
[Example] First, as an example of the present invention, a method for manufacturing a ceramic having superconductivity and the performance of the obtained ceramic will be sequentially explained.

出発原料として純度99.9%の酸化エルビウム(Er
a)、炭酸バリウム(13aCO3)、酸化第2銅(C
uO)を仕込組成てLrBa2Cus06.5となるよ
うに秤量しメノウ乳鉢又は揺潰機で40分間混合した、
次に空気中にて900℃、5時間仮焼した。仮焼粉は再
びnE ?TA機で30分間粉砕した。つぎに、造粒は
−B  − 始めに第1工業製薬製水溶性バインダのセラモ1.03
とセラモlB27B 、及びセラモEB60を仮焼粉1
00重量部に対して各1重1部つつ秤量し、純水400
重量部と均一になるまで撹拌する。その後スプレードラ
イア−で造粒した。これを試料Aとする。なお、上記バ
インダはセラモLO3、セラモll327B 、セラモ
EI160の順に高くなる熱分解温度を有しているもの
である。
Erbium oxide (Er) with a purity of 99.9% is used as a starting material.
a), barium carbonate (13aCO3), cupric oxide (C
uO) was weighed to give LrBa2Cus06.5 and mixed for 40 minutes in an agate mortar or shaker.
Next, it was calcined in air at 900°C for 5 hours. Is calcined powder nE again? It was ground for 30 minutes using a TA machine. Next, the granulation is carried out with -B - First, Ceramo 1.03, a water-soluble binder manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
and Ceramo 1B27B, and Ceramo EB60 were calcined powder 1
00 parts by weight, weigh 1 part by weight of each, and add 400 parts by weight of pure water.
Stir until the parts by weight are uniform. Thereafter, it was granulated using a spray dryer. This is designated as sample A. The binders mentioned above have thermal decomposition temperatures that increase in the order of Ceramo LO3, Ceramo 11327B, and Ceramo EI160.

ここで、比較のために、従来の製造方法にしたかった方
法すなわち、コ種類のみのバインダこの場合セラモ1,
03を仮焼粉100重量部に対して3重量部加えた系を
試料Aと同様にスプレードライアを用いて造粒した。こ
れを試料Bとする。
Here, for comparison, we will use the conventional manufacturing method, that is, only the following types of binders: in this case, Ceramo 1,
A system in which 3 parts by weight of 03 was added to 100 parts by weight of calcined powder was granulated using a spray dryer in the same manner as Sample A. This is designated as sample B.

上記のようにして得られた試料A及びBの造粒粉は金型
を用いて油圧プレスによって成形圧力1 ton / 
am 2て成形を行い16φX31mmの成形体を得た
。焼成は、白金板上て昇温速度、250°C/11■・
、空気中950°Cで20時間行い、試料(A)につい
て完全な超電導セラミックスを得た。このうぢ、試料B
を試料Aと同一条件で焼成して得られた超−4= 電導セラミックスは後記のようにワレを生したので、完
全なセラミックスは得られていない。
The granulated powders of Samples A and B obtained as described above were molded using a hydraulic press using a mold at a pressure of 1 ton/min.
Molding was carried out at 2 am to obtain a molded product of 16φ×31 mm. Firing was performed on a platinum plate at a heating rate of 250°C/11mm.
, in air at 950° C. for 20 hours, and a perfect superconducting ceramic was obtained for sample (A). This is sample B.
The super-4 conductive ceramic obtained by firing under the same conditions as Sample A developed cracks as described below, so a perfect ceramic was not obtained.

試料Aを焼成して得た超電導セラミックスについて、超
電導特性測定した。この場合、電極として銀ペーストを
介してセラミックス表面に銅線を接続した。電気抵抗の
測定は4端子法によって定電流下で電圧を71111定
した。その結果電気抵抗が完全に零になる温度すなわち
臨界温度T は88 Kであった。
Superconducting properties of the superconducting ceramic obtained by firing Sample A were measured. In this case, a copper wire was connected to the ceramic surface via silver paste as an electrode. The electrical resistance was measured by a four-terminal method, with a constant voltage of 71111 being applied. As a result, the temperature at which the electrical resistance becomes completely zero, that is, the critical temperature T, was 88 K.

つぎに、この実施例で得られた超電導セラミックスの出
来具合すなわち外観状態と、この発明の製造方法か示さ
れた優れた効果を裏付けする実験結果を説明する。
Next, the quality of the superconducting ceramic obtained in this example, that is, the appearance, and the experimental results that support the excellent effects shown by the manufacturing method of the present invention will be explained.

う  まず、第3図は試料Aの焼成によって得られたセ
ラミックスの平面外観写真の模写図である。焼成条件は
950℃で20時間である。この場合のように、熱分解
温度の異なる3種類のバインダを用いると、クラック及
びワレか全く発生せずに焼成することができ、かつ超電
導特性のよいセラミックスか得られた。
First, FIG. 3 is a reproduction of a plan view photograph of the ceramic obtained by firing Sample A. The firing conditions were 950° C. for 20 hours. As in this case, when three types of binders with different thermal decomposition temperatures were used, the ceramic could be fired without generating any cracks or cracks, and a ceramic with good superconducting properties could be obtained.

一方、第4図は試料Bの焼成によって得られたセラミッ
クスの平面外観写真の模写図である。焼成条件は第3図
の試料Aの場合と全く同一である。
On the other hand, FIG. 4 is a reproduction of a plan view photograph of the ceramic obtained by firing Sample B. The firing conditions were exactly the same as for sample A in FIG.

第4図から明らかなように、従来の方法のように比較的
熱分解温度の低いバインダを1種類用いてセラミックス
を形成した場合はとくにクラックやワレが多数発生して
、セラミックスとしては使いものにならないものしか得
られなかった。
As is clear from Figure 4, when ceramics are formed using one type of binder with a relatively low thermal decomposition temperature, as in the conventional method, many cracks and cracks occur, making the ceramics unusable. All I got was something.

第1図は焼成温度(たとえば95.0’C)に到達する
までの温度とバインダの減量率の関係を示す線図である
。図において、横軸は温度であり、縦軸は減量率すなわ
ちバインダの熱分解に伴う重量減量率である。
FIG. 1 is a diagram showing the relationship between the temperature until the firing temperature (for example, 95.0'C) is reached and the weight loss rate of the binder. In the figure, the horizontal axis is the temperature, and the vertical axis is the weight loss rate, that is, the weight loss rate due to thermal decomposition of the binder.

実験は試料Aに用いた3種のバインダを一種づつそれぞ
れ同一量添加した3種の成形体試料について各温度にお
ける重量減量率を求めた。各曲線はバインダの差による
もので、白丸印はセラモLO3、三角印はセラモl82
7B 、黒丸印はセラモEB60に対応するものである
。減量率50%の温度はセラ上03ノ場合275°C、
(? −7モlB27B O’)場合340℃、セラモ
EB[ioの場合425℃であった。
In the experiment, the weight loss rate at each temperature was determined for three molded body samples to which the same amount of each of the three types of binders used in sample A was added. Each curve is due to the difference in binder, white circles are Ceramo LO3 and triangles are Ceramo 182.
7B, the black circle corresponds to Ceramo EB60. The temperature at which the weight loss rate is 50% is 275°C for Cera 03,
The temperature was 340°C for (? -7 mol B27B O') and 425°C for Ceramo EB[io.

第2図は上記実施例の試料A及びBの成形体による焼成
温度までの温度と成形体の減量率関係を示す線図である
。図において、横軸は温度、縦軸は第1図と同様の減量
率である。
FIG. 2 is a diagram showing the relationship between the temperature up to the sintering temperature and the weight loss rate of the molded bodies of samples A and B of the above example. In the figure, the horizontal axis is the temperature, and the vertical axis is the weight loss rate as in FIG.

この実験によって、バインダの熱分解の進行状態か第1
図の場合と同様に減量率から判定できる。
Through this experiment, it was possible to determine the progress of thermal decomposition of the binder.
As in the case shown in the figure, it can be determined from the weight loss rate.

試料Bの曲線で示したように、1種のみのセラモI、0
3をバインダとして用いたときは熱分解は急激に進行す
る。一方、同一実験条件による試料Aの曲線から判るよ
うに、熱分解温度の異なる3種類のバインダを用いると
バインダの熱分解はゆるやかに進行し、かつ段階的に起
っている。
As shown in the curve of sample B, only one type of ceramo I, 0
When No. 3 is used as a binder, thermal decomposition proceeds rapidly. On the other hand, as can be seen from the curve of sample A under the same experimental conditions, when three types of binders having different thermal decomposition temperatures are used, the thermal decomposition of the binder proceeds slowly and occurs in stages.

このゆるやかな進行のバインダの熱分解が焼成後のセラ
ミックスの稠密性と均質性を高めるに役立ち、例えば超
電導性を有するような複雑な組成をもつセラミックスの
製造方法に適用できるものである。
This gradual thermal decomposition of the binder helps improve the density and homogeneity of the fired ceramics, and can be applied to methods of manufacturing ceramics with complex compositions, such as those with superconductivity.

なお、上記実施例では3種のバインダを用いた場合につ
いて説明したが、熱分解温度の異る2種=  7 − のバインダを用いた場合でも、バインダの種類を適当に
選定することによって、同様にクラックやワレの生じな
いセラミックスを製造することができる。
In addition, although the above example describes the case where three types of binders are used, even when two types of binders with different thermal decomposition temperatures = 7 - are used, the same result can be achieved by appropriately selecting the type of binder. It is possible to produce ceramics without cracks or cracks.

[発明の効果] 以上説明したようにこの発明によれば、セラミックスの
成形体を得る前段階の造粒工程において、熱分解温度の
異なるバインダを2〜3種用いて添加することによって
、通常のセラミックスの焼成条件(昇温速度150°C
〜300°C/hr)においても、急激な熱分解に起因
するクラックやワレの発生を除去して、良質のセラミッ
クスを効率よく製造できる効果がある。
[Effects of the Invention] As explained above, according to the present invention, by adding two to three types of binders having different thermal decomposition temperatures in the granulation process before obtaining a ceramic molded body, Ceramic firing conditions (heating rate 150°C
~300°C/hr), it is effective to eliminate cracks and cracks caused by rapid thermal decomposition, and to efficiently produce high-quality ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼成温度までの温度と各種バインダの減量率の
関係を示す線図、第2図は試料A及びBの成形体の焼成
温度までの温度と成形体の減量率との関係を示す線図、
第3図は試料Aの焼成によって得られたセラミックスの
平面外観写真の模写図、第4図は試料Bの焼成によって
得られたセラミックスの平面外観写真の模式図である。 代理人 弁理士 鈴 木 敏 明 この発明の方法(てよろセラミックス 第3因 ぽト 試料A 天兜妹不件 950’C20hrs 試料B 煙戚矛)1 \X)ぐ ■V 1庭釆の方法1てよゐセラミックス 第4因 950’C20hrs
Figure 1 is a diagram showing the relationship between the temperature up to the firing temperature and the weight loss rate of various binders, and Figure 2 shows the relationship between the temperature up to the firing temperature and the weight loss rate of the molded bodies of samples A and B. line diagram,
FIG. 3 is a schematic diagram of a plan view photograph of the ceramic obtained by firing Sample A, and FIG. 4 is a schematic diagram of a plan view photograph of the ceramic obtained by firing Sample B. Agent Patent Attorney Toshiaki Suzuki Method of this invention (Teyoro Ceramics 3rd Invention Pot Sample A Tenkabuto Imouto 950'C20hrs Sample B Smoke Rear Spear) 1 \X)g ■V 1 Niwakama method 1 Teyoi Ceramics 4th Cause 950'C20hrs

Claims (1)

【特許請求の範囲】 セラミックス材料粉末にバインダを添加して造粒し、こ
の造粒材からなる成形体を形成したのち、この成形体の
焼成を行うセラミックスの製造方法において、 熱分解温度の異る2種又は3種の上記バインダを用いて
上記セラミックス材料粉末の造粒を行う造粒工程を有す
ることを特徴とするセラミックスの製造方法。
[Claims] A method for manufacturing ceramics in which a binder is added to ceramic material powder and granulated to form a molded body made of the granulated material, and then the molded body is fired. A method for manufacturing ceramics, comprising a granulation step of granulating the ceramic material powder using two or three types of the binders.
JP63095753A 1988-04-20 1988-04-20 Production of ceramic Pending JPH01270558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095753A JPH01270558A (en) 1988-04-20 1988-04-20 Production of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095753A JPH01270558A (en) 1988-04-20 1988-04-20 Production of ceramic

Publications (1)

Publication Number Publication Date
JPH01270558A true JPH01270558A (en) 1989-10-27

Family

ID=14146262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095753A Pending JPH01270558A (en) 1988-04-20 1988-04-20 Production of ceramic

Country Status (1)

Country Link
JP (1) JPH01270558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476732A (en) * 2010-10-29 2013-12-25 康宁股份有限公司 Large xenotime ceramic block and dry process for making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476732A (en) * 2010-10-29 2013-12-25 康宁股份有限公司 Large xenotime ceramic block and dry process for making the same
US9266782B2 (en) 2010-10-29 2016-02-23 Corning Incorporated Large xenotime ceramic block and dry process for making the same
CN103476732B (en) * 2010-10-29 2016-08-31 康宁股份有限公司 Large-scale xenotime ceramic block and dry type manufacture method thereof

Similar Documents

Publication Publication Date Title
US3875277A (en) Method for making polycrystalline alumina arc tubes
JPS6410585B2 (en)
JPH082962A (en) Sintering ceramics for highly stable thermistor and its preparation
JPH01270558A (en) Production of ceramic
JP2728706B2 (en) Aluminum nitride sintered body
JP2838129B2 (en) Manufacturing method of superconducting ceramics
US2298679A (en) Method of making resistors and resistance materials
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2881423B2 (en) Oxide superconductor and manufacturing method thereof
JP2978538B2 (en) Superconducting material with high density crystal structure
US3297576A (en) Method of making memory core
JPH07133149A (en) Production of magnesia sintered body
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JP2854527B2 (en) Method for producing porous body
JPH01176270A (en) Production of oxide superconducting molding
JPH03261647A (en) Production of sintered y1ba2cu3o7-x oxide superconductor
JPS63310766A (en) Production of superconducting material
JPH0248459A (en) Production of compound oxide superconductor
JPH0465319A (en) Production of oxide superconducting material
JPH01278458A (en) Production of superconductor
JPH01176268A (en) Production of high-temperature superconductor
JPH07211515A (en) Production of thermistor element
JPS63277575A (en) Production of formed article of oxide superconductor
JPH0431371A (en) Production of oxide superconductor